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Abstract The discrete choice paradigm of random regret minimization (RRM) has been

recently proposed in several choice contexts. In the route choice context, the paradigm has

been used to model the choice among three routes and to formulate regret-based stochastic

user equilibrium. However, in the same context the RRM literature has not confronted

three major challenges: (i) accounting for similarities across alternative routes, (ii) ana-

lyzing choice set composition effects on choice probabilities, and (iii) comparing RRM-

based models with advanced RUM-based models. This paper looks into RRM-based route

choice models from these three perspectives by (i) proposing utility-based and regret-based

correction terms to account for similarities across alternatives, (ii) analyzing the variation

of choice set probabilities with the choice set composition, and (iii) comparing RRM-based

route choice models with C-Logit, Path Size Logit and Paired Combinatorial Logit. The

results illustrate the definition of the correction terms within the regret function, the effect

of the choice set specificity of RRM-based route choice models, and the positive perfor-

mance of these models when compared to advanced RUM-based models.

Keywords Random regret minimization � Route choice modeling � Route similarity �
Correction factor � Path size � Paired Combinatorial Logit

Introduction

The discrete choice paradigm of random utility maximization (RUM) is the most popular

and most used approach to route choice modeling over the last decades. Although fuzzy

logic, artificial neural networks and cognitive psychology have been proposed as alter-

native approaches, researchers generally model route choice behavior while considering
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travelers as utility maximizers selecting the most preferred route for moving from their

origin to their destination (see, e.g., Prashker and Bekhor 2004; Prato 2009).

Recently, the discrete choice paradigm of random regret minimization (RRM) has been

proposed in several choice contexts such as travel mode, parking location, shopping

destination, leisure destination, departure time, vehicle type, and road pricing policies (see,

e.g., Chorus 2010, 2012a). Behavioral foundations and mathematical properties of RRM-

based models have been recently discussed, and theoretical and empirical comparisons

with RUM-based models have been presented (see, e.g., Chorus 2012a, b).

An RRM-based model seems suitable to represent travelers’ route choice behavior,

because of the plausible assumption that travelers are regret minimizers selecting the route

that makes them less regretful of not having chosen an alternative route. In the route choice

context, an RRM-based model has been used in order to investigate the choice among three

routes (Chorus 2012a) and to formulate an RRM-based stochastic user equilibrium (Bekhor

et al. 2012). However, the literature does not present a discussion about RRM-based

models tackling major challenges in route choice modeling: (i) accounting for similarities

across alternative routes, (ii) analyzing the effect of choice set composition on choice

probabilities, and (iii) comparing RRM-based models to advanced RUM-based models.

Accounting for similarities across alternative routes has not been considered in the

RRM literature so far, as an RRM-based model was estimated on stated preference data

regarding choices among three distinct routes (Chorus 2012a) and the stochastic user

equilibrium formulation was proposed without taking into account route similarity

although acknowledging research needs in this direction (Bekhor et al. 2012). The effect of

choice set composition has not been examined in the RRM literature thus far, as the RRM-

based model has not been estimated on route choice revealed preference data that pose the

issue of choice set generation and hence choice set composition (see, e.g., Bovy 2009;

Prato 2009). The comparison between RRM-based models and RUM-based models has

been mainly limited to their multinomial logit (MNL) formulations (see, e.g., Chorus 2010,

2012b) with the exception of a mixed logit formulation (Chorus and de Jong 2011), rather

than extended to the comparison with more advanced models and in particular the Paired

Combinatorial Logit (PCL) model that expresses the choice of an alternative conditional on

the choice of a pair of alternatives (Chu 1989; Koppelman and Wen 2000).

The current study investigates RRM-based models in the route choice context from

three perspectives corresponding to the three aforementioned challenges.

With respect to the first perspective, the current study proposes correction factors to the

RRM-MNL model that account for similarities across alternatives analogously to com-

monality factors and path sizes that correct the RUM-MNL model (see, e.g., Cascetta et al.

1996; Ben-Akiva and Bierlaire 1999; Bovy et al. 2008; Frejinger et al. 2009). In fact,

although not suffering from the independence from irrelevant alternatives (IIA) property as

the RUM-MNL model (Chorus 2012b), the RRM-MNL model bears the same inability to

account for correlation across alternatives. Accordingly, three alternative approaches to the

integration of correction factors in the RRM-MNL model are proposed: (i) adding utility-

based corrections to the regret function in order to correct for the similarity of a route with

respect to all other alternative routes within the choice set; (ii) adding a regret-based term

to the regret function in order to express the comparison of degrees of similarity of a route

with each alternative route; (iii) adding a regret-based term to the regret function in order

to adjust for the correlation of a route with respect to each alternative route. An experi-

mental analysis is performed on the basis of two simple networks, namely the ‘‘overlapping

network’’ and the ‘‘switching route network’’ (see Prashker and Bekhor 2004). The
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variation in the choice probability of routes as a function of their overlapping with other

routes is examined for the proposed RRM-based models.

With respect to the second perspective, the current study investigates the effect of the

choice set composition on RRM-based route choice models. Intuitively, the choice set

composition affects RRM-based models because of their choice set specificity related to

the inclusion of alternatives that adds terms to the regret function. An experimental

analysis is proposed on the basis of a grid network (see Bliemer and Bovy 2008) and the

variation in the choice probability of routes is examined as a function of the composition of

choice sets used for model estimation.

With respect to the third perspective, the comparison of RRM-based and RUM-based

models is investigated with the estimation of route choice models from revealed preference

data collected among commuters in an urban area of the north of Italy. In particular, the

experimental analysis allows comparing not only the RRM-MNL and the RUM-MNL

models, but also the proposed RRM-based models with existing RUM-based models such

as RUM-MNL modifications and PCL.

The remainder of the paper is structured accordingly to the three perspectives of the

investigation. ‘‘Correcting for similarity across alternatives’’ section proposes solutions to

account for similarities across alternatives in RRM-based route choice models and

examines the variation of the probabilities of choosing routes as a function of the degree of

similarity. ‘‘Investigating the choice set composition effect’’ section illustrates an experi-

mental analysis of the effects of choice set composition on route choice probabilities.

‘‘Comparing RUM-based and RRM-based route choice models’’ section compares the

estimation of RRM-based and RUM-based route choice models in a revealed preference

case-study. ‘‘Summary and conclusions’’ section draws the most significant conclusions

from the investigation and suggests further research directions.

Correcting for similarity across alternatives

The literature in RUM-based route choice models presents several corrections to the route

utility function that account for similarities across alternatives while maintaining the

simple MNL model formulation (see, e.g., Prashker and Bekhor 2004; Prato 2009). The

current study proposes conceptually similar corrections for RRM-based route choice

models.

RRM-based route choice models

When considering RRM-based models in the route choice context, the regret of route i is

written as (see, e.g., Chorus 2010, 2012b):

Ri ¼
X

j6¼i

X

m

ln 1þ exp bm xjm � xim

� �� �� �
þ ei ð1Þ

where Ri is the random regret associated with route i, xjm and xim are the values of attribute

m for alternatives j and i, bm are parameters to be estimated for the attributes m, and ei is

the error term representing the unobserved regret. Assuming that the negative of the error

term ei is Gumbel distributed, the probability Pi of selecting route i within the choice set C

is formulated as (see, e.g., Chorus 2010, 2012b):
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Pi ¼
exp �

P
j 6¼i

P
m ln 1þ exp bm xjm � xim

� �� �� �� �

P
j2C exp �

P
k 6¼j

P
m ln 1þ exp bm xkm � xjm

� �� �� �� � ð2Þ

With respect to the RUM-MNL model, the RRM-MNL model does not suffer from the

IIA property because the attributes of all alternatives in the choice set enter the regret

function of any alternative (Chorus 2012b). However, in the route choice context the

RRM-MNL model suffers from the same inability to account for similarities across

alternatives, as the regret function does not consider whether the difference in the attributes

between two alternatives derives from overlapping or non-overlapping links. The current

study proposes three approaches to correct for similarities across alternatives with RRM-

based models.

RRM-based model with utility-based corrections

Given the probability formulation of the RRM-MNL model, a first solution to the problem of

accounting for similarities across alternatives consists in adding utility-based correction

measures to the argument of the exponential function in the probability formulation.

Accordingly, a hybrid RUM-RRM function combines the regret for selecting route i and

the disutility for the degree of similarity or independence of route i. Hybrid functions have

been discussed from a behavioral perspective (Chorus 2012b), and their application

appears reasonable also in the route choice context. The probability of choosing route i is

formulated as follows:

Pi ¼
exp �

P
j 6¼i

P
m ln 1þ exp bm xjm � xim

� �� �� �
þ bcorrcorri

� �

P
j2C exp �

P
k 6¼j

P
m ln 1þ exp bm xkm � xjm

� �� �� �
þ bcorrcorrj

� � ð3Þ

where corri is a utility-based correction term for route i and bcorr is a parameter to be

estimated. The correction term may be expressed by (i) commonality factors, which

decrease the utility of a route because of its degree of similarity with the alternative routes,

or (ii) path size measures, which indicate the fraction of a route that constitutes a ‘‘full’’

alternative.

In the former case, the commonality factors may be expressed as (Cascetta et al. 1996;

Cascetta 2001):

corri ¼ CFi ¼ ln
X

j2C

Lijffiffiffiffiffiffiffiffi
LiLj

p
 !

ð4Þ

corri ¼ CFi ¼ ln 1þ
X

j2C
j 6¼i

Lijffiffiffiffiffiffiffiffi
LiLj

p
 !

Li � Lij

Lj � Lij

� �
2
664

3
775 ð5Þ

where Li is the length of route i, Lj is the length of alternative route j within the choice set

C, and Lij is the overlapping length between routes i and j. It should be noted that the two

formulations represent different concepts of similarity: the original formulation (Eq. 4)

depends exclusively on the overlapping length between routes, while the modified for-

mulation (Eq. 5) depends also on the costs of the disjoint links and suggests that the ratio

between the commonality factors of two routes should increase when the overlapping
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between the two routes increases. Both formulations are always positive and have a null

lower bound, as the arguments of the logarithms are equal to one for independent routes.

In the latter case, the path size measures may be expressed as either the original

formulation (Eq. 6) derived for an application of discrete choice theory for aggregate

alternatives (Ben-Akiva and Bierlaire 1999) or a modified formulation (Eq. 7) derived

from an approximation of GEV models (Bovy et al. 2008):

corri ¼ ln PSið Þ ¼ ln
X

a2Ci

La

Li

1P
j2C daj

 !
ð6Þ

corri ¼ PSCi ¼ �
X

a2Ci

La

Li

ln
X

j2C

daj

 !
ð7Þ

where PSi is the path size of route i, PSCi is the path size correction of route i, Li is the

length of route i, La is the length of link a, Ci is the set of links belonging to route i, daj is

the link-route incidence dummy that is equal to one if route j within the choice set C uses

links a and zero otherwise. Both formulations have an upper bound for completely inde-

pendent routes, but the PSCi does not have a lower bound because there is no upper bound

on the number of paths sharing a link (Bovy et al. 2008).

Both commonality factors imply that the estimated parameters bcorr have expected

negative signs to suggest that the utility is reduced when route i overlaps with the alter-

native routes in the choice set. Both path size measures imply that the estimated parameters

bcorr have expected positive signs to indicate that the utility is reduced when the route i is

not an independent alternative. It should be noted that the role of commonality factors and

path size measures in RRM-based models is analogous to their role in RUM-based models,

and hence the expected sign of the parameters is the same.

PS-RRM

Given that the regret function accounts for pairwise comparisons of alternatives at the

attribute level, a second solution to the problem of considering similarities across alter-

natives consists in adding to the regret function a term expressing the pairwise comparison

of the degree of independence of alternatives.

Accordingly, the path size (or the path size correction) of route i is compared to the one of

each alternative route j in the choice set C within the regret function. The probability of choosing

route i is formulated in the PS-RRM model (where either PSi or PSCi may be inserted):

Pi ¼
exp �

P
j 6¼i

P
m ln 1þ exp bm xjm � xim

� �� �� �
�
P

j 6¼i ln 1þ exp bcorr PSj � PSi

� �� �� �� �

P
j2C exp �

P
k 6¼j

P
m ln 1þ exp bm xkm � xjm

� �� �� �
�
P

k 6¼j ln 1þ exp bcorr PSk � PSj

� �� �� �� �

ð8Þ
For an interpretation of the sign of the parameter bcorr, it should be noted that the regret

function enters with a negative sign in the probability formulation (see, e.g., Chorus 2012a,

b). Intuitively, the expected sign of the parameter bcorr is positive to indicate that the regret

for the considered route diminishes when this route is more independent than the alternative

ones, and increases when this route is less distinct than the alternative ones. The difference

between path size terms is in fact negative in the former case, and positive in the latter.
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C-RRM

Given that the regret function encompasses pairwise comparisons of alternatives at the

attribute level, a third solution to the problem of considering similarities across alternatives

consists in adding a term expressing the pairwise correlation between alternatives.

Generally, the random error variance of routes is related to some size measure of the

route (see, e.g., Daganzo and Sheffi 1977):

r eið Þ ¼ k � Li ð9Þ

where r(ei) is the variance of route i and k is a proportionality factor with the length Li. The

covariance r(ei,,ej) between routes i and j within the choice set C is related to their physical

overlap and, assuming the aforementioned proportionality relationship, it is related to the

common route part Lij:

r ei; ej

� �
¼ k � Lij ð10Þ

The correlation q(ei,,ej) between the two routes is calculated as the correlation between

two random variates:

q ei; ej

� �
¼

r ei; ej

� �

ffiffiffiffiffiffiffiffiffiffi
r eið Þ

p ffiffiffiffiffiffiffiffiffiffi
r ej

� �q ¼ Lijffiffiffiffiffiffiffiffi
LiLj

p ð11Þ

The correlation may also be weighted according to the ratios between the disjoint and

the overlapping part of the two routes, in order to indicate the higher weight for the route

with the smaller disjoint part:

q ei; ej

� �
¼

r ei; ej

� �

ffiffiffiffiffiffiffiffiffiffi
r eið Þ

p ffiffiffiffiffiffiffiffiffiffi
r ej

� �q
Li�Lij

Lij

� �

Lj�Lij

Lij

� � ¼ Lijffiffiffiffiffiffiffiffi
LiLj

p Li � Lij

Lj � Lij

� �
ð12Þ

Given the definition of correlation for route i with respect to each alternative j, the

correlation terms are inserted within the regret function to correct for similarities across

alternatives. The probability of choosing route i is formulated in the C-RRM model:

Pi ¼
exp �

P
j6¼i

P
m ln 1þ exp bm xjm � xim

� �� �� �
�
P

j6¼i ln 1þ exp bcorrq ei; ej

� �� �� �� �

P
j2C exp �

P
k 6¼j

P
m ln 1þ exp bm xkm � xjm

� �� �� �
�
P

k 6¼j ln 1þ exp bcorrq ej; ek

� �� �� �� �

ð13Þ

where the correlation terms may be expressed by both formulations (11) and (12). Intui-

tively, the expected sign of the parameter bcorr is positive to indicate that the regret for the

considered route diminishes when the correlation is high. This proposition appears logical

when considering the regret for choosing route i over route j: in the case that Lij is null, the

regret will be proportional to the difference between Li and Lj; in the case that Lij increases,

the regret will be inferior because not imputable to the common part.

Experimental analysis

Two simple networks are selected from the literature to illustrate the performances of the

proposed models in terms of variation of route choice probabilities as a function of the

degree of similarity. Figure 1 illustrates the two simple networks, namely the ‘‘overlapping
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network’’ (see Daganzo and Sheffi 1977; Prashker and Bekhor 2004) and the ‘‘switching

route network’’ (see Prashker and Bekhor 2004).

The ‘‘overlapping network’’ allows identifying three alternative routes, with one being

independent and the remaining two being overlapping because of the common link b. It

should be noted that the three routes share the same cost of 10 units regardless of the cost

of link b. The ‘‘switching route network’’ allows identifying four alternative routes, with

three routes (1-2-4, 1-3-4, 1-2-3-4) sharing the same cost of 10 units regardless of the cost

a, while the fourth route 1-3-2-4 has cost (4a - 10) that is equal to the other routes when

a = 5 and becomes increasingly less attractive when a increases. It should be noted that

the cost a varies between 5 and 10 in order not to have negative link costs.

Probabilities for choosing the alternative routes are calculated for the proposed RRM-

based route choice models. Generalized route cost is the only attribute m for the calculation

of the regret of the alternative routes, and the cost parameter bm is assumed to be equal to

-1. The parameters bcorr are assumed according to the expected signs previously dis-

cussed: for utility-based corrections, bcorr is assumed to be equal to -1 when corri rep-

resents a commonality factor and ?1 when corri represents a path size; for regret-based

corrections, bcorr is assumed to be equal to ?1 for both PS-RRM and C-RRM models.

Figure 2 illustrates the probability of selecting route 1 (i.e., link a) as a function of the

ratio between the common link b and the route cost. In the two extreme cases, this

probability should be equal to 33.3 % when the three alternative routes are completely

independent and to 50.0 % when the remaining two routes are completely overlapping. It

should be noted that, even though the RRM-MNL model does not exhibit the IIA property,

the regret function accounts for the (null) difference between route costs and ignores the

cost of link b, and hence always leads to equal choice probabilities for the three alternative

routes.

overlapping network

switching network

3

2

1

b
d

c

a

2a - 10

a

2a - 10

10 - a

a
10 - a

4

3

2

1

Fig. 1 Experimental networks
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Fig. 2 Similarity effect in the ‘‘overlapping network’’
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Similarly to RUM-MNL modifications (see Prashker and Bekhor 2004), the utility-

based corrections to the RRM-MNL model allow retrieving observing the expected

probabilities at the two extreme cases. The curves are either convex or concave in the

middle section, with the definition of similarity playing a role since convex curves result

from commonality factors and concave curves result from path sizes. The regret-based

corrections do not allow observing the expected probabilities at the two extreme cases.

PSC-RRM highly overestimates and PS-RRM slightly overestimates the probability of

choosing route 1 when the two alternative routes are equivalent. Attempts to mitigate this

effect by reducing the parameter bcorr have been performed without obtaining better

results. C-RRM models exhibit the same curve regardless of the formulation considered for

the pairwise correlation between alternatives, slightly underestimate the probability in the

extreme case of two independent routes, and show a concave shape which is different from

the convex one when commonality factors are added as utility-based terms. Overall, utility-

based corrections appear more successful in obtaining the expected probabilities at the

extreme cases in this simple network, but C-RRM formulations appear promising and

outperform more complex model approaches such as GEV models (see Prashker and

Bekhor 2004).

Figure 3 shows the probability of selecting route 3 (i.e., 1-2-3-4) as a function of cost

a. In the two extreme cases, this probability should be equal to 25 % when the four routes

are completely independent and to 33.3 % when three routes are independent and the

fourth is highly inconvenient. It should be noted that the RRM-MNL model manages to

reproduce the expected probabilities at the extreme cases.

With the exception of the modified commonality factor that accounts for the disjoint

part of the route, the utility-based corrections do not allow retrieving the expected prob-

abilities at the two extreme cases and largely overestimate the probability of route 3.

Similar results and hence similar problems are presented by Prashker and Bekhor (2004)

for RUM-MNL modifications. Regret-based corrections illustrate similar behavior, with

PS-RRM and PSC-RRM largely overestimating the probability of route 3 at the extreme

case. C-RRM shows correct values for the weighted formulation of the correlation between

alternative routes (Eq. 12).

The purpose of the analysis with the two simple networks presented above is to illustrate

the importance of the specification of similarity measures in the RRM-based route choice

models. Similarly to RUM-MNL modifications and GEV models (see Prashker and Bekhor

2004), models perform positively with one network and unsatisfactorily with the other.

From this experimental analysis, it appears that the most promising correction is the regret-

based correction accounting for the correlation between alternative routes weighted

according to the disjoint parts of the routes.

Investigating the choice set composition effect

The literature in RUM-based route choice models has shown growing interest in com-

prehending the role of choice set composition on model estimates and traffic flow pre-

dictions (e.g., Bliemer et al. 2007; Prato and Bekhor 2007; Bekhor et al. 2008; Bliemer and

Bovy 2008). The same question applies to RRM-based route choice models, considering

that the calculation of regret functions and route choice probabilities requires the definition

of a choice set. The current study presents an experimental analysis to help evaluating the

effects of choice set composition on the proposed RRM-based models.
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Fig. 3 Similarity effect in the ‘‘switching route network’’
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Experimental design

A simple network is selected from the literature to illustrate the performance of the

proposed models in terms of variation of route choice probabilities as a function of choice

set composition. The network selection is motivated by the desire to maximize the control

of the size and composition of the route choice set through the complete knowledge about

relevant routes, irrelevant routes and choice set properties (Bliemer and Bovy 2008).

Figure 4 illustrates the grid network with bidirectional links of unit cost (see Bliemer and

Bovy 2008). The network contains 12 possible alternatives for the considered o–d pair:

routes 1-6 have minimum cost equal to 4, routes 7-10 have cost equal to 6, and routes

11-12 have maximum cost equal to 8.

A probit model is assumed to represent the true route choice behavior. Links have a

deterministic component ca equal to their cost and a stochastic component ea that is

normally distributed with null mean and variance ra
2. For comparability reasons, the

variances at the route level of the probit and the RRM-based models are constructed equal.

Accordingly, the variance var(ei) of route i is equal to p2/6l2 and ra
2 is equal to 1/4 of this

value while assuming cost equal to 4 (for details, see Bliemer and Bovy 2008). The true

probit route choice probabilities for the twelve alternative routes are computed by 10,000

Monte Carlo simulations, and are presented in Table 1. Interestingly, the six shortest routes

are not equally preferred because of different degrees of similarity. Specifically, the more

the routes overlap, the lower their probability is in favor of independent alternatives.

Routes 1-2 have a higher probability of being selected because of the lower overlap with

other alternatives than routes 3-4. The longer routes are far less relevant, and they have

only a limited probability of being selected.

route 1 route 2 route 3 route 4 route 5 route 6

route 7 route 8 route 9 route 10 route 11 route 12

d

o

Fig. 4 Experimental grid network
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The RRM-based route choice models are estimated with a regret function containing

only the cost attribute m for two choice set compositions consisting of (i) only the relevant

routes and (ii) all the relevant and the irrelevant routes. Observed route choices correspond

to the minimum cost routes for each of the 10,000 observations from the Monte Carlo

simulation of the postulated model. After estimates for bm and bcorr are obtained from one

choice set, choice probabilities for the alternative routes are calculated by applying the

estimated parameters to different choice sets, and RMSE are computed with respect to the

probit probabilities in order to evaluate the ability to reproduce the true route choice

probabilities (see, e.g., Nerella and Bhat 2004; Bliemer and Bovy 2008). It should be noted

that the model is unidentified when only the relevant routes are considered since they share

the same minimum cost, and hence the parameter bm is fixed equal to -1.

Experimental results

Table 1 presents the route choice probabilities as a function of choice set composition. The

table is divided in two parts referring to the route choice probabilities calculated after the

application of the model estimated with respectively, 6 and 12 alternative routes. Each of

the two parts is further divided into three sections referring to the route choice probabilities

calculated after the application of the estimated model to the choice sets with respectively

6, 10 and 12 alternative routes. Estimates of the RRM-based route choice models are

reported for each of the two parts (i.e., for 6 and 12 alternative routes), and the RMSE are

presented alongside the choice probabilities of the 6, 10 or 12 routes for each section of the

two parts.

Regardless of the choice set composition used for model estimation, the sign of

parameter bm is negative to correctly imply that minimizing regret corresponds to mini-

mizing travel time. When considering the choice set with only the 6 relevant routes, the

signs of the parameters bcorr correspond to the expected signs to indicate that the similarity

is captured as expected. When considering the choice set with all the 12 alternative routes,

the signs of the parameters bcorr are often the opposite of the expected ones. Only the

modified commonality factor (Eq. 5) and the weighted correlation (Eq. 12) allow obtaining

the expected signs, suggesting that considering also the portion of disjoint routes is ben-

eficial in the correction of the regret function. It should be noted that counterintuitive

results, which indicate the route overlap being weighted positively so that more utility is

added to a route with a higher overlap, are also observed for RUM-MNL modifications

(Bliemer and Bovy 2008). The composition of the choice set causes these results, as for

example routes 1-2 overlap significantly with irrelevant routes and hence estimated

parameters correct for their utility in the direction opposite to the one expected. Clearly,

the choice set composition affects model estimates and the insertion of irrelevant route

changes the purpose of utility-based and regret-based corrections.

When considering choice probabilities calculated by using the estimates from the choice

set containing only the 6 relevant routes, models exhibit a relatively low RMSE when

replicating the route choice probabilities of the probit model. Among utility-based cor-

rections, the difference in the route choice probabilities of routes 1-2, 5-6 and 3-4 is

captured only by the modified commonality factor (Eq. 5). None of the other corrections

distinguishes between routes 5-6 and routes 3-4 in terms of choice probabilities. Among

regret-based corrections, the same behavior is observed as C-RRM models perform better

than the PS-RRM and the PSC-RRM models, and the weighted correlation (Eq. 12) pro-

duces the best results. Adding irrelevant alternative routes for calculating the probabilities

with the estimates obtained from the choice set with only relevant alternatives is not
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beneficial. Adding routes 7-10 leads to obtaining very similar results conceptually,

although the probabilities of these same routes are highly overestimated. Further adding

routes 11-12 drives not to attain the same results, as routes 1-2 become significantly less

preferable because of their high degree of similarity with the maximum cost routes. This

same effect has been observed for RUM-MNL modifications (Bliemer and Bovy 2008).

When considering choice probabilities computed by using the estimates from the choice

set including all the 12 alternative routes, models exhibit a comparably low RMSE when

replicating the route choice probabilities of the probit model. Among utility-based cor-

rections, the difference in the route choice probabilities of routes 1-2, 5-6 and 3-4 is

captured only by the modified commonality factor (Eq. 5). However, this same com-

monality factor produces the highest RMSE and hence the worst reproduction of the probit

probabilities. Among regret-based corrections, the same behavior is observed as C-RRM

models reproduce the correct differentiation, but the PS-RRM and the PSC-RRM models

better reproduce the probit probabilities overall. The inability to replicate the postulated

behavior increases when removing irrelevant alternative routes. Removing routes 11-12

causes routes 1-2 not being preferable with respect to the other relevant routes, while

removing routes 7-10 further increases this tendency. The C-RRM performs significantly

better than the other models, both from the raw probability perspective and the total error

perspective.

Similarly to RUM-MNL modifications and GEV models (Bliemer and Bovy 2008),

RRM-based route choice models can quite accurately replicate route choice probabilities

only for the choice set on which they are estimated, but probabilities are quite different

when smaller or larger choice sets are considered. These empirical results are hardly

surprising when considering that RRM-based models are choice set specific. The additive

regret function implies obtaining smaller (larger) parameter estimates for RRM-based

models estimated on larger (smaller) choice sets, and consequently predictions made on the

basis of an estimated RRM-based model should refer to a choice set of the same size as the

one used for model estimation (Chorus 2012a). Being choice set specific is an advantage of

RRM-based models, which are able to capture choice set composition effects and hence

cannot be transferred seamlessly to different choice sets. Also, being choice set specific

reminds route choice modelers that the definition of choice sets for individual travelers

plays a major role for RRM-based models as for RUM-based route choice models.

Comparing RUM-based and RRM-based route choice models

The literature in RRM has shown comparisons between RRM-MNL and RUM-MNL in

several choice contexts. As RRM-based models have been proposed in the route choice

context, the current study answers the question of their comparison with advanced RUM-

based models (i.e., C-Logit, PS-Logit, PSC-Logit, PCL) through the estimation for

revealed preference data collected in an urban network.

Estimation data and methods

A web-based survey allowed to observe route choice behavior of car drivers commuting in

the morning in the metropolitan area of Torino (Italy). The considered network consists of

23 districts, 92 zones, 417 nodes, and 1427 links, and covers an area containing roughly

900,000 inhabitants within the city limits. The network includes major arterials crossing

the city from north to south and from east to west, main roads that connect different
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districts of the city, minor roads that link points within the same district, and some local

roads.

The sample for model estimation consists of 575 routes from the 236 survey partici-

pants, as some recorded more than one chosen route. Routes are in average 4.8 km and

15.4 min long, with standard deviations of 2.0 km and 5.9 min. Alternative routes are

generated with a modified branch and bound algorithm (Prato and Bekhor 2006) that

produces 2–19 alternatives per observation with a median value of 11 alternatives. The

coverage of the observed routes (see Ramming 2002) is equal to 85.4 % with a 100 %

overlap threshold and 91.3 % with an 80 % overlap threshold, thus showing high realism

of the implemented path generation technique with respect to the observed behavior. It

should be noted that all the observations were covered at least at the 65.4 % level, and the

observed routes not reproduced at the 80 % overlap threshold were added to the generated

choice set. Further details on the dataset and the choice set generation are presented by

Prato et al. (2012).

Estimated models are the proposed RRM-based models and their RUM-based coun-

terparts. For RUM-MNL modifications, the probability of choosing route i is formulated as

follows:

Pi ¼
exp

P
m bmxim þ bcorrcorri

� �
P

j2C exp
P

m bmxjm þ bcorrcorrj

� � ð14Þ

where xim is the value of attribute m for route i, and the sum over the attributes of the

product between parameters bm and values xim represents the deterministic part of the

utility function. The correction terms corri may correspond to the commonality factors in

Eqs. (4) and (5) to have the C-Logit model formulation (Cascetta et al. 1996; Cascetta

2001), or to the path size measures in Eqs. (6) and (7) to have the PS-Logit (Ben-Akiva and

Bierlaire 1999) and the PSC-Logit (Bovy et al. 2008). In addition to RUM-MNL modi-

fications, the PCL model is estimated in order to compare the RRM-MNL model with the

RUM-based model considering pairwise comparison of alternatives. For the PCL model,

the probability of choosing route i is formulated as follows (see Prashker and Bekhor 1998;

Koppelman and Wen 2000):

Pi ¼
X

i 6¼j

P ijð ÞP i ijjð Þ ð15Þ

where P(ij) is the marginal probability of choosing pair (i,j) among the n(n - 1)/2 possible

pairs of alternative routes, and P(i|ij) is the conditional probability of choosing route i

given the chosen pair (i,j). Conditional and marginal probabilities depend on the degree of

similarity between routes within the pair:

P i ijjð Þ ¼
exp

P
m

bmxim

1�rij

� �

exp

P
m

bmxim

1�rij

� �
þ exp

P
m

bmxjm

1�rij

� � ð16Þ

P ijð Þ ¼
1� rij

� �
exp

P
m

bmxim

1�rij

� �
þ exp

P
m

bmxjm

1�rij

� �� �1�rij

Pn�1
k¼1

Pn
l¼kþ1 1� rklð Þ exp

P
m

bmxkm

1�rkl

� �
þ exp

P
m

bmxlm

1�rkl

� �� �1�rkl
ð17Þ
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The similarity coefficient rij between routes i and j is defined with a parameterization

similar to the commonality factor presented in Eq. 4 (Prashker and Bekhor 1998):

rij ¼
Lijffiffiffiffiffiffiffiffi
LiLj

p
 !cr

ð18Þ

where cr is a parameter to be estimated.

All route choice models are estimated with GAUSS matrix programming language and

are compared in terms of model performances and value-of-time.

Goodness-of-fit of a model M is measured as McFadden’s corrected likelihood ratio

index qM
2 :

q2
M ¼ 1� LLb � kMo

LL0

ð19Þ

where LLb is the log-likelihood at the estimates, LL0 is the log-likelihood at zero, and kM is

the number of parameters estimated. The comparison of model performances requires to

consider whether models are nested in a statistical sense, namely whether a model may be

considered a special case of an alternative model by assigning appropriate values to some

subset of the alternative model’s parameters (see, e.g., Horowitz 1983). Likelihood ratio

(LR) tests are used to compare nested models, and the likelihood ratio index (LRI) test is

applied to compare non-nested models by evaluating the probability of the difference

between corrected likelihood ratio indices being significant (Horowitz 1983).

Value-of-time (VOT) is measured for RUM-based and RRM-based models according to

the formulations (see, e.g., Chorus 2012a, b):

VOTRUM ¼
oUi=otimeið Þ
oUi=ocostið Þ ð20Þ

VOTRRM ¼
oRi=otimeið Þ
oRi=ocostið Þ ð21Þ

where Ui is the utility of route i, Ri is the regret of route i, and timei and costi are

respectively, time and cost of route i. Although there is a difference between RUM and

RRM formulation of VOT since the latter is alternative and choice set specific (Chorus

2012a, b), in the current study the calculation of the VOT according to the presented

formulations is performed for the same choice set and hence provides additional elements

to the comparison between RUM-based and RRM-based models.

Estimation results

The estimated models consider the following attributes m in the utility and the regret

functions: (i) cost of travel calculated as proportional to the distance covered; (ii) travel

time; (iii) number of right turns; (iv) number of left turns; (v) number of traffic lights

crossed. The parameters bm of these variables are expected of negative sign to indicate that

utility is maximized or regret is minimized with cheaper, faster and straighter routes.

Table 2 presents the estimates for the RUM-based route choice models. The PCL model

outperforms the RUM-MNL and its modifications (LRPCL-RUM-MNL = 11.25, p = 0.0008;

LRI = qPCL
2

-qC-Logit eq(4)
2 = 0.0024, p \ 0.0001; LRI = qPCL

2
-qPS-Logit

2 = 0.0032, p \
0.0001; LRI = qPCL

2
-qPSC-Logit

2 = 0.0010, p = 0.0019). Within RUM-MNL modifications,

the PSC-Logit outperforms the remaining models using alternative expressions of the
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correction factor (LRI = qPSC-Logit
2

-qC-Logit eq(4)
2 = 0.0014, p \ 0.0001; LRI = qPSC-Logit

2
-

qPS-Logit
2 = 0.0014, p \ 0.0001). All parameters bm are negative as expected to represent the

utility maximization behavior of morning commuters in the urban network of Torino (Italy).

All parameters bcorr exhibit the expected signs, with estimates for commonality factors being

negative and for path size measures being positive to reduce the utility on the basis of the

degree of similarity of the routes in the choice set. When looking at the VOT, the PCL model

shows the lowest value at 14.19 €/h, while the RUM-MNL modifications vary from 15.07 €/h

of the C-Logit with original commonality factor to 15.94 €/h of the C-Logit with modified

commonality factor. These values appear slightly high when considering the commuting

purpose (see Shires and De Jong 2009), but over 50 % of the sample are faculty members with

higher income and potentially higher value-of-time.

Table 3 shows the estimates for the RRM-based route choice models with utility-based

correction terms. As observed in other choice contexts (see, e.g., Chorus 2012a, b), the RRM-

MNL model has goodness-of-fit similar to the RUM-MNL model (LRI = qRRM-MNL
2

-qRUM-

MNL
2 = 0.0002, p = 0.3036). Adding a utility-based correction term leads to some models

with performances inferior to the corresponding RUM-MNL modifications (LRI =

qC-Logit eq(4)
2

-qRRM-MNL?CF eq(4)
2 = 0.0015, p \ 0.0001; LRI = qPSC-Logit

2
-qRRM-MNL?PSC =

0.0021, p \ 0.0001) and others with performances superior to the corresponding RUM-MNL

modifications (LRI = qRRM-MNL?ln(PS)
2

-qPS-Logit
2 = 0.0021, p \ 0.0001). Interestingly, the

RRM-MNL model is slightly outperformed by the PCL model (LRI = qPCL
2

-qRRM-

MNL
2 = 0.0034, p \ 0.0001). All parameters bm are negative as anticipated to characterize the

regret minimization behavior of morning commuters in the studied urban network. All

parameters bcorr exhibit the expected signs as their RUM-based counterparts. When looking at

the VOT, the values are generally lower than the RUM-based models with values ranging

between 11.76 €/h for the RRM-MNL ? PSC model and 13.25 €/h of the RRM-MNL ? C-

Logit with original commonality factor. These values appear more in line with commuters

value-of-time in Europe (see Shires and De Jong 2009), and it should be noted that they

depend on the relative performance of the chosen routes with respect to the alternative routes

in the choice set (Chorus 2012b).

Table 4 illustrates the estimates for the RRM-based route choice models with regret-

based correction terms. Interestingly, adding a regret-based correction term appears more

beneficial than summing a utility-based correction term from the perspective of the

goodness-of-fit of the route choice models (LRI = qC-RRM eq(11)
2

-qRRM-MNL?CF eq(4)
2 =

0.0037, p \ 0.0001; LRI = qC-RRM eq(12)
2

-qRRM-MNL?CF eq(5)
2 = 0.0039, p \ 0.0001;

LRI = qPSC-RRM
2

-qRRM-MNL?PSC
2 = 0.0015, p \ 0.0001), with the exception of the

original path size measure (LRI = qRRM-MNL?ln(PS)
2

-qPS-RRM
2 = 0.0007, p \ 0.0269).

When comparing the best performing RUM-based and RRM-based models, the C-RRM

model performs similarly to the PCL model (LRI = qC-RRM eq(12)
2

-qPCL
2 =

0.0002, p \ 0.2700), which is remarkable when considering that the latter takes 7 times

more to converge. All parameters bm are negative as expected, and all parameters bcorr

are positive as expected to indicate that the correction terms capture similarity as

hypothesized in ‘‘Correcting for similarity across alternatives’’ section. When looking at

the VOT, the values are similar to the other RRM-based models with variation from

10.53 €/h for the PSC-RRM model to 12.37 €/h for the C-RRM with weighted

correlation.

Overall, the proposed RRM-based models are comparable to the RUM-based models,

and the C-RRM model is comparable with the more sophisticated, but far more demanding

computationally, PCL model.
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Summary and conclusions

As the discrete choice paradigm of RRM has been recently introduced in several choice

contexts (see, e.g., Chorus 2012a, b), and the suitability to represent travelers’ route choice

behavior appears logical, this paper looks into the RRM paradigm in the route choice

context from three perspectives: (i) similarity across alternative routes; (ii) choice set

composition effects on route choice probabilities; (iii) comparison of RUM-based and

RRM-based models.

Three approaches are proposed to consider similarities across alternatives within the

regret function: (i) adding utility-based corrections; (ii) adding a regret-based term that

compares the degree of similarity of a route with the one of each alternative; (iii) adding a

regret-based term that adjusts for the correlation of each route with any other alternative.

The behavior of the proposed RRM-based route choice models when overlapping routes

are considered is investigated with an experimental analysis of the ‘‘overlapping network’’

and the ‘‘switching route network’’ (see Prashker and Bekhor 2004). The analysis of the

variation of choice probabilities as a function of the overlapping quantity illustrates that the

first approach leading to a hybrid RUM-RRM model is preferable to represent overlap

when considering the ‘‘overlapping network’’, but produces incorrect results when

examining the ‘‘switching routes network’’. This behavior is analogous to the one exhibited

by RUM-MNL modifications that account for the same correction terms (Prashker and

Bekhor 2004). The analysis also shows that the C-RRM model introduces less error than

PS-RRM and PSC-RRM, especially when the correlation is weighted according to the

disjoint portions of the routes.

The behavior of the proposed RRM-based route choice models for different choice set

compositions is investigated with an experimental analysis of choice probability differ-

ences in the ‘‘grid network’’ proposed by Bliemer and Bovy (2008). The proposed models

are estimated and then choice probabilities are calculated from the application of estimated

parameters to different choice sets and compared to the postulated true behavior. Firstly,

model estimation while considering only relevant routes in the choice set allows obtaining

parameters of the expected sign. On the contrary, model estimation while including also

irrelevant routes in the choice set guides the parameters to show the opposite signs because

the degree of similarity of relevant routes is very high with respect to irrelevant routes.

Secondly, RRM-based route choice models are choice set specific and present the expected

feature of being able to reproduce accurately true route choice probabilities only when

estimation and prediction are performed for the same choice set composition. Last, cal-

culated choice probabilities show that the C-RRM model is able to differentiate between

relevant routes according to the correlation level proposed by the postulated probit model.

The comparison of the RRM-based models with the RUM-based models is investigated

with model estimation from revealed preference data collected among commuters in an

urban network. From the goodness-of-fit perspective, the RRM-MNL model is comparable

to the RUM-MNL model as shown in the literature about contexts other than route choice

(Chorus 2012a, b). In addition, models with regret-based correction terms that account for

the pairwise correlation between alternatives are slightly better than models with utility-

based corrections. In particular, the C-RRM model performs comparably to the PCL

model. From the VOT perspective, RRM-based route choice models produce values

generally lower than their RUM-based counterparts by roughly 3 €/h and approximately in

line with existing knowledge about commuter trips (Shires and De Jong 2009).

In conclusion, this paper contributes to the literature in route choice by verifying that it

is plausible to consider travelers as regret minimizers and proposing corrections for
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similarity across alternatives analogously to RUM-based models. This paper contributes

also to the literature in RRM by further expanding the applicability of RRM-based models

for another choice context, illustrating the similarity in the performances with respect to

the RUM-based models, and showing the preference with respect to enhanced RUM-based

models that are neither more parsimonious, nor easier to code, nor faster to estimate.

All three perspectives open the possibility for further research directions. From the

similarity perspective, additional measures might be derived theoretically or at least

hypothesized conceptually in order to correct the regret function. From the choice set

composition perspective, a deeper investigation could be performed in order to understand

to what extent RRM-based route choice models suffer from misspecification of choice sets.

Moreover, dynamic approaches with RRM-based models instead of RUM-based models

could be considered to solve the lack of robustness with respect to the choice set com-

position (see Fosgerau et al. 2011). From the comparative perspective, additional datasets

can be used to expand the literature in RRM with respect to both model performances and

value-of-time calculations, and synthetic experiments can be set up to evaluate which

models better reproduce route choice behavior.
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