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Abstract When using limited funds on bicycle facilities, it would be helpful to know the

extent to which a new facility will be used. If a bicycle lane is added to a street, how many

bicyclists will no longer use the adjacent sidewalk? If a separate bicycle path is con-

structed, how many bicyclists will move from the street or sidewalk? This study seeks to

identify factors that explain a bicyclist’s choice between available facility choices—

off-street (sidewalk and bicycle path) or on-street (bicycle lane and roadway). This paper

investigates these issues through a survey of bicyclists headed to Purdue University in

West Lafayette, IN, USA. The first data collected to address these questions were ‘‘site-

based’’. Bicyclists were interviewed on campus at the end of their trips and asked which

part of the cross-sections along their routes they had used—on-street or off-street. The

characteristics of a particular cross-section of street right-of-way were then compared

against the characteristics of each bicyclist and his/her observed choice of street, sidewalk,

lane, or path. Later, ‘‘route-based’’ serial data were also added. The study developed a

mixed logit model to analyze the bicyclists’ facility preferences and capture the unob-

served heterogeneity across the population. Effective sidewalk width, traffic signals,

segment length, road functional class, street pavement condition, and one-way street

configuration were found to be statistically significant. A bicycle path is found to be more

attractive than a bicycle lane. Predictions from the model can indicate where investments

in particular bicycle facilities would have the most desirable response from bicyclists.
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Introduction

Bicycle commuting has been shown to be an effective way to reduce congestion and

improve public health (de Geus et al. 2007; Lawlor et al. 2003). Dill and Carr (2003) and

Nelson and Allen (1997) demonstrated that higher bicycle commuting rates were associ-

ated with higher levels of bicycle infrastructure (e.g., bicycle lanes and bicycle paths). Two

national polls reported that 50 % of respondents supported requirements that streets

include bicycle lanes or paths, even if it meant less space for cars and trucks (League of

Illinois Bicyclists 2003). Although there has been a significant increase in funding for

building new facilities for bicyclists, policymakers and city planners still need to know

where to allocate resources towards bicycle facilities, because road and sidewalk space is

often limited.

Given limited resources, it is probably impossible to add bicycle lanes or bicycle paths

along every street. Thus, investments should be made where the new facility will be used.

In most situations, bicyclists can either choose to ride on the street close to motor vehicles

or ride on the sidewalk, where pedestrians and other factors reduce their speed. Sometimes,

however, even though a street is equipped with a facility like a bicycle lane, some bicy-

clists continue to ride on the sidewalk, as in Davis, California and Ottawa and Toronto,

Canada (HCM 2010; Aultman-Hall and Adams 1998). This study seeks to identify factors

that explain a bicyclist’s choice between available facility choices—off-street (sidewalk

and bicycle path) or on-street (bicycle lane and roadway). This could help the facility

planners make the best bicycle facility investment decision for a given situation.

Literature review

To build a bicycle-friendly community with limited funds, city engineers need to deter-

mine where best to invest those funds in bicycle facilities. It would be helpful to be able to

predict how bicyclists would react to the introduction of a particular kind of bicycle

facility, based on different environments and user populations.

For the purposes of our study, we consider two types of bicycle facilities—on-street and

off-street. On-street facilities include bicycle lanes and roadways. A bicycle lane is defined

‘‘as a portion of roadway that has been designated by striping, signing, and/or pavement

markings for the preferential and exclusive use of bicyclists.’’ (Highway capacity manual

1994) Off-street bicycle facilities include bicycle paths and sidewalks. A bicycle path is

defined as ‘‘a bikeway physically separated from motorized traffic by an open space or

barrier’’ (Highway capacity manual 1994), either shared with pedestrians or limited to

exclusive bicycle use. A sidewalk is a ‘‘path designed for pedestrians, usually paved and

alongside a street’’.

The most direct impact of improved bicycle facilities is an increase in the number of

persons using bicycles. According to a stated preference study conducted by the Federal

Highway Administration (1992), people indicated that having a bicycle path or bicycle

lane would encourage them to bicycle more. Based on analyses in 43 large cities, Dill and

Carr (2003) built several regression models using percentage of workers commuting by

bicycle as the dependent variable, and the number of bicycle lanes per square mile and

various socio-economic measures as independent variables. They found positive associa-

tion between bicycle facilities and bicycle commuting. Nelson and Allen (1997) indicated

that each additional mile of bikeway per 100,000 residents would increase bicycle com-

muting 0.069 % while holding other factors constant. Krizek et al. (2009) found that areas
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near new bicycle facilities showed considerably more of an increase in bicycle mode share

than areas farther away. After a comprehensive review, Heinen et al. (2010) concluded that

the presence of bicycle infrastructure might not only result in more cycling, but higher

cycling frequency could also stimulate the construction of bicycle infrastructure. However,

Parkin et al. (2008) found that the provision of infrastructure alone appears insufficient to

engender higher levels of cycling. Buehler and Pucher (2012) collected length data for

bicycle lanes and paths in the 90 largest USA cities. They concluded that cities with a

greater supply of bicycle paths and lanes have significantly higher bicycle commute

rates—even when controlling for land use, climate, socioeconomic factors, gasoline prices,

public transport supply, and cycling safety. Their conclusions, based on city-level data, are

in accordance with previous studies. What’s more, through estimated elasticities, they

indicated that both off-street paths and on-street lanes have a similar positive association

with bicycle commute rates in USA cities.

Various comparative studies had been done to discuss the safety and operational impact

of bicycle facilities. One minute spent in a shared curb lane is 4.1 times as onerous as a

minute spent on a designated bicycle lane (Hunt and Abraham 2007). Adding a bicycle

lane would increase the perceived safety of a bicyclist, thus improving the level-of-service

of a segment (Harkey et al. 1998). Based on the videotapes of almost 4,600 bicyclists from

48 sites in Santa Barbara, Gainesville, and Austin, Hunter et al. (1999) found that wrong-

way riding was much more prevalent on sidewalks at wide curb lane sites than at bicycle

lane sites. Moreover, bicyclists on a sidewalk or bicycle path would still incur, on average,

1.8 times as much risk as those on the roadway because of blind conflicts at intersections

(Wachtel and Lewiston 1994). This finding is consistent with the work by Meuleners et al.

(2007).

Several studies have indicated that bicyclists’ preferences for bicycle facilities differ

according to their purpose (e.g., recreation vs. commuting), riding skill (e.g., experienced

vs. inexperienced). (Antonakos 1994; Taylor and Mahmassani 1996; Harvey et al. 2008;

Stinson and Bhat 2005; Hunt and Abraham 2007) and sex (Krizek 2005). In general,

bicyclists would prefer a bicycle path to a bicycle lane or roadway (Stinson and Bhat

2005), but in most cases, there is insufficient space in which to build a bicycle path. Based

on 167 respondents’ perceptions, Tilahun et al. (2007) found that users would pay the

highest price for a designated bicycle lane, followed by the absence of parking on the street

and by taking a bicycle lane off-road. More determinants for commuting by bicycle and a

bicycle facility preference analysis can be found in comprehensive reviews by Heinen et al.

(2010) and Pucher et al. (2010).

In a study by Ford et al. (2011), serial data were collected and two binary logit models

were estimated to identify the critical segments where bicyclists prefer off-street to on-

street components, and vice versa. However, it was found that bicyclists’ preferences

regarding bicycle facilities are greatly affected by path-level decisions. We need a better

understanding of segment-level choice analysis, which could help city engineers decide the

location of new facilities. This paper contributes to current knowledge by adding a dis-

aggregate specification, to connect commuting bicyclist preferences with variations in

bicycle facility supply and segment characteristics.

Data

Intercept surveys were conducted at bicycle racks throughout the campus of Purdue

University, West Lafayette, Indiana USA during the fall semesters of years 2006–2008 to
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obtain revealed preference cross-section choice data. The university-oriented database was

created because (a) it was easy to conduct the interviews, (b) the university is the major

destination in the area for bicycle commuters of various ages, and (c) there is a clear need

for a systematic way to plan improvements for bicycling in the street network adjacent to

campus. The respondents were bicyclists who began their trips off-campus and had just

arrived at bicycle racks. The interview questions were:

1. When you bicycled to campus just now, where did that trip start? Give an address,

living group name, or intersection of streets nearest the start.

2. What streets did you use to reach your destination on campus? List the streets or show

on the map provided, if that is easier.

3. If, at any point during that trip, you rode on the sidewalk, indicate where that

happened. Again, create a list or use a map, as preferred. Idea: Mark links where

sidewalks were used with a ‘‘W’’.

The survey is described in more detail by Ford et al. (2011). If a bicycle lane or the

street was chosen, it is regarded as on-street choice. If a bicycle path or a sidewalk was

chosen, it is treated as off-street choice. This survey provides us with information on the

series of on-street/off-street choices made by each bicyclist. In most cases, something

about the bicycling environment changed during the trip. Residential streets fed into ar-

terials, a bicycle lane began or ended, etc. Any such change offered an opportunity—or a

reason—for the bicyclist to change his/her cross-section choice. Even if a bicyclist using a

sidewalk continued to use the sidewalk as some observable factor changed, there may be

information to be learned from that case.

A total of 931 ‘observations’ were collected from 178 bicyclists. Each observation is

associated with a segment of the bicyclist’s trip. At the beginning of a segment, the

bicyclist would make a decision whether to use an on-street facility or an off-street facility,

based roadway characteristics, personal perceptions of safety, and other factors listed in

Table 1. Each outcome comprised an observation. In our database, a ‘‘segment’’ is defined

as that part of the route between two intersections at which a bicyclist would face a new

choice of cross-section.

It would be also useful to investigate the choice between sidewalk and bicycle path

when both these off-street options are available. However, in our database, only 14 cases

provide both off-street options. Because such a small sample could not reveal any sig-

nificant distinction between these two choices, we decide to aggregate them together as an

off-street choice. For on-street choices, we assume that a bicyclist who chooses to use an

on-street facility will use the bicycle lane where one exists. Observations with only one

option (i.e., a street without bicycle lane, bicycle path, or sidewalk) are not included in the

model.

Data on segment characteristics, including 85th percentile traffic speeds, curb lane

widths, and average daily traffic, were obtained from the City of West Lafayette and the

Indiana Department of Transportation’s Annual Average Daily Traffic maps. Other seg-

ment characteristics data came from field visits. Weather data were added from online

weather records for the days and times of the interviews. The bicycle compatibility index

(BCI), originally developed by Harkey et al. (1998), was incorporated into our study. This

index is associated with bicycle level of service on a roadway, which could be used to

quantify a bicyclist’s perception of safety (or risk) along a segment of roadway. Klobucar

and Fricker (2007) have applied BCI in assessing the level of service offered to bicyclists

in West Lafayette’s street network. The typical BCI value would range from 1 to 5. The

higher this value is, the more dangerous a bicyclist would perceive the on-street facility.
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Road pavement surface conditions of West Lafayette were evaluated by applying the

Pavement Surface Evaluation and Rating (PASER) system (Walker 2002), which rates

pavement surface condition from 1 (failed) to 10 (excellent) in terms of surface distress.

Bicyclist and network characteristics are summarized in Table 2. Among the bicyclists

interviewed, 45 were female and 133 were male, with ages ranging from 18 to 30. All of

them are commuters who are familiar with conditions on their routes to campus.

Table 1 Variables available for modeling

Dependent variable Cross-section choice: 1 if on-street facility being selected, 0 off-street facility
being selected

Bicyclist characteristics Sex indicator variable: 1 if female, 0 if male

Bicyclist age

Helmet indicator variable: 1 if helmet used, 0 otherwise

Time-dependent
characteristics

Time of day interview conducted: 1 if 5:00–9:59 a.m., 2 if 10:00 a.m.–2:59 p.m.,
3 if 3:00–7:59 p.m., 4 if 8:00 p.m.–4:59 a.m.

Wind speed (mph)

Wind direction (degrees)

Wind gust (mph)

Air temperature (degrees in Fahrenheit)

Saturation vapor pressure (mb)

Segment characteristics Functional class of segment: 1 if local/collector, 2 if minor arterial, 3 if major
arterial

Number of lanes on segment (2-way)

Segment length (mile)

Curb lane width (ft)

Effective sidewalk width (ft)

Bicycle compatibility index (BCI)

Direction traveled on segment: 1 if north, 2 if east, 3 if south, 4 if west

One-way against traffic indicator:1 if use one-way segment against traffic
direction, 0 otherwise

Slope indicator variable: 1 if steep slope, 2 steep downhill, 0 otherwise

Curb indicator variable: 1 if curb present, 0 otherwise

Parked vehicles indicator: 1 if on-street parking allowed, 0 otherwise

Pedestrian traffic indicator: 1 if typically congested sidewalk, 0 otherwise

Average daily traffic (vph)

Pavement condition (PCR—in/mi)

Encounter traffic signal at start of one segment indicator: 1 if encounter traffic
signal at start point, 0 otherwise

Encounter traffic signal at end of one segment indicator: 1 if encounter traffic
signal at end point, 0 otherwise

Bicycle lane indicator: 1 if bicycle lane presence, 0 otherwise

85th percentile traffic speed (mph)

Residential development indicator: 1 if residential presence, 0 otherwise

Segment level of service (A-1, B-2, C-3, D-4, E-5, F-6)

Bicycle path indicator: 1 if bicycle path presence, 0 otherwise
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Methodology

Because cross-section choice behavior is an individual choice, a logit model is suitable for

our analysis. In the standard binary logit model, only the utility difference of two choices

matters. Therefore, the utility difference could be captured by a constant term, covariates

that determine the outcome for observations, and a Gumbel distributed disturbance term:

y�in ¼ aþ bTXin þ ein ð1Þ

Yin ¼
1; y�in [ 0

0; y�in� 0

�
ð2Þ

The subscript i denotes an individual bicyclist, n denotes the number of choices she/he

had made along the chosen route, and y* is a latent variable that represents the utility

difference between two alternatives. If y* is greater than zero, an on-street facility will be

selected. Otherwise, an off-street facility will be selected. X is the vector of variables

determining the discrete choice for observation n made by bicyclist i, b is the vector of

estimated parameters, and e is the random disturbance. The probability Pn Yin ¼ 1jxin; bð Þ
that an on-street facility is chosen in the nth observation is represented in Eq. 3 as (Ben-

Akiva and Lerman 1985):

Pn Yin ¼ 1jxin; bð Þ ¼ P y�in [ 0
� �

ð3Þ

Because, in our data base, each respondent generates multiple observations, these

observations will likely share unobserved effects (unobserved characteristics relating to

each respondent). These shared unobserved effects violate the assumption of independent

disturbances made in Eq. 1. If this is not accounted for, disturbance correlation will violate

the disturbance independence assumption and result in potentially erroneous parameter

estimates (Washington et al. 2011). A random effects approach could be introduced to

solve this problem by adding individual random effect terms ui (assumed to be normally

distributed with mean = 0 and variance = r2).

y�in ¼ aþ bT
i xin þ ein þ /i ð4Þ

Table 2 Sample statistics summary

Variable Mean Median SD Minimum Maximum

Bicyclist age 21.3 21.0 1.90 18 30

Segment length (mile) 0.11 0.07 0.08 0.01 0.68

Effective sidewalk width (feet) 6 5 2.23 0 12

Average daily traffic 8,585 5,800 6,799 327 26,962

Curb lane width (feet) 11.6 11.0 1.30 7 20

85th percentile speed (mph) 32.7 35.0 6.29 20 40

Wind speed (mph) 13.4 14.7 5.33 3.1 19.6

Wind gust (mph) 22.9 24.8 6.85 11.4 31.0

Pavement condition rating 6.00 6.00 0.93 4.00 8.00

Air temperature (Fahrenheit) 63.8 59.0 11.078 49.0 85.0

Saturation vapor pressure (mb) 21.6 16.8 9.203 11.9 41.5

Bicycle compatibility index 3.72 3.34 1.06 0.92 5.45
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Before we admit the random effects of unbalanced panel data generated by the bicy-

clists, we need to realize that there are also many other sources of unobserved heteroge-

neity. It is likely that different people behave differently given the same conditions, such as

two people making different choices on the same segment. The same road may have

several segments that may share unobserved effects. People may behave differently during

a longer trip than during a shorter trip, etc. Unobserved heterogeneity makes invalid the

assumption that the effect of any individual explanatory variable is the same. This problem

may be addressed by a more generalized random parameters approach, which assumes that

the estimated parameters vary across the population. It allows individuals to have heter-

ogeneous responses with respect to changes in a dependent variable. To some extent, a

random effects model is a special case of a random parameters model, by allowing the

‘‘constant’’ term to be random for each bicyclist. Based on the groups established by the

random effects model, we estimate parameters for each bicyclist and the probabilities of

on-street facility being chosen with a mixed model Pr
n yi ¼ 1jxinð Þ are defined as

Pr
n yi ¼ 1jxinð Þ ¼

Z
x

Pn yi ¼ 1jxinð Þf b/ð Þdb ð5Þ

where f bj/ð Þ is the density function of b with u referring to a vector of parameters of that

density function (mean and variance). The b new contains a common mean plus a randomly

distributed term (e.g., a normally distributed term with mean zero and variance r2), repre-

senting a standard deviation of the mean for each bicyclist. Pr
n yi ¼ 1jxinð Þwere approximated

by drawing values of b from f ðbj/Þ, given values of u, and using these drawn values to

estimate the random effects logit probability Pn Yin ¼ 1jxin; bð Þ (Washington et al. 2011). To

estimate this model, a log-likelihood transformation is conducted to produce a LL function

LL ¼
XN

n¼1

dinLNPr
n yi ¼ 1jxinð Þ

� �
ð6Þ

where din is 1 if observation n is the choice of an on-street facility, and 0 otherwise.

Estimation of Eq. 6 would be undertaken by a simulation-based maximum likelihood

method with a random draws or Halton draws (Halton 1960) procedure. More discussion

about this estimation technique can be seen in Bhat (2001, 2003) and Train (1999).

In addition to parameter estimation, we calculated marginal effects for indicator vari-

ables and elasticity for continuous variables. There are two ways to calculate marginal

effects: marginal effects at the means (MEMS) and average marginal effects (AME).

(Bartus 2005) To calculate MEMS for an indicator variable, one needs to hold all the other

variables at their means, or simply take the derivative with respect to the binary variable as

if it were continuous, which provides an approximation that is often surprisingly accurate

(Greene 2002). This method works well for linear models; however, in the logit model,

AME is superior due to the nonlinearity of the outcome probabilities with respect to each

variable and because MEMS suffers aggregation bias (Washington et al. 2011). Instead of

computing only one marginal effect while setting other variables at their means, AME

computes the marginal effect for each observation while other variables stay fixed and then

takes the average. For an indicator variable xk, its AME would be computed as:

RN Pn Ynjxk ¼ 1ð Þ � Pn Ynjxk ¼ 0ð Þ½ �
N

ð7Þ

where N is the number of observations. Marginal effects for binary indicator variables are

interpreted as a change in the outcome probability given this variable changing from zero
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to one. For a continuous variable, marginal effects are the outcome probability change

given one unit change in that variable. However, sometimes it is difficult to quantify ‘‘one

unit’’ of a continuous variable. Rather than applying an impractical concept, instead,

elasticity is adopted. Elasticity values are interpreted as the percent effect that a 1 %

change in the targeted variable has on the outcome probability, which is shown as

EPðnÞ
xk
¼ oPðnÞ

oxk

� xk

PðnÞ ð8Þ

If the computed elasticity value is greater than one, then this variable is said to be

elastic, meaning that a 1 % change in this variable will bring more than a 1 % change in

the probability of an on-street facility being chosen. If the computed elasticity value is less

than one, then this variable is said to be inelastic. A 1 % change in this variable would

bring less than 1 % probability change in the outcome.

Model estimation

Best model specification

Halton draws and random draws were both tested as part of a simulation-based maximum

likelihood method, and 8,500 Halton draws were found to produce stable results. Random

draws would produce results similar to Halton draws, but with a much larger number of

simulations. This result is consistent with Bhat’s (2003) suggestion that using Halton draws

is more efficient than random draws. Therefore, only the Halton draws’ results are pre-

sented. Likelihood ratio tests were conducted to determine whether the traditional random

effects or more general random parameters model provided the best statistical fit. It was

found that the mixed logit model provided a statistically superior fit in that the null

hypothesis that the traditional random effects and the mixed models were statistically the

same could be rejected with over 99.99 % confidence.

To save space, only the results of the mixed logit model with parameters varying across

respondents using Halton draws are presented in Table 3. In the mixed logit model, the t-stat

for a parameter’s mean is not of interest. Instead, we care more about the standard deviation

of the estimated parameters for each variable. If the standard deviation is significant, then

the random parameter approach is warranted to help capture the unobserved heterogeneity.

Turning to the estimation results in Table 3, the parameters that were found to be

random (varying across respondents) were: the constant term, bicycle lane indicator; major

arterial indicator; minor arterial indicator; BCI; effective sidewalk width; high average

daily traffic indicator, and good pavement condition indicator. All of these parameters were

found to be normally distributed with their standard deviations significantly different from

zero (log-normal, uniform, Weibull, exponential, and triangle distribution were also tried

but provided inferior statistical fits relative to the normal distribution).

Interpretation of estimation results

The mixed logit model estimates provide information about how user characteristics and

segment characteristics are associated with previously-defined cross-section choices and

help capture unobserved heterogeneity. A positive parameter sign in Table 3 indicates that

the corresponding factor makes a bicyclist more likely to use an on-street facility. Besides
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the randomly distributed variable stated above, the parameters for the ‘‘signalized inter-

section at the beginning of segment’’ indicator variable are fixed across the population,

because the estimated standard deviation of this parameter distribution was not signifi-

cantly different from zero at the 95 % confidence level. Marginal effects for indicator

variables and the elasticity for continuous variables are displayed in Table 4. The per-

centages of the random parameter distributions that are above and below zero, given the

estimated mean and standard deviation of the random parameters, are displayed in Table 5.

A constant term is estimated for each bicyclist, to pick up the mean unobserved effects

in the error term. Without it, the error term may not have a mean of zero, which violates the

regression model assumption. The constant term in Table 3 is assumed to be normally

Table 3 Estimation results (all random parameters are normally distributed)

Variables Parameter t-Stat

Random parameters

Constant (standard deviation of parameter distribution) 5.992 (1.754) 5.95 (6.54)

Bicycle lane indicator (1 if bicycle lane present, 0 otherwise)
(standard deviation of parameter distribution)

1.392 (5.092) 2.90 (6.14)

Major arterial indicator (1 if major arterial, 0 otherwise)
(Standard deviation of parameter distribution)

-2.717 (6.270) -4.09 (7.84)

Minor Arterial Indicator (1 if minor arterial, 0 otherwise)
(Standard deviation of parameter distribution)

0.609 (8.118) 1.63 (8.53)

Bicycle compatibility index (standard deviation of parameter
distribution)

-0.325 (1.031) -2.14 (8.70)

Effective sidewalk width (feet) (standard deviation of parameter
distribution)

-0.300 (0.923) -3.14 (8.87)

High average daily traffic indicator (1 if ADT [ 8,600,
0-otherwise) (standard deviation of parameter distribution)

-1.832 (6.881) -2.94 (7.80)

Good pavement condition indicator (1 if rate [ 6, 0-otherwise)
(standard deviation of parameter distribution)

0.893 (5.224) 2.12 (6.88)

Fixed parameters

Bicycle path indicator (1 if bicycle lane present, 0 otherwise) -10.101 -3.95

Signalized intersection at beginning of segment indicator(1-if there
is a signalized intersection at beginning of one segment, 0
otherwise)

-1.100 -2.03

Segment length (mile) -5.337 -1.89

Signalized intersection at end of segment indicator(1-if there is a
signalized intersection at the end of one segment, 0 otherwise)

-1.274 -3.17

One-way against traffic indicator(1 if use one-way segment against
traffic direction, 0 otherwise)

-2.075 -3.27

Log likelihood at convergence -295.55

Log likelihood at zero -637.69

Number of observations 931

McFadden pseudo q2 0.54

Note There is no multicollinearity problem in these models diagnosed by variance inflation factor test and all
VIFs are smaller than 5. 5,500–9,500 Halton draws were tested and results became stable since 8,500 Halton
draws. Among the several choices of a bicyclist, the previous cross-section choice would influence the next
choice. However, this kind of state dependence variable may also capture residual heterogeneity, which
would lead to one to observe spurious state. Therefore, this variable was not included in the model. More
discussion about this could be found in Washington et al. (2011) and Heckman (1981)
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distributed with a mean of 5.992 and a standard deviation of 1.754. Its sign is positive for

all the bicyclists. This result suggests, in our case study environment, that nearly all

bicyclists have an initial preference to ride on the street. This is because, under ideal

conditions, such as not being threatened by high-volume or fast-moving vehicle traffic and

having good curb lane pavement condition, bicyclists riding on the street can comfortably

maintain higher speeds. However, as the bicycling environment departs from the ideal, a

bicyclist may adjust her/his facility type choice correspondingly.

The bicycle lane indicator produces random parameters with a mean of 1.392 and a

standard deviation of 5.092. Its positive mean value indicates that the introduction of a

bicycle lane would encourage bicyclists to use it. The bicycle path variable has a fixed

negative parameter, which suggests that adding a bicycle path would decrease, on average,

by 0.29 the probability that an on-street facility would be selected. These two results are

intuitive and in line with other researchers’ results (Krizek et al. 2009; Sener et al. 2009),

because a bicycle lane or a bicycle path would provide bicyclists with a specified right-of-

way. Based on a link-level analysis of bicyclist behavior, our results suggest that adding a

bicycle lane would be viewed favorably by 61 % of bicyclists, increasing by 0.30 the

probability that an on-street facility is chosen. The bicycle lane and bicycle path variables

are demonstrated to have similar strength in terms of their AME—?0.30 and -0.29,

respectively. However, when we look at individual choices (to be discussed in Sect. 5.3),

the bicycle path is found to be more attractive. Although building bicycle lanes has been

found to increase bicycle ridership (Krizek et al. 2009), being able to estimate the extent to

which bicyclists would use a new bicycle lane or bicycle path can guide bicycle infra-

structure investment at specific locations. Adding a bicycle lane without considering other

factors like roadway characteristics and safety concerns may not be a good strategy. The

models developed in this study permit the incorporation of multiple factors.

The estimated parameter for major arterial is assumed to be normally distributed with a

mean of -2.717 and a standard deviation of 6.270. This suggests that, for 67 % of

Table 4 Average marginal effects and elasticity

Variable Elasticity/marginal
effects

Effective sidewalk width (feet) -1.93e

Segment length (mile) -0.26e

Bicycle compatibility index -1.25e

Major arterial indicator (1 if major arterial, 0 otherwise) -0.11m

Minor arterial indicator (1 if minor arterial, 0 otherwise) -0.05m

High average daily traffic indicator -0.07m

Bicycle lane indicator (1 if bicycle lane present, 0 otherwise) 0.30m

Bicycle path indicator (1 if bicycle path present, 0 otherwise) -0.29m

One-way against traffic indicator (1 if use one-way segment against traffic direction,
0 otherwise)

-0.05m

Signalized intersection at end of segment indicator(1-if there is a signalized
intersection at the end of one segment, 0 otherwise)

-0.03m

Good Pavement Condition Indicator (1 if rate [ 6, 0-otherwise) 0.03m

Signalized intersection at beginning of segment indicator (1-if there is a signalized
intersection at beginning of one segment, 0 otherwise)

-0.03m

Note superscript e denotes elasticity for that variable. Superscript m denotes calculated marginal effects
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bicyclists are more likely to choose the off-street facility on the major arterial. Similarly,

the estimated parameter for minor arterial is tested to produce a normal distributed

parameter with a mean of 0.609 and a standard deviation of 8.118, which suggests 53 % of

bicyclists are more likely to use on-street facility on the minor arterial. Riding on a major

arterial would result in the probability that an on-street facility is chosen decreases by 0.11.

Meanwhile, riding on a minor arterial would decrease the probability that an on-street

facility is chosen by only 0.05. Higher class roads have higher vehicle speeds and higher

traffic volumes, making a bicyclist feel less safe. This outcome suggests that an on-street

bicycle facility investment along a higher functional class segment may not be suitable;

rather, a bike path should be considered, if space permits.

The ‘‘BCI’’ variable yields a random parameter with a mean of -0.325 and a standard

deviation of 1.031. This outcome suggests that 62 % of bicyclists are more likely to use an

off-street facility when they feel more dangerous riding on the street. It is intuitive that

most bicyclists avoid vehicle threats by switching to an off-street facility. However, it

should be noted that 38 % of bicyclists are less sensitive to a dangerous riding environ-

ment. A 1 % increase in this variable would cause a 1.25 % decrease in the probability of

on-street facility usage. This value suggests BCI is elastic and that somehow improving

bicyclists’ perceived on-street safety level would keep many of them off the sidewalk.

The effective sidewalk width is tested to be significant at 95 % confidence level and

produces random parameters with a mean of -0.300 and a standard deviation of 0.923.

This indicates that 63 % of bicyclists would be attracted by a wider sidewalk. The elas-

ticity value shows that this variable is elastic; a 1 % increase in this variable value would

increase by 1.93 % the probability that an off-street facility is chosen. However, wider

sidewalks tend to exist where there are more pedestrians to serve. If the objective of the

city planner is to keep bicyclists off the sidewalk, an attractive alternative for bicyclists

should be provided. A bicycle path could be provided to avoid pedestrian and bicyclist

conflicts if space permits.

A threshold value of 8,600 vpd for the ‘‘average daily traffic’’ indicator variable was

chosen after several trials. A street with ADT greater than 8,600 produces a normally

distributed parameter with a mean of -1.832 and a standard deviation of 6.881. This

suggests that, for 61 % of bicyclists, high ADT would have negative impact on them,

which decreases by 0.07 the probability that an on-street facility is used. The threshold may

vary between communities.

Table 5 Random parameters percent of distribution

Variable Random
parameters

Percent of
distribution

Above zero (%) Below zero (%)

Bicycle lane indicator (1 if bicycle lane present, 0 otherwise) 61 39

Major arterial indicator (1 if major arterial, 0 otherwise) 33 67

Minor arterial indicator (1 if minor arterial, 0 otherwise) 53 47

Bicycle compatibility index 38 62

Effective sidewalk width (feet) 37 63

High average daily traffic indicator (1 if ADT [ 8,600,
0-otherwise)

39 61

Good pavement condition indicator (1 if rate [ 6, 0-otherwise) 57 43
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A bad ‘‘curb lane pavement condition’’ negatively influences a bicyclist’s decision to

ride on the street. According to the PASER system (Walker 2002), if the pavement con-

dition rating is greater than 6, only minor patching or routine maintenance is needed, which

is good pavement surface performance. In our case, a good ‘‘pavement condition’’ indi-

cator yields random parameters with a mean of 0.893 and a standard deviation of 5.224.

This suggests that 57 % of bicyclists are more likely to use an on-street facility if the

pavement condition is good or better. Improving pavement condition on the street can

increase the likelihood of bicyclists leaving the sidewalk by 0.03.

The ‘‘one-way against traffic’’ indicator variable has a negative parameter. This suggests

that bicyclists would be more likely to use an off-street facility when they are using a one

way street and riding against vehicle traffic. The probability that an off-street facility will

be chosen by a bicyclist is 0.05 higher when traveling against the direction of vehicles.

This result suggests that ‘‘contra-flow’’ bicycle movements are best accommodated with an

off-street facility such as a bicycle path, if space is available. Providing an official contra-

flow bicycle lane against a one-way street’s vehicle direction requires specific signs and

markings (NACTO 2012), which are not present in our case, for example, along one-way

northbound University Street.

The ‘‘segment length’’ variable yields a negative parameter, indicating that bicyclists

are more likely to choose an off-street facility on a longer segment. This may be because a

longer segment length is associated with higher exposure to vehicle traffic. The segment

length variable is inelastic; a 1 % increase in segment length leads to only a 0.26 %

decrease in the probability of an on-street facility being selected.

The ‘‘signalized intersection at end of segment’’ indicator variable produces a fixed neg-

ative parameter that indicates that bicyclists would prefer to use an off-street facility (with 0.03

lower probability) when they will confront a signalized intersection at the end of the segment.

A traffic signal tends to be located at a busy intersection. The most common manifestation of

the model results is the use of crosswalks and pedestrian signals by many bicyclists.

The ‘‘signalized intersection at beginning of segment’’ indicator variable yields a fixed

negative parameter, indicating that facing a signalized intersection would decrease by 0.03

the likelihood that an on-street facility is chosen. Because traffic signals tend to be located

at busy intersections, bicyclists tend to use crosswalks and pedestrian signals there, and the

sidewalks they lead to.

Application of model results

From a city engineer’s perspective, we might want to measure the impact of adding a new

bicycle path or a bicycle lane along a segment, such that one can predict the probability of

each bicycle facility within a cross-section will be chosen. Therefore, prediction analysis

based on the model specification would provide more insights about the relative strength of

adding bicycle path/lane and give guidance on making bicycle facility improvements. To

illustrate the potential usefulness of the model, the impact of different facility improvement

scenarios and strategies are considered below.

We examine the predicted probabilities with respect to ‘‘bicycle lane’’ and ‘‘bicycle

path’’, while other variables stay constant. The probability of an on-street facility being

selected is predicted for each observation. To avoid losing any information for each

observation, the summation of predicted probabilities for all observations is used as the

predicted number of using on-street facility. In the sample database, the on-street facility was

chosen 525 times and the off-street facility was chosen 406 times. According to the mixed

logit model prediction, on-street facility is estimated to be selected 559 times. Compared to
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the observed cases, the model overestimates somewhat the use of on-street facilities.

However, the prediction error is within 5 % [(559 - 525)/931 = 3.6 %]. Under five dif-

ferent scenarios, the corresponding indicator variable is set to be one or zero to represent

different scenarios while other variables stay unchanged. The results are shown in Table 6.

If a bicycle lane were added to every segment, while holding other factors unchanged,

in 607 - 559 = 48 cases would bicyclists switch to the bicycle lane. If all bicycle lanes

were removed, on-street facilities would lose 232 users, which is 24.9 % of the 931 total

observations. Similarly, if all segments are equipped with a bicycle path, while holding

other variables constant, in 268 cases bicyclists would switch to off-street facilities. In the

scenario which all the segments have both a bicycle lane and a bicycle path, while holding

other factors constant, in 207 cases bicyclists would switch to off-street facilities. If we

evaluate only the AME of two variables, we draw the conclusion that these two facilities

are equally attractive. However, when we look at individuals’ predicted response to both

bicycle facilities, we would learn that a bicycle path is more attractive than a bicycle lane.

This result is in line with Stinson and Bhat (2005). The seemingly different result drawn

from AME and prediction analysis can be explained by the large standard deviation of the

parameter estimates. Different bicyclists perceive safety differently and have a large

variance in facility preferences. This result also reveals the preferences of each bicyclist

and demonstrates the strength of using a random parameters model, which can help capture

unobserved heterogeneity. Furthermore, this aggregate prediction procedure puts into

better perspective the potential effect of investments in certain bicycle facilities.

Conclusion

This paper looks at bicyclists’ choice of bicycle facility types within the street right-of-way

cross-section, with the intent of developing a way to guide public investment decisions.

The methodology adopted in this paper has produced useful findings. The mixed logit

model established in this paper can capture bicyclist preferences and unobserved hetero-

geneity. In general, bicycle facility planners would prefer to keep bicyclists off the side-

walk, perhaps by providing more bicycle lanes. Some of our study’s findings are expected:

• Under ideal conditions, bicyclists prefer riding on the street.

• A bicycle path is more attractive than a bicycle lane.

• Bicyclists tend to use off-street facilities along higher functional class roads or streets

with high ADT.

• If a bicyclist’s feeling of safety (as measured by the BCI) is improved, the use of on-

street facilities is increased.

Table 6 Model prediction with respect to different scenarios

Model prediction All bicycle lane No bicycle lane

On-street facility 559 607 327

Off-street facility 372 324 604

All bicycle path No bicycle path All bicycle lane and bicycle path

On-street facility 291 561 352

Off-street facility 640 370 579
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• Poor road surface conditions drive bicyclists to off-street facilities.

Other findings were less obvious:

• In many situations, bicyclists use sidewalks, despite potential conflicts with

pedestrians.

• Adding a bicycle lane may not be the best use of limited bicycle facility funds.

The mixed logit model estimates provide information about how user characteristics and

segment characteristics are associated with previously defined cross-section choices along

a bicyclist’s route and help capture unobserved heterogeneity (indicated by the large

standard deviation of the parameter estimates). In addition to parameter estimation, we

calculated average marginal effects for indicator variables and elasticity for continuous

variables. The results from such models, of course, may vary as the database varies, but the

mixed logit model allows us to make full use of a database that includes multiple obser-

vations for each bicyclist during his/her trip. Considering the large standard deviation of

the parameter estimates, a prediction analysis is conducted to test different scenarios with

respect to bicycle facility improvement. A bicycle path was found to be more attractive

than a bicycle lane. Using the model results to test potential scenarios can help guide

investments in bicycle facilities.
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