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Abstract Traffic forecasts provide essential input for the appraisal of transport invest-

ment projects. However, according to recent empirical evidence, long-term predictions are

subject to high levels of uncertainty. This article quantifies uncertainty in traffic forecasts

for the tolled motorway network in Spain. Uncertainty is quantified in the form of a

confidence interval for the traffic forecast that includes both model uncertainty and input

uncertainty. We apply a stochastic simulation process based on bootstrapping techniques.

Furthermore, the article proposes a new methodology to account for capacity constraints in

long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of

adjustment is related to the ratio between the actual traffic flow and the maximum capacity

of the motorway. As an illustrative example, this methodology is applied to a specific

public policy that consists of suppressing the toll on a certain motorway section before the

concession expires.
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Introduction

Traffic forecasts provide essential input for the appraisal of transport investment projects

and public policies. In spite of significant improvements to transport demand models over

the past few decades, there are still high levels of uncertainty in long-term forecasts. For

instance, a recent study by Flyvbjerg et al. (2006) concludes that accuracy in forecasting

traffic flow has not improved over time. Given that project profitability is highly dependent

on predicted traffic flow, uncertainty has to be quantified and accounted for in project

evaluation.
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This article quantifies uncertainty in traffic forecasts for the tolled motorway network in

Spain. We estimate a demand model using a panel data set covering 67 tolled motorway

sections between 1980 and 2008. Uncertainty is quantified in the form of a confidence

interval for the traffic forecast that takes account of both the variance of the traffic forecast

related to the stochastic character of the model (model uncertainty) and the uncertainty that

underlies the future values of the exogenous variables (input uncertainty). Furthermore, as

an illustrative example we apply this methodology to a specific public policy consisting of

suppressing the toll on a certain motorway sections before the concession expires. In this

case, the government has to compensate the private motorway concessionaire for the

revenue forgone up to the end of the concession period. We present a point estimate for the

present value of the forgone revenue, as if the result were certain, and then a set of

confidence intervals at different levels of significance that account for the variance of the

forecasting error.

The predictions are based on an aggregate demand equation, where traffic flow depends

on the following variables: Gross Domestic Product, toll per kilometre, petrol price and a

set of dummy variables that account for major changes in the road network. However, if

maximum infrastructure capacity is not allowed for in the model, it may well be that

predictions lie above this maximum value. To avoid this problem we should, ideally,

estimate an integrated demand–supply system. However, as is often the case, we are not

able to model the supply side of the system due to lack of data. Our article contributes to

this issue by proposing a new functional form for the demand equation that accounts for the

fact that the rate of growth of traffic flow diminishes as the volume approaches full

capacity. Specifically, as detailed in ‘‘The model’’ section, we suggest a modified partial

adjustment model with variable adjustment speed. In our case, and in terms of forecasting

capacity, this proposal is preferable to the traditional logistic functional form with a

saturation level equal to maximum capacity, given that we avoid the assumption that traffic

follows an S-shaped growth curve.

Literature review of uncertainty in traffic forecasting

Several recent studies confirm the inaccuracy of traffic predictions. Among them, the

extensive work by Flyvbjerg et al. (2006) based on 210 transport infrastructure projects in

14 nations, 27 of which correspond to rail projects and the rest to road projects. They

conclude that passenger forecasts for nine out of ten rail projects are overestimated, with an

average overestimation of 106%. The authors suggest that there is a systematic positive

bias in rail traffic forecasts. For road projects, forecasts are more accurate and balanced,

although for 50% of the projects the difference between actual and forecasted traffic was

more than ±20%.1 For both road and rail projects, the estimated standard deviation of the

forecasting error is high, showing a high level of uncertainty and risk.

Bain (2009) presents the results from a study that analyses the performance of traffic

forecasts for toll road traffic from a database including over 100 international toll road

projects. The research confirms a large range of error in traffic forecasting and the exis-

tence of systematic optimism bias. On average, toll road forecasts overestimated first-year

traffic by 20–30%.

1 The authors suggest reference class forecasting as an alternative methodology. This proposal is detailed in
Flyvbjerg (2008).
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Using data on 14 toll motorway concessions in Spain, Vassallo and Baeza (2007) found

that, on average, actual traffic during the first 3 years of operation was overestimated by

approximately 35%. They conclude that there is a substantial optimism bias in the ramp-up

period for toll motorway concessions in Spain.

The aforementioned studies suggest that the positive bias found for rail and toll mo-

torways appears when there is a strong will for the approval of the project.

In spite of the significant errors present in traffic forecasting, uncertainty is often a

neglected issue. Most of the predictions are presented as point estimates and the probability

distribution of the outcome is forgotten about. The most common way to deal with

uncertainty is to present alternative estimates based on different scenarios for the exoge-

nous variables. However, this approach does not recognise all sources of uncertainty and,

most importantly, does not provide the likelihood of each alternative forecast.

As stated by de Jong et al. (2007), the literature on quantifying uncertainty in traffic

forecasting is fairly limited. The author reviews a considerable amount of the literature on

that subject considering both the methodology employed and the results obtained. He

distinguishes between input uncertainty, associated with the fact that future values of the

exogenous variables are unknown, and model uncertainty, which includes random term

uncertainty and coefficient uncertainty. Given that the 21 studies reviewed use different

measures to express uncertainty and many of them do not present quantitative outcomes,

providing an order of magnitude for uncertainty is difficult. De Jong suggests that input

uncertainty is more important than model uncertainty; studies on input uncertainty or both

input and model uncertainty obtain 95% confidence intervals for the mean value of traffic

flow between ±18 and ±33%. The aforementioned paper also offers a methodology for

quantifying uncertainty for a case study in The Netherlands.

The literature shows that quantifying forecast uncertainty and its causes is an area that

deserves more attention. This article intends to contribute to this issue with new findings.

The model

Given that the demand equation is estimated in order to predict future traffic flow, when

specifying the equation we should take into account that as the volume of traffic increases,

costs related to congestion emerge and the rate of traffic growth diminishes as traffic

volume approaches maximum capacity of a road section. Toll motorways were introduced

in the early 1970s on the road network in Spain. Nowadays, some of these motorways are

close to their maximum capacity. This problem mainly affects those toll roads near urban

areas and the main corridor along the Mediterranean coast, where it is difficult and costly

to expand capacity. In these cases capacity constraints need to be considered when fore-

casting in order to avoid excessively optimistic results.2

Ideally, congestion costs and capacity constraints should be accounted for through a

network assignment model, allowing a feedback between the various stages of the travel

demand forecasting process.3 However, frequently such a model is unavailable. As an

2 The proposed functional form can be useful with other transport modes. The authors have applied it to
forecasting air transport. With respect to this transport mode, Riddington (2006) concludes that the air traffic
predictions in the United Kingdom are excessively optimistic and that no consideration is given to the
existing restrictions on the capacity to handle this forecast demand.
3 A sensible policy for motorway operators would be to increase tolls as demand approaches maximum
capacity. Nonetheless, this is not a feasible policy in Spain as toll rates are set by law and are, therefore,
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alternative approach, we suggest a functional form that can be considered as an implicit

reduced form for the demand function. Specifically, we estimate a modified partial

adjustment model, where the speed of adjustment is variable. The proposed equation can

be derived as follows:

The static equation of the partial adjustment model takes the standard form and shows

the logarithm of the equilibrium value of traffic Y�it on road section i in period t as a

function of a set of variables Xit:

ln Y�it ¼ ai þ b ln Xit ð1Þ

The dynamic of the adjustment is modified by introducing a variable adjustment parameter,

kit:

D ln Yit ¼ ln Yit � ln Yit�1 ¼ kit � ðln Y�it � ln Yit�1Þ þ eit ð2Þ

We assume that the speed of adjustment decreases as traffic flow increases in the following

terms. Let us define the quality level of the motorway, s, as a function of the traffic flow

related to the maximum capacity of the infrastructure, Ymax:

sit ¼
Ymax

i � Yit�1

Ymax
i

ð3Þ

Then, the adjustment parameter is assumed to be a function of sit:

kit ¼ h
Ymax

i � Yit�1

Ymax
i

� �
¼ h � sit ð4Þ

where h is a parameter that links the speed of adjustment and the level of use of the

motorway section.

This functional form accounts for the fact that the rate of traffic growth diminishes as

traffic volume approaches the capacity limit. Its implications can be best observed in two

extreme cases. When there is no traffic on the motorway, the speed of adjustment is

maximum:

Yit�1 ! 0) sit ! 1) kit ! h ð5Þ

In the opposite case, when traffic has reached capacity, the speed of adjustment is zero:

Yit�1 ! Ymax
i ) sit ! 0) kit ! 0 ð6Þ

By substituting Y�it from Eqs. 1 into 2, we get the first equation:

D ln Yit ¼ kit � ðai þ b � ln Xit � ln Yit�1Þ þ eit ð7Þ

Next, substituting from kit for Eq. 4 we get the final equation:

D ln Yit

sit
¼ ðh � ai þ h � b � ln Xit � h � ln Yit�1Þ þ

eit

sit
ð8Þ

Footnote 3 continued
exogenous to the companies. Presently, toll increases are set according to the Consumer Price Index (CPI)
plus an efficiency term.
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This is a heteroskedastic model, so we have estimated using weighted least squares. This

formulation does not need to be restricted to the partial adjustment model. It can be easily

generalised to s lagged values, as shown in Appendix 1.

We estimate a standard demand equation where variables are expressed in logarithms.4

The traffic volume in each section is a function of the level of economic activity (measured

by Gross Domestic Product, GDP), the toll rate per kilometre, the price of gasoline and a

set of dummy variables that capture major changes in the road network.5 The full set of

dummy variables is detailed in Appendix 2. The demand function can be expressed as

follows:

D ln Yit

sit
¼ ðh � ai þ h � b1i � ln GDPt þ h � b2i � ln GPt þ h � b3i � ln Tit

þ h � ci � Zit � h � ln Yit�1Þ þ
eit

sit
ð9Þ

where Yit is the traffic volume on motorway section i in period t; GDPt is the real GDP in

period t; GPt is the gasoline price in period t deflated by Consumer Price Index, CPI; Tit is

the motorway toll in section i period t deflated by CPI; Zit is the dummy variables capturing

major changes in the network; ai is the individual fixed effects; eit is the error term; (h, ai,

b1i, b2i, b3i, ci) are the coefficients to be estimated.

The individual fixed effects explain the differences between motorway sections (cross-

section units) not captured by the variables included in the model. In our case, they may

capture generation and attraction effects that determine the magnitude of traffic in each

motorway section.

The data

To estimate the demand equation, we used a panel data set of 67 motorway sections

observed between 1980 and 2008, although not all cross-section units were observed for

this temporal span. The total number of observations was 1765. The cross-section obser-

vations correspond to the shortest motorway section allowed by the data collection pro-

cesses, with an average length of 20 km.

The dependent variable is the annual average daily traffic volume in each section. The

explanatory variables are: real GDP, gasoline price and toll per km. The last two deflated

by CPI. GDP and gasoline price are defined at the national level and take the same value

for all sections in the sample.6 Finally, a set of 30 dummy variables captures the most

important changes in the road network. For example, improvements on a parallel free road

were captured by a dummy variable that takes value 1 since the opening year. The

4 We considered the three alternatives most widely used to estimate aggregate demand functions: the linear
model, the semi-log model and the log-linear model. According to the Schwarz criterion, based on the log of
the likelihood functions from each model, we selected the log-linear specification.
5 It must be noted that equation (9) could be reparametrised so that the relationship between traffic flow and
the explanatory variables can be expressed in levels. Matas and Raymond (2003) provide a justification for
this model specification.
6 In some preliminary estimations we used GDP and gasoline prices at the regional level. The estimated
coefficients and the degree of adjustment showed to be almost the same. Therefore, given that for series
defined at national level the available time span is much larger, we decided to use GDP and gasoline prices
at the national level in order to obtain better forecasting models for the input variables.

Transportation (2012) 39:1–17 5

123



advantage of working with a panel data set is the high variability observed in the sample.

See Table 1.

It is interesting to note that there are substantial differences in traffic volume among the

different sections of the motorway network. The daily average traffic flow ranges from

1689 vehicles in the section and year having the lowest volume to 90033 in the section and

year with the highest. Furthermore, we found an extensive price range for toll rates. For the

whole period, at 2006 prices, the lowest price paid per km was about 0.058 €, whereas the

highest was about 0.34 €. The reasons for this wide variation are twofold. Firstly, each

motorway has to cover its own construction costs, so the toll rates are higher on those

motorways with larger construction costs or lower traffic volume. Secondly, the changes in

toll policies during the last two decades have resulted in a wide variation of rates across the

country and over time. For instance, on some motorway sections tolls decreased as much as

40% in one year.

The maximum capacity of each motorway section was calculated according to the

number of lanes and types of vehicle.

Model estimation and results

Before estimating the model equation stated in (9), and in order to decide whether to

estimate in levels or differences, we analyzed the existence of unit roots and cointegration

of the series. The traffic volume and GDP variables were clearly non-stationary. So, both

variables could be considered as integrated which means that the expected value and the

variance are non constant. The evidence for motorway tolls and gasoline prices was more

doubtful. In any case, to justify an estimation using levels for all the variables, it is

necessary to guarantee that a cointegration relation exists among them. This means it is

possible to find a linear combination of the series that is stationary. In our case, according

to the Kao cointegration test for panel data, the null hypothesis of no cointegration was

clearly rejected.7 Therefore, we proceeded to estimate the equation in levels.

As specified in Eq. 9, the estimation of the demand equation would require to estimate

400 coefficients. Given that the number of total observations was 1765, it seemed advisable

to introduce some constraints to the coefficients in order to allow for efficiency gains.

Based on a previous work by Matas and Raymond (2003), we assumed that the demand

Table 1 Descriptive statistics

Mean Maximum Minimum Std. dev.

Traffic volume 16807 90033 1689 13523

GDP (millions of €)a 733009 1063202 471466 177785

Gasoline price (€ per l)a 0.982 1.496 0.832 0.176

Toll (€ per km)a 0.126 0.343 0.058 0.050

Maximum capacity 78700 121192 59700 15407

a The base year for variables expressed in € is 2006

7 The Kao test is based on the analysis of the residuals. The estimated statistic for the Augmented Dickey-
Fuller (ADF) test for the residuals is -4.677, which clearly rejects the null hypothesis of no cointegration
(p-value almost zero). For a clear presentation of unit roots and cointegration see Hamilton (1994).
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elasticity of GDP and gasoline prices were the same across all motorway sections.

Nonetheless, we maintained a specific toll coefficient for each motorway section.

Under these assumptions, we estimated Eq. 9 using weighted least squares. The random

disturbance of the equation was modelled as a first order autoregressive process (rho) to

control for autocorrelation. The coefficients for GDP, gasoline price, and the lagged value

of the dependent variable take the expected sign and were estimated with a high degree of

precision. In relation to the toll coefficients, a significant variation across motorway sec-

tions was observed. A Chi-square test allowed us to clearly reject the null hypothesis of

equality of toll coefficients across all sections. However, the difference in the values of the

toll coefficients could be explained by certain motorway characteristics: contiguous sec-

tions on the same motorway present very similar elasticities; the more inelastic sections are

located on corridors with high traffic volumes, and demand is seen to be more elastic where

a good alternative free road exists.

The observed results suggested the possibility of re-estimating the model by introducing

the hypothesis of equality of toll coefficients across those motorway sections that showed

similar coefficients in the initial model. Hence, we proceed by testing equality constraints

among the toll coefficients for those motorways with similar coefficients in the original

estimation. Based on the results of the Wald test, the motorway sections were classified

into 3 groups as follows:

– Low toll elasticity: sections with toll coefficient between 0 and -0.2.

– Medium toll elasticity: sections with toll coefficient between -0.2 and -0.35

– High toll elasticity: section with toll coefficients larger than -0.35.

The final estimation results are detailed in Table 2 and the coefficients for the dummy

variables in Appendix 2. As can be observed, the toll coefficients are estimated with a high

degree of precision. Given that the variables are log-transformed, the estimated coefficients

can be interpreted as short term elasticities. Demand is sensitive to toll variations, although

in the short term it is inelastic in all three groups.

Table 2 Summary of the esti-
mation results

Dependent Variable: D(Ln (traffic volume))/tau
Estimation method: weighted least squares

Coefficient Std. Error t-Statistic

Ln (GDP) 0.7538 0.0403 18.72

Ln (gas price) -0.3802 0.0157 -24.19

Ln (traffic volume(-1)) -0.6059 0.0226 -26.82

Ln (toll_1) -0.1549 0.0159 -9.72

Ln (toll_2) -0.3403 0.0193 -17.62

Ln (toll_3) -0.4879 0.0276 -17.65

Rho 0.7347 0.0218 33.64

Dummy variables Yes

Fixed effects Yes

R2 0.62

Observations 1668
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To provide an additional insight into the accuracy of our model we compared its

forecasting capacity to that of a logistic regression model. Using the same explanatory

variables, we estimated a logistic regression with a saturation level equal to maximum

capacity. According to the mean square error (MSE) for a dynamic forecast over the period

2000–2008, our approach was clearly preferable to the logistic approach.8

An interesting property of the proposed functional form is that it makes it possible to

avoid the often unrealistic assumption of constant elasticity. As shown in Appendix 3,

demand elasticity with respect to an explanatory variable Xk depends on the value of sit,

that is, it depends on the degree of motorway use. For sit = s0, the elasticity with respect to

variable Xk in period J is given by:

eJ ¼ b�k �
ð1� c�Jþ1Þ
ð1� c�Þ ð10Þ

where bk
* = s0 � bk, being bk the coefficient associated to Xk, and c* = (1 - s0 � h)

As an illustration, we compute the demand elasticity with respect to GDP for different

values of s0 and for the first 6 years after the change in the exogenous variable. Elasticities

are detailed in Table 3. For s0 = 1, when the level of traffic approaches 0, short-term

elasticity is 0.8; after 5 years, the elasticity tends to the long-term value, 1.24. However, as

traffic increases and s0 decreases, demand elasticity becomes less sensitive to GDP vari-

ations. For s0 = 0.1, when traffic flow approaches capacity, short-term elasticity is less

than 0.1. The elasticity values computed for s0 = 0.7, which correspond to the average

observed value our sample, are in line with those reported in the literature.

Figure 1 displays the elasticity values for s0 ranging from 0.1 to 1.

For the particular case where s0 = 1, the coefficients can be interpreted as those in the

standard partial adjustment model. The short- and long-term elasticities for all the

explanatory variables are reported in Table 4.

Forecast results and uncertainty

From the estimated demand model, we proceeded to forecast traffic flow for the 2009–2025

period. The first step was to predict the explanatory variables in the model. GDP and

gasoline price are predicted according to a time series model and motorway tolls are

Table 3 Elasticities with respect to GDP

Tau

j (years) 0.1 0.5 0.7 1

0 0.075 0.377 0.528 0.754

1 0.146 0.640 0.832 1.051

2 0.213 0.823 1.006 1.168

3 0.275 0.950 1.107 1.214

4 0.334 1.039 1.165 1.232

5 0.389 1.101 1.199 1.239

8 The results showed a value for the MSE of 5,979,872 for the logistic approach and 2,732,930 for our
proposal. A ‘‘t’’ test for the equality of both MSE clearly enabled to reject the null hypothesis (t = 6.19).
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assumed to remain constant in real terms given that the toll revision formula is linked to

CPI. We applied univariate distributions for the exogenous variables given that no cor-

relations were observed among them.

Figure 2 displays the forecasted traffic flow for two representative motorway sections

according to both a non-restricted model (standard partial adjustment model) and a

capacity restricted model (modified partial adjustment model). In the first one, traffic flow

is well below maximum capacity in the year 2025, whereas the second has reached

capacity by approximately 2019. As can be observed, the effect of the capacity constraint is
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Fig. 1 Elasticities with respect
to GDP for different tau values

Table 4 Estimated demand
elasticities

Tau = 1

Short term Long term

GDP 0.754 1.244

Gasoline price -0.380 -0.628
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Fig. 2 Forecasted traffic flow for two motorway sections
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almost unnoticeable when traffic volume is below maximum capacity. However, the effect

is clear for the second motorway section. The standard partial adjustment predicts an

unrealistic level of traffic flow; whereas our suggested functional form forces traffic flow to

remain below capacity.

Finally, we proceeded to quantify uncertainty in the traffic forecasts. It is well known

that there are three possible sources of error in traffic forecasting. The first one is input

uncertainty, due to the fact that the future values of exogenous variables are unknown. The

second one is random term uncertainty that accounts for the random disturbance in the

demand equation. The third is coefficient uncertainty, due to using parameter estimates

instead of true population values. The sum of the last two corresponds to model

uncertainty.

To fix ideas, let us consider the following non-linear model:

y ¼ UðX; b; eÞ ð11Þ

in which the dependent variable is, in general, a non-linear function of a set of explanatory

variables, of a set of unknown b coefficients and of a random term e. The forecasted values

of the dependent variable are obtained by substituting the unknown terms by their

respective estimates.

ŷ ¼ UðX̂; b̂; êÞ ð12Þ

In case we are dealing with a deterministic simulation, ê is fixed in the expected value of e,

that is zero, b̂ is the estimated value of b, and X̂ is the assigned value of the explanatory

variables.

In a stochastic simulation we assume that each of the elements of Eq. 11 follows a

certain distribution. This is:

X�DistðX̂;RX̂Þ
b�Distðb̂;Rb̂Þ
e�Distð0;RêÞ

ð13Þ

M random realizations of such distributions are generated using a bootstrap methodology.

The model is solved for each realization of those distributions. So, M forecasted values of

the dependent variable are obtained. The empirical distribution of the forecasted values

enables an expected value to be computed that is the arithmetical average. Using the

empirical distribution, for a certain confidence level, it is also possible to compute upper

and lower limits. The contribution to total uncertainty derived from the components could

be calculated by subtraction. In this study all three types of uncertainty have been obtained

through a stochastic simulation process.

To evaluate total forecast uncertainty we consider the distribution of ŷ after generating

M realizations of X, b, e.
To evaluate model forecast uncertainty we consider the distribution of ŷ after generating

M realizations of b, e; but holding the values of the explanatory variables X fixed at X̂.

Finally, input uncertainty can be computed from the difference between total forecast

uncertainty and model forecast uncertainty.9

9 In general, when dealing with non-linear models the additive property is not fulfilled. This means the total
forecast uncertainty is not exactly equal to the sum of model forecast uncertainty plus input uncertainty
because the existence of interactions or mixed terms uncertainty. Although it would be possible to
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Because the model is non-linear it should be noted that the empirical average of the

stochastic simulations, in general, will not coincide with the deterministic simulation.

Therefore, in non-linear models the deterministic simulation will offer a biased forecast.

In this study the model has been solved repeatedly for 1000 random draws of various

components by using bootstraping method.

To illustrate the impact of uncertainty, we computed the 70% confidence interval for the

traffic forecast of one of the motorway sections. As can be observed in Fig. 3, model

uncertainty (dashed line) is relatively low and almost constant over time. However, once

input uncertainty is added (solid line) the confidence interval widens and clearly increases

over time. The second part of Fig. 3 shows the expected value of traffic for a deterministic

forecast (dotted line), model uncertainty (solid line) and total uncertainty (dashed line). It

can clearly be observed that the deterministic simulation will underpredict the average

level of traffic flow.10

As previously mentioned and shown in Eq. 11, the model is non-linear and stochastic.

Under these conditions, in general, the deterministic solution of a stochastic model will

offer a biased estimate of the expected traffic value. Nonetheless, the expected value of the

traffic forecast can be approximated by using the average of a set of stochastic simulations.

Applying this approach to all the motorway sections in the sample, we found that the

stochastic forecast for the year 2025 was on average 8.8% higher than the deterministic

forecast.

Table 5 offers an order of magnitude of uncertainty for the same motorway section

featured in Fig. 3. The coefficient of variation for total uncertainty ranges from 0.03 in the

first forecasted year to 0.24 in the last. In the first few years, uncertainty is low and mainly

explained by model uncertainty. However, as time goes by, total uncertainty increases due

to lower precision in predicting the unknown values of exogenous variables.
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Fig. 3 Confidence intervals and expected traffic flow for one motorway section

Footnote 9 continued
differentiate between the three components of uncertainty, we have preferred to add the mixed terms to input
uncertainty. The reason for proceeding this way is that mixed terms are relatively unimportant compared
with the other two components. Therefore, we have computed input uncertainty as total uncertainty minus
model uncertainty.
10 The deterministic solution of a stochastic non-linear model will be biased. When variables are expressed
in logarithms, as in our case, the bias will be negative. However, with other functional forms the bias can
have a different sign.
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Uncertainty effects on forecasting forgone revenue

An issue on the political agenda of the Spanish government is to remove tolls on certain

motorways before the concession expires. In these cases, the government has had to

compensate the private motorway concessionaire for the revenue forgone up to the end of

the concession period. We selected one motorway section in the sample in order to

compute the effect of uncertainty on the revenue to be forgone. The selected section was 20

kilometres in length with an average traffic value of around 12800 vehicles per day. We

assumed that the concession period would expire in 2025.

The annual revenue was obtained by multiplying the predicted traffic by the average toll

paid by 365 days a year.11 This value is computed for each forecasted year from 2009 to

2025 and for each of the 1000 random draws. Next, we worked out the results by calcu-

lating the Net Present Value (NPV) of the revenue to be forgone along these 17 years at a

discounting rate of 5%.

Finally, we analysed the empirical distribution of the NPV, which enabled us to cal-

culate the mean and the confidence intervals for different significance levels. For the

selected motorway section, the expected NPV of revenue is 123 million €. The minimum

and maximum values for the confidence interval at 70% significance are 107 million € and

138 million €; when we compute the interval at 95% the figures are 94 million € and 155

million €. In the first case, the difference between the two extremes is 29%, whereas in the

second it rises to 65%.

Figure 4 presents the empirical distribution of the NPV.

Quantifying uncertainty provides evidence that using point estimates to assess invest-

ments or public policies can lead to errors in the decision-making process. In this example,

Table 5 Coefficient of variation
for total uncertainty and %
explained by model and input

CV Model (%) Input (%)

2009 0.032 80.3 19.7

2010 0.059 69.8 30.2

2011 0.082 59.3 40.7

2012 0.103 51.7 48.3

2013 0.121 47.2 52.8

2014 0.136 42.7 57.3

2015 0.150 38.9 61.1

2016 0.163 36.4 63.6

2017 0.174 34.8 65.2

2018 0.183 33.3 66.7

2019 0.191 31.8 68.2

2020 0.200 30.4 69.6

2021 0.209 29.1 70.9

2022 0.217 28.2 71.8

2023 0.224 27.1 72.9

2024 0.232 26.1 73.9

2025 0.242 25.3 74.7

11 To obtain the compensation to be paid to the concessionaire, we should deduct from the revenue to be
forgone any taxes or other costs related to toll operation.
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the negotiation process between government and concessionaire should include the

probabilities associated with the different forecasted revenue values.

Conclusions

This article contributes to the literature on transport demand forecasting in three different

ways: The proposal of a new methodology to account for capacity constraints in long

term forecasting, the analysis of the role played by the different components of uncertainty,

and the importance of using stochastic simulation techniques to avoid forecasting bias in

non-linear models.

Firstly, the proposed functional allows handling existing restrictions on the capacity in those

cases where it is not possible to jointly estimate the demand and supply side of the model. Our

approach makes it possible to account for capacity constraints in long term forecasting without

imposing an arbitrary functional form. This is achieved by specifying a dynamic model in which

the speed of adjustment is related to the ratio between the actual traffic flow and the maximum

capacity of the motorway. Furthermore, with this functional form, demand elasticity is not

constant but depends on the degree of motorway use. As traffic increases, and approaches

maximum capacity, demand becomes less sensitive to changes in the explanatory variables.

With respect to uncertainty, this article outlines the importance of developing stochastic

simulations based on bootstrapping methodologies in order to obtain confidence intervals

for the forecast. The results confirm that in the first few years model uncertainty explains

most of the range of variation for the forecast traffic flow. However, as time goes by,

whereas model uncertainty remains almost constant, input uncertainty steadily increases so

that at the end of the forecasting period the last one accounts for almost 75% of total

variability. Based on previous experiences and on the results of this article, it can be

concluded that more effort must be made to improve model specification and to implement

the necessary mechanisms to avoid bias in forecasting. Nevertheless, input uncertainty has

proved to be the main factor for explaining uncertainty in the long run. Consequently, our

study shows that forecasting explanatory variables deserves special attention. So it would

be advisable to avoid introducing explanatory variables difficult to predict, although these

variables might increase the level of adjustment of the model.
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Finally, for non-linear models this article calls attention to the inadequacy of the

deterministic simulation to forecast future traffic volumes. When dealing with non-linear

models, the expected future traffic value can be approximated by averaging the different

realizations of the variable using stochastic simulations. As an illustration, this article

shows that the deterministic simulation at the end of the forecasting period underpredicts

expected traffic flow across all motorway sections in the sample by on average 9% with a

maximum difference of 12%.
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Appendix 1. Generalisation to s lags

The dynamic partial adjustment model can be easily generalised to account for s lags as

follows:

The static equilibrium equation takes the standard form:

ln Y�it ¼ aþ b � ln Xit ð14Þ

whereas for the dynamic part we assume that the adjustment process is a weighted function

of s lags:

D ln Yit ¼ kit �
h
w1 � ðln Y�it � ln Yit�1Þ þ w2 � ðln Y�it � ln Yit�2Þ � � �

þ ws � ðln Y�it � ln Yit�sÞ
i
þ eit

Xs

i¼1

wi ¼ 1

ð15Þ

That is, the correction of the disequilibrium between the actual value and the optimal or

desired value of the dependent variable at period t depends on the disequilibrium in the

previous periods. Substituting the expression for Y* defined in (14) into Eq. 15, we obtain:

DYit¼kit � w1 � ðaiþb �Xit�Yit�1Þþw2 � ðaiþb �Xit�Yit�2Þ���þws � ðaiþb �Xit�Yit�sÞ½ �þeit

¼kit � aiþb �Xit�w1 �Yit�1�w2 �Yit�2�w3 �Yit�3�����ws�1 �Yit�sþ1�Yit�s½ �þeit

¼kit �aiþkit �b �Xit�kit �w1 �Yit�1�kit �w2 �Yit�2�����kit �ws�1 �Yit�sþ1�kit �Yit�sþeit

Given that

kit ¼ h � Ymax
i � Yit�1

Ymax
i

� �
¼ h � sit

and substituting:

D ln Yit ¼h � sit � ai þ h � sit � b � ln Xit � h � sit � w1 � ln Yit�1 � h � sit � w2 � ln Yit�2

� � � � � h � sit � ws�1 � ln Yit�sþ1 � h � sit � ln Yit�s þ eit

That is:

D ln Yit

sit
¼ h � ai þ h � b � ln Xit � h � w1 � ln Yit�1 � h � w2 � ln Yit�2 � . . .

� h � ws�1 � ln Yit�sþ1 � h � ln Yit�s þ
eit

sit
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Appendix 2

See Table 6

Table 6 Definition of dummy variables and their estimated coefficients

Dummy variables Period Comment Coefficient

Z1 2006–2008 It reflects the positive impact on traffic on
AP-1 motorway after removing the toll on
the connecting city ring-road.

0.1039

Z2–Z4 2004–2008 They reflect the negative impact on traffic on
3 AP-2 motorway sections as a
consequence of the extension of an
alternative toll free road.

-0.1989

-0.2187

-0.2142

Z5–Z6 1992 They account for the positive impact on the
2 AP-4 motorway sections, derived from
the Seville World Exhibition in 1992.

0.1828

0.1934

Z7 2005–2008 It reflects the positive impact on traffic on
the 2 AP-4 motorway sections after
removing the toll in the final section of the
motorway.

0.1371

Z8–Z9 2003–2008 They reflect the negative impact on traffic on
the 2 AP-68 motorway sections, derived
from quality improvements on the
alternative toll free road.

-0.0337
-0.0700

Z10–Z13 1994–2008 They reflect the negative impact on traffic on
4 AP-7 motorway sections, derived from
the extension of an alternative tollway.

-0.0735

-0.0990

-0.1048

-0.0660

Z14 2000–2008 It reflects the positive impact on traffic on 1
AP-7 motorway section after removing the
toll for the connecting city’s ring road.

0.0653

Z15 1999–2000 It reflects the positive impact on traffic on 1
AP-7 motorway section, due to the toll
exemption because of construction works
on the motorway.

0.1347

Z16–Z17 1998–2008 They reflect the negative impact on traffic on
2 AP-7 motorway sections, derived from
the opening of an alternative toll
motorway.

-0.1453

-0.1203

Z18 1998–2008 It reflects the positive impact on traffic on 1
AP-7 section after removing the toll in the
city ring-road.

0.1082

Z19–Z20 2006 They reflect the positive impact on traffic on
2 AP-7 motorway sections, due to the road
works on the alternative toll free road

0.0636

0.1468

Z21–Z22 2007–2008 They reflect the negative impact on traffic on
2 AP-7 motorway sections as a
consequence of the extension of an
alternative toll motorway.

-0.1540

-0.1578
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Appendix 3. Demand elasticity with a capacity constraint

This appendix shows how demand elasticity depends on the level of traffic when a con-

straint on infrastructure capacity is in force.

Starting from Eq. 8 in the main text:

D ln Yit

sit
¼ ðh � ai þ h � b � ln Xit � h � ln Yit�1Þ þ

eit

sit

Defining betas and taking expected values, we get:

D ln Yit

sit
¼ b0 þ b1 � ln Xit � h � ln Yit�1

where b0 ¼ h � ai and b1 ¼ h � b
It can be rewritten as:

ln Yit ¼ sit � b0 þ sit � b1 � ln Xit þ ð1� sit � hÞ � ln Yit�1

ln Yit ¼ b�0it þ b�1it � ln Xit þ c�it � ln Yit�1

where

b�kit ¼ sit � bk; c�it ¼ ð1� sit � hÞ

For a fixed level of traffic flow, sit = s0, we have:

ln Yit ¼ b�0 þ b�1 � ln Xit þ c� � ln Yit�1

b�k ¼ s0 � bk; c� ¼ ð1� s0 � hÞ

Taking into account the dynamic structure of the model and following a recursive process

of substitution (this is, substituting ln Yit�1 ¼ b�0 þ b�1 � ln Xit�1 þ c� � ln Yit�2), the elasticity

in period J will be:

Table 6 continued

Dummy variables Period Comment Coefficient

Z23 2004–2008 They reflect the negative impact on traffic on
1 AP-7 motorway section, derived from
the opening of an alternative toll free
motorway.

-0.2321

Z24–Z26 1993–2008 They reflect the negative impact on traffic on
3 AP-7 motorway sections, derived from
the opening of an alternative toll free
motorway.

-0.0821

-0.0533

-0.0555

Z27 2004–2007 It reflects the negative impact on traffic on 1
A-8 motorway section, derived from the
opening of a connection with the
alternative toll free motorway.

-0.2125

Z28–Z30 2003–2007 They reflect the negative impact on traffic on
3 A-8 motorway sections as a consequence
of the extension of an alternative toll free
motorway.

-0.0915

-0.1212

-0.1274
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eJ ¼ b�k �
ð1� c�Jþ1Þ
ð1� c�Þ
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