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Abstract This study introduces an extended version of a standard multilevel cross-

classified logit model which takes co-variations into account, i.e., variations jointly caused

by two or more unobserved factors. Whilst focusing on mode choice behavior, this study

deals with four different types of variation: spatial variations, inter-individual variations,

intra-individual variations and co-variations between inter-individual and spatial varia-

tions. Such co-variations represent individual-specific spatial effects, reflecting different

responses to the same space among individuals, which may for example be due to dif-

ferences in their spatial perceptions. In our empirical analysis, we use data from Mobidrive
(a continuous six-week travel survey) to clarify the existence of co-variation effects by

comparing two models with and without co-variation terms. The results of this analysis

indicate that co-variations certainly exist, especially for utility differences in bicycle and

public transport use in comparison with car use. We then sequentially introduce four

further sets of explanatory variables, examine the sources of behavioral variations and

determine what types of influential factors are dominant in mode choice behavior.
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Introduction

Travel behavior varies due to various factors, some of which are unobservable. For

example, it is usually difficult to observe psychological factors such as motives, attitudes

and perceptions, which are particularly influential to the decision-making process, even for

variations caused by widely addressed individual attributes. Accordingly, it becomes

important to explore how many variations due to individual attributes can be observed and

how many can not be observed, from both data collection and modeling perspectives. Such

a discussion can also be applied to other types of variations, including household attributes,

spatial attributes and temporal factors.

In fact, a number of studies have already focused on different kinds of variations, and

the importance of distinguishing between these variations has been argued (Kitamura

2003). In particular, the distinction between inter-individual variation and intra-individual

variation has been intensively examined (e.g., Pas 1987; Hanson and Huff 1988; Kitamura

et al. 2006). In addition to inter-individual and intra-individual variations, Pas and Sundar

(1995) and Goulias (2002) empirically showed the existence of inter-household variations,

which account for around 1/3 of all inter-individual variations in trip generation and time

use. Here, the three types of variation (intra-individual, inter-individual and inter-house-

hold) hold a nesting hierarchical structure. Concretely speaking, an observed behavior in a

certain situation (intra-individual) is nested within an individual (inter-individual), and an

individual is nested within a household (inter-household). Since a model usually tries to

structuralize variations in data, such a hierarchical point of view is quite important to

identify whether the variations come from situational differences (i.e., intra-individual

variations) or from individual differences (i.e., inter-individual variations). To capture such

different levels of variations simultaneously, a multilevel modeling approach (Goldstein

2003) has become more and more popular, and several applications can be found in the

field of transportation (e.g., Bhat and Zhao 2002; Goulias 2002; Weber and Kwan 2003;

Kim et al. 2004; Khandker et al. 2006; Habib and Miller 2008; Susilo and Dijst 2009). A

random coefficient model with panel data can also be regarded as a special kind of

multilevel model in which intra-individual and inter-individual variations are usually

distinguished. Cirillo and Axhausen (2006) distinguished between these two variations in a

mode choice context, and Cherchi and Cirillo (2008) extended it to different hierarchical

levels, including inter-tour, inter-day, inter-day of week, inter-individual and inter-

household variations.

At the same time, there are many cases when a certain level unit can be nested within

more than one higher-level unit, i.e., some variation types do not have a hierarchical

structure. For example, Bhat (2000) focused on work-travel mode choice and the fact that

the choice is nested not only within the home location (i.e., the origin), but also within the

work location (i.e., the destination). Obviously, home and work locations do not have a

hierarchical structure. Here we call such a non-hierarchical structure a cross-classified

structure. In other examples, spatial variations and systematic day-to-day variations

(i.e., day effects at an aggregate level) may also have a cross-classified structure. An

individual can move in and out of different origin and destination pairs, while an origin and

destination pair can be moved by different individuals; the relationship between individ-

uals and space therefore also follows a cross-classified structure. Such complicated cross-

classified variation structures have been examined simultaneously by Chikaraishi et al.

(2009, 2010), with a focus on departure time choice and time use behavior. However, in the

standard multilevel cross-classified model, we have to assume that all variations at the

different cross-classified levels are independent of each other. When this assumption is not
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true, co-variations, which are variations jointly caused by two or more unobserved factors,

would occur. Note that co-variations only occur in cross-classified structures (i.e., not in

hierarchical structures). For example, travel choice behavior might depend not only on a

person’s individual attributes (such as gender, age and work style), but also on the origin

and destination (with respect to travel time and travel cost), and these two effects might be

correlated in some cases. For example, responses to travel time and travel cost may differ

across individuals. Variations caused by interactions between different cross-classified

levels are called co-variations. Co-variations can neither be captured by purely spatial

variations, nor by purely inter-individual variations, but they may correspond to individual-

specific spatial effects.

The importance of understanding the above-mentioned co-variations might be analo-

gous to the importance of understanding individual-specific action (activity) space. In fact,

recent studies have emphasized that action space should be described for each individual

by considering biographical elements in the mental map of each individual, rather than

assuming that all individuals have the same perceptions of space (Schönfelder and

Axhausen 2003). Differences between social networks would lead to different perceptions

of space among individuals. For example, those individuals who have babies might choose

supermarkets where they can buy baby-related products. Thus, the degree of attractiveness

of spaces would differ across individuals for various reasons, and co-variations might be

the terms which could capture such individual-specific spatial effects by taking unobserved

effects into account. Although understanding co-variations could provide much deeper

insights for policy design, they have not yet been well examined.

On the basis of the above-mentioned considerations, this study proposes a model to

detect co-variations as well as other types of variations. The model described in this study

is a straightforward extension of the multilevel cross-classified logit (MCL) model (Bhat

2000). The MCL model is similar to the mixed logit (MXL) model with panel data, the

difference being that the MCL model can deal with several hierarchical or cross-classified

random variables to capture various unobserved variations. In this study, we additionally

introduce interaction term(s) related to different pairs of cross-classified levels to capture

co-variations. The result is a multilevel cross-classified logit model with co-variations

(MCLCV). The advantage of the MCLCV model is that it can detect the influence of

interaction(s) between different cross-classified levels before introducing explanatory

variables. In other words, this allows us to flexibly decompose behavioral variations

(variations of utility) into the variation types of interesting aspects, including co-variations.

Such decomposition could be used to figure out where the variations of utility come from.

By applying the MCLCV model with explanatory variables, it is possible to identify which

explanatory variable contributes to the reduction of which parts of the variations. In other

words, it is possible to examine whether the introduced explanatory variables suffice to

describe the behavior or not.

After describing the MCLCV model, we shall provide an empirical analysis with

respect to travel mode choice, which has been widely addressed in the literature. The total

of all behavioral variations will be classified into intra-individual variations, inter-indi-

vidual variations, spatial variations, and co-variations between inter-individual and spatial

variations. In the empirical analysis, spatial variations are defined as variations caused by

differences between origin–destination (O–D) pairs and residential locations. Accordingly,

the relationship between intra-individual and inter-individual/spatial variations has a

hierarchical structure (i.e., a mode choice decision is exactly nested within a certain

individual and space), while the relationship between inter-individual and spatial variations

has a cross-classified structure (i.e., the same individual could travel between different
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O–D pairs). We first compare model estimation results with and without the co-variation

terms and then introduce a number of explanatory variables to capture the variations. For

the empirical analysis we used data from Mobidrive, a continuous six-week travel survey,

collected in Karlsruhe and Halle in Germany in 1999 (Axhausen et al. 2002). These data

allow us to distinguish between the above-mentioned different types of variations.

This paper is organized as follows: In the next section, we shall describe the MCLCV

model and explain how to determine its variation properties. We shall then summarize the

data used in the empirical analysis, focusing on mode choice behavior. After that, we shall

compare the estimation results of models with and without co-variation terms and evaluate

how many variations can be captured by introducing a number of explanatory variables. In

the final section, some major findings and avenues of future research will be summarized.

Methodology

This section describes a method for capturing various kinds of variations, including co-

variations, by developing a multilevel cross-classified logit model with co-variations

(called the MCLCV model). We shall describe the model with regard to both random

(unobserved) and non-random (observed) effects of spatial, inter-individual, and intra-

individual variations as well as co-variations between spatial and inter-individual varia-

tions (see Fig. 1). As for spatial variations, it can be defined in various ways, including

home locations, origins, destinations, and/or origin–destination pairs. The choice would

depend on what we want to measure. In fact, spatial variations are one of the most

traditional variation types that have been widely addressed, because it can directly connect

with policy discussions especially in the context of infrastructure construction. For

example, it has been recognized that the accessibility of residential locations has certain

impacts on mode choice decisions, and it might be better to employ home location as a unit

of spatial variation if our purpose is to identify such home-based accessibility impacts. The

travel time and travel cost have also been recognized as important influential factors on the

mode choice decisions, and, in this case, employing origin–destination pair as a unit of

spatial variations would be preferable. On the other hand, rather than spatial factors, a

number of researchers have pointed out that individual socio-demographic factors have

great impacts on the decisions of mode choice (Kitamura et al. 1997; Susilo and Maat

2007; Pinjari et al. 2007). Such impacts would be reflected in inter-individual variations,

Total variations

Spatial 
variations

Random

Non-random

Inter-
individual
variations

Random

Non-random

Intra-
individual
variations

Random

Non-random

Co-
variations

Random

Non-random

Fig. 1 The variation structure assumed in this study
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including car ownership, household structure, psychological attitude, and so on. Addi-

tionally, it can also be expected that the situational attributes such as traveling with friends,

time pressure, etc., which can easily change even within an individual, may be important

influential factors on mode choice decisions as mentioned in Introduction. Such impacts

would be reflected in intra-individual variations. Note that, since it is usually difficult to

capture such situational attributes, it could be expected that many of them would remain as

unobserved variations. Finally, co-variations can be regarded as variations derived from

individual-specific spaces, as mentioned in the previous section. Here, it should be noted

that co-variations between intra-individual and spatial variations and co-variations between

intra-individual and inter-individual variations do not theoretically exist, since these

relations follow hierarchical structure (please refer to the discussions in Introduction). In

this study, we attempt to examine the above mentioned four different types of variations.

The MCLCV model

The MCLCV model is a utility-maximization model in the context of discrete choice

behavior, based on the multinomial logit (MNL) model. Consider the situation that an

individual i (i = 1, 2,…, I) who travels in the space s (s = 1, 2,…, S) on a t-th trip (t = 1,

2,…, Ti) chooses alternative j (j = 1, 2,…, J) based on the following utility Ujist (please

refer to Table 1 for the concrete example of utility function):

Ujist ¼ bjxjist þ cji þ cjs þ cjis þ cjist þ ejist; ð1Þ

where xjist indicates explanatory variables including level-of-service variables, mobility

tool ownership, decision maker’s attributes and situational variables. Let bj be a coefficient

vector associated with xjist. Let ejist represent an unobserved intra-individual variation

which is assumed to be independently and identically Gumbel-distributed with a variance

of r2p2/6 (the scale parameter r is a fixed value). Let cjist be introduced to capture

unobserved intra-individual variations in a manner analogous to the MXL model

(Ben-Akiva et al. 2001). The terms cji and cjs are also random; these are introduced to capture

unobserved inter-individual variations (i.e., variations across individuals) and unobserved

spatial variations (i.e., variations across travel space), respectively. Let cjis be a co-variation

term which is introduced to capture the interaction effects between inter-individual and

spatial variations (i.e., the unobserved variations caused by the two cross-classified factors

jointly). Here we assume that cji, cjs, cjis and cjist are normally distributed as follows:

ci ¼ c2i; . . .; cJið Þ�MVN 0;
X

i

 !
; cs ¼ c2s; . . .; cJsð Þ�MVN 0;

X

s

 !
;

cis ¼ c2is; . . .; cJisð Þ�MVN 0;
X

is

 !
; cist ¼ c2ist; . . .; cJistð Þ�MVN 0;

X

ist

 !
; ð2Þ

where Ri, Rs and Ris are variance–covariance matrices for each level of variation and Rist

corresponds to the variance–covariance matrix for intra-individual variation, adding r2p2/6

in the diagonal elements. Note that only differences in utility matter in discrete choice

modeling, and thus one of the utilities has to be fixed as a base (Train 2003). As this needs

to be done for all variation types, we fixed c1i, c1s, c1is and c1ist as zeros. Additionally, for

intra-individual variations, one of the rests of variance needs to be fixed as well to

normalize the scale of utility. Thus, the full variance–covariance parameters which

can theoretically be estimated are [(J - 1)J/2] - 1 for intra-individual variation Rist and
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(J - 1)J/2 for other higher-level variations Ri, Rs and Ris. Based on the above-mentioned

model specifications, the following conditional probability of the choice of mode j can be

written in the MNL form

P yjist ¼ jjb; ci; cs; cis; cist

� �
¼

exp bjxjist þ cji þ cjs þ cjis þ cjist

� ��
r

� �
PJ

j0¼1 exp bjxj0ist þ cj0i þ cj0s þ cj0is þ cjist

� ��
r

� � ð3Þ

When we specify the model with the above-mentioned full variance–covariance parame-

ters (with small value for the scale parameter r), the complete variation properties of all

pairs of alternatives can be obtained. However, we found that it is quite difficult in

empirical analysis to estimate full variance–covariance parameters (i.e., the estimation

results are not stable: the estimation procedure will be mentioned later), especially in the

estimation of parameters of intra-individual variations and in the simultaneous estimation

of covariance parameters at different levels. This means, the model could formally and

theoretically be identified yet it may exhibit very small variation in the objective function

from its maximum over a wide range of parameter values, resulting in being empirically

non-identifiable (Keane 1992; Grilli and Rampichini 2007). Note that, since this is not

theoretical identification problem, the model with full variance–covariance parameters is

potentially identifiable: there is a possibility that employing different estimation algorithm

and/or different parameterizations of variance–covariance matrix could solve such infor-

mal or non-theoretical identification problem. For example, Train (2001) compared the-

oretical and empirical properties of classical estimation procedure (maximum simulated

likelihood estimation with Halton draws) and Bayesian estimation procedure (a hierar-

chical Bayesian procedure), and concluded that Bayesian approach has theoretical

advantage from both classical and Bayesian perspectives and the estimation results are

essentially the same. Expanding such comparison analysis (especially focusing on the

stability of the estimation) would be helpful to choose a proper estimation method, and it

certainly remains as a big issue to be solved; however, in this paper we will only focus on

the development of choice model with co-variation effects, and the discussion on esti-

mation methods lies outside the scope of this paper.

To avoid the above mentioned identification problem, in this study cjist is omitted from

the model, and we only estimated variances in (J - 1) alternatives (with the covariances

fixed as zero) for spatial variations and co-variations, while the full variance–covariance

matrix was given for inter-individual variations. Thus, it is assumed that all sources of

unobserved correlation over alternatives are derived from inter-individual matters such as

the differences of attitudes and perceptions across individuals. There are several reasons

for putting correlation terms into only inter-individual level. First, to assure stable model

estimation, as discussed above, we had to eliminate some correlation terms. Second, based

on the preliminary analysis which is conducted to identify the magnitude of unobserved

variation for each level, we decided to give the highest priority to introducing correlation

terms into inter-individual level.

Note that even when we exclude Rist from the model, higher-level variations are

automatically rescaled according to the fixed scale of intra-individual variations (the

unknown parameters b are also rescaled), and the ratio of each variation to the total

variation can be safely calculated (Grilli and Rampichini 2003, 2007). However, such

rescaling in the utility Ujist (j = 2, 3,…, J) might occur only with respect to the utility of

the first alternative U1ist, in which all random components are fixed for normalization.

Therefore, the variation properties of all pairs of alternatives could not be obtained, and we

could only determine the variation properties of the utility Ujist (j = 2, 3,…, J) with respect

to the utility of the first alternative, given the restricted variance–covariance matrices.
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In particular, with the scale parameter r set to 1 (which also leads to rescaling the other

fixed and random parameters), this study employs the following model:

Ujist ¼ bjxjist þ cji þ cjs þ cjis þ ejist; ð4Þ

P yjist ¼ jjb; ci; cs; cis

� �
¼

exp bjxjist þ cji þ cjs þ cjis

� �
PJ

j0¼1 exp bjxj0ist þ cj0i þ cj0s þ cj0is

� �; ð5Þ

where

ci ¼ c2i; . . .; cJið Þ�MVN 0;
X

i

 !
;

cjs�N 0; r2
js

� �
; cjis�N 0; r2

jis

� �
j ¼ 2; 3; . . .J

ð6Þ

Henceforth, the diagonal elements (i.e., variances) and non-diagonal elements (i.e.,

covariances) in Ri are described as r2
ji and rjj0i, respectively (j = 2, 3,.., J). As mentioned

above, all random components in the first alternative are set to zero. All of the following

descriptions are based on this model, with limited variance–covariance matrices shown in

Eqs. 5 and 6.

Note that if the r2
jis is close to zero, the MCLCV model becomes an MCL model (Bhat

2000), and if the r2
jis and r2

js are equal to zero, the MCLCV model becomes an MXL model

Table 1 An example of data structure

Choice result Trip no. Individual
no.

Spatial no.
(O–D pair)

Individual-spatial
combination no.

Utility

Objective
variable

t-th trip Individual i Space s Individual-specific
space is

Ujist = cji ? cjs ? cjis ? ejist

(Null model)

Bicycle 1 1 1 1(1-1) cj1 ? cj1 ? cj11 ? ej111

Car (driver) 2 1 2 2(1-2) cj1 ? cj2 ? cj12 ? ej122

Bicycle 3 1 1 1(1-1) cj1 ? cj1 ? cj11 ? ej113

Car (driver) 4 1 2 2(1-2) cj1 ? cj2 ? cj12 ? ej124

Bicycle 5 1 1 1(1-1) cj1 ? cj1 ? cj11 ? ej115

Public
transport

6 1 2 2(1-2) cj1 ? cj2 ? cj12 ? ej126

Public
transport

7 1 1 1(1-1) cj1 ? cj1 ? cj11 ? ej117

Car (driver) 10 2 2 3(2-2) cj2 ? cj2 ? cj22 ? ej221’

Public transport 20 2 1 4(2-1) cj2 ? cj1 ? cj21 ? ej212’

Car (driver) 30 2 2 3(2-2) cj2 ? cj2 ? cj22 ? ej223’

Bicycle 40 2 1 4(2-1) cj2 ? cj1 ? cj21 ? ej214’

Car
(passenger)

50 2 2 3(2-2) cj2 ? cj2 ? cj22 ? ej225’

Public
transport

60 2 1 4(2-1) cj2 ? cj1 ? cj21 ? ej216’

Car (driver) 70 2 2 3(2-2) cj2 ? cj2 ? cj22 ? ej227’

Public
transport

80 2 1 4(2-1) cj2 ? cj1 ? cj21 ? ej218’
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with panel data. Thus, the MCLCV model is a straightforward extension of such mixed-

logit-type models. Although the MCLCV model itself is just a simple extension of a mixed

logit model, it can capture various kinds of co-variation effects. We could quantitatively

identify not only individual-specific spatial effects, but also social interaction effects, for

example by considering co-variations as interaction terms across different reference

groups’ effects on the behavior of a target person. The proposed method could be a

powerful tool to check the existence of co-variation effects in various contexts.

Variation properties of utility difference

Here we shall mention a way to describe behavioral variations in the above-mentioned

model, which we used in the empirical study mentioned in next section. Conventional ways

have often focused only on observed variations which can be directly connected to policy

discussions. This study follows a somewhat different approach. Concretely speaking, all

behavioral variations are first treated as unobserved variations in order to determine what

kinds of variations really exist (i.e., bjxjist in Eq. 4 is excluded). In other words, we first

decompose all variations into four different types of unobserved variations, including

unobserved inter-individual variations, unobserved spatial variations, unobserved intra-

individual variations and unobserved co-variations between inter-individual and spatial

variations. Using the symbol ‘‘*’’ to represent model estimation results without any

explanatory variables (called the Null model), the total variance of utility difference can be

calculated as follows:

Var ~Ujist � ~U1ist

� �
¼ ~r2

ji þ ~r2
js þ ~r2

jis þ p2=3 ð7Þ

This variation decomposition can provide several useful insights. For example, when

substantial amounts of intra-individual variations are observed, people’s mode choice

behavior would strongly depend on the situational or context-dependent attributes given at

the time. Similarly, if almost all behavioral variations are derived from spatial variations,

this means that there are no individual or situational differences and spatial aggregate data

can be used for the analysis. Also, the more inter-individual variations are observed, the

greater the possible impacts of individual attributes (such as age, gender, car ownership

and season ticket ownership). Such observations could help us, for example, to identify

which levels of influential factors are likely to be more important. Additionally, this

variation decomposition allows us to detect pure co-variation effects (i.e., individual-

specific spatial effects) before introducing explanatory variables.

In the next step, we shall introduce a set of explanatory variables to provide reasons for

the behavioral variations measured in the Null model. Using the symbol ‘‘^’’ to represent

model estimation results with a set of explanatory variables (called Full model), the total

variance of utility difference can be calculated as follows:

Var Ûjist � Û1ist

� �
¼ Var b̂jxjist � b̂1x1ist

� �
þ r̂2

ji þ r̂2
js þ r̂2

jis þ p2=3 ð8Þ

Introducing explanatory variables could change some behavioral variations into observed

variations while the rest remain unobserved variations. Our purpose here is to evaluate

what types and how many of the variations can be captured by introducing explanatory

variables. To do this, we compare the variation components in Eq. 8 against those in Eq. 7.

Here, although the absolute expected value of Var Ûjist � Û1ist

� �
may change depending on

how many intra-individual variations can be captured by introducing explanatory variables,
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the component ratio for each variation can be compared between the different models as

long as the existence of the same ‘‘true’’ utility can be expected. This is because the scale

of Var Ûjist � Û1ist

� �
is strictly defined by the rest of the unobserved intra-individual

variations, and also because the other fixed and random parameters are automatically

rescaled. Thus, we can compare the component ratio for each variation between Eq. 7 and

Eq. 8. For example, in case of unobserved inter-individual variation, the component ratio

in the Null model can be calculated as ~r2
ji Var Ûjist � Û1ist

� �.
and that in the Full model can

be calculated as r̂2
ji

.
Var Ûjist � Û1ist

� �
. Since a part of variation in the Null model is

expected to be explained by introduced explanatory variables in the Full model, the

component ratio in the Full model would become smaller than that in the Null model, and

the difference between them would be the observed variation. Such calculations can show

which types and how many of the variations can or cannot be captured by introducing a

certain set of explanatory variables, as follows:

For observed inter-individual variations (%):

~r2
ji

.
Var ~Ujist � ~U1ist

� �
� r̂2

ji

.
Var Ûjist � Û1ist

� �� �
� 100; ð9Þ

For unobserved (or remaining) inter-individual variations (%):

r̂2
ji

.
Var Ûjist � Û1ist

� �� �
� 100; ð10Þ

For observed spatial variations (%):

~r2
js

.
Var ~Ujist � ~U1ist

� �
� r̂2

js

.
Var Ûjist � Û1ist

� �� �
� 100; ð11Þ

For unobserved (or remaining) spatial variations (%):

r̂2
js

.
Var Ûjist � Û1ist

� �� �
� 100; ð12Þ

For observed co-variations (%):

~r2
jis

.
Var ~Ujist � ~U1ist

� �
� r̂2

jis

.
Var Ûjist � Û1ist

� �� �
� 100; ð13Þ

For unobserved (or remaining) co-variations (%):

r̂2
jis

.
Var Ûjist � Û1ist

� �� �
� 100; ð14Þ

For observed intra-individual variations (%):

3�1p2
�

Var ~Ujist � ~U1ist

� �
� 3�1p2

�
Var Ûjist � Û1ist

� �� �
� 100; ð15Þ

For unobserved (or remaining) intra-individual variations (%):

3�1p2
�

Var Ûjist � Û1ist

� �� �
� 100 ð16Þ

The variation properties derived from Eqs. 7 and 8 and subsequently from Eqs. 9–16 could

provide many implications for both data collection and model development. For example,

if unobserved intra-individual variations are quite high even after introducing available

explanatory variables, this indicates that we might need many more situational attributes to

provide richer explanations for behavioral variations. In other words, Eqs. 9–16 can be
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used to evaluate the model’s performance in greater detail by evaluating the model for each

alternative and for each variation type. In the empirical analysis, we introduced four sets of

explanatory variables in a sequential manner. This sequential procedure allowed us to

evaluate the impacts of each set of explanatory variables. In other words, we could confirm

which types of variations could actually be captured by which subset of explanatory

variables. Note that although the order in which the variable subsets are introduced would

not influence the variation properties if all the variables in the model are independent of

each other (and this assumption was already made when the model was estimated), this

assumption usually cannot be satisfied completely. For example, the dummy variable

‘‘male’’ (a decision maker’s attribute) might be correlated with the dummy variable ‘‘trip

purpose (work or not)’’ (a situational attribute), and as a result, the order in which the

variable subsets are introduced may somewhat influence the variation properties. In this

study, we decided on the order of introducing variable subsets by considering the

importance of each as well as the ease of data acquisition. In the example above, we would

give priority to the variable ‘‘male’’ over the variable ‘‘trip purpose’’, because the former is

much easier to observe. Furthermore, if we can capture variations by ‘‘male’’ rather than by

‘‘trip purpose’’, we could easily extend the application of the model to the entire population

of the target area. Thus, after capturing variations by ‘‘male’’, the variable ‘‘trip purpose’’

just serves to capture the remaining variations which could not be captured by the

explanatory variables already introduced. However, how the implications differ according

to the order of introducing explanatory variable sets still remains as an important future

task to be examined.

Estimation procedure

The likelihood function based on Eq. 4 can be written as follows:
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where Nist is the number of samples. The dummy variable dj takes the value 1 if individual

i chooses mode j on the t-th trip, and otherwise it takes the value 0. The term f(ci|Ri)

follows a multivariate normal distribution with a mean of 0 and a variance–covariance of

Ri. The terms f(cs|rs) and f(cis|ris) also follow multivariate normal distributions with a

mean of 0 and variances of rjs and rjis (j = 2, 3,…, J), respectively, but these covariances

are fixed as 0 (see Eq. 5).

The likelihood function of Eq. 17 involves a number of integrations and can not be

solved analytically. To estimate such a model, some simulation methods are usually

adopted, such as a series of Monte Carlo methods or numerical quadrature methods (e.g.,

Pinheiro and Bates 1995; Bhat 2001; Train 2003). In this study, we used a hierarchical

Bayesian procedure based on the Markov chain Monte Carlo (MCMC) method, which has

recently become popular and is a promising method for estimating multilevel models with

complicated random effects (Train 2003; Gelman et al. 2004). The method incorporates

prior distribution assumptions and, based upon successive sampling from the posterior

distribution of the model’s parameters, yields a chain which is then used for making point

and interval estimations. In particular, the posterior distribution can be written as follows:
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where we assume an inverted Gamma distribution for u(rs) and u(ris) (for each element), an

inverted Wishart distribution for u(Ri) and a normal distribution for u(b) (for each element)

as prior distributions. These two prior distributions correspond to conjugate prior distribu-

tions, which mean that the posterior distributions can be specified within the same distri-

butional families as the prior distributions. The terms f(ci|Ri), f(cs|rs), and f(cis|ris) create a

so-called hierarchical sampling procedure. In this study, non-informative prior distributions

were assumed for all parameters. In this case, the estimated parameters are asymptotically

equivalent to the parameters obtained through a simulated maximum likelihood method

(Train 2003). Note that, even when we employ the different prior distributions that are not

conjugate prior distributions, we may also obtain asymptotically equivalent parameters

estimated with conjugate prior distributions, although a conjugate prior distribution is much

more algebraic convenience, giving a closed-form expression for the posterior.

Draws from the posterior are obtained using the software WinBUGS (Bayesian infer-

ence Using Gibbs Sampling [Lunn et al. 2000]). In the MCMC sampling, draws of each

parameter are obtained from its posterior conditional on the other parameters (Gelman

et al. 2004). The conditional posterior distribution for each parameter can be found in Train

(2003), for example. The stabilities of the estimation results reported in this paper were

checked a number of ways, including: checking the trace plot and autocorrelation in each

parameter chain; using the Geweke diagnostic (Geweke 1992); and checking the results

with different initial values of parameters. All of these indicated that the models reported in

this paper are well converged.

Data

The Mobidrive data set (Axhausen et al. 2002) was used in the empirical analysis. The data

are from a continuous six-week travel diary survey that was conducted in Karlsruhe and

Halle in Germany in 1999. A total of 317 persons from 139 households took part in the

main survey.

The mode choice set used in this empirical analysis includes the following options: ‘‘Car

(passenger)’’, ‘‘Bicycle’’, ‘‘Car (driver)’’ and ‘‘Public transport’’. After data cleaning with

respect to the availability of level-of-service values (only travel time in this study) for both

used and non-used alternatives, a total of 18,326 trips made by 309 individuals were

selected. The mode choice shares are: ‘‘Car (passenger)’’ (15.6%), ‘‘Bicycle’’ (20.7%),

‘‘Car (driver)’’ (39.6%) and ‘‘Public transport’’ (24.1%).

The spatial variation was defined based on differences in the Origin–Destination (O–D)

distributions and the residential locations. Note that the origins, destinations and residential

locations are classified into three zones: ‘‘CBD (Central Business District)’’, ‘‘inner city’’

and ‘‘others’’ for each city. The maximum number of combinations is 54 (= 3[ori-

gins] 9 3[destinations] 9 3[residential locations] 9 2[cities]). In the samples used in this

study, 53 spaces were observed. Thus, the 18,326 samples are nested within 1,635 indi-

vidual-specific spaces (i.e., the unit for co-variations), and the 1,635 individual-specific

spaces are nested within 53 spaces (i.e., the unit for spatial variations) and within 309
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individuals (i.e., the unit for inter-individual variations). A simple example of data

structure (in case of two individuals and two O–D pairs) is shown in Table 1. In this

example, it can be confirmed that individual 1 tends to choose ‘‘Bicycle’’ compared to

individual 2. This difference may generate inter-individual variations. As for the spatial

differences, ‘‘Car (driver)’’ seems to be a preferable alternative when they travel in O–D

pair 2. This difference may generate spatial variations. Additionally, it can be confirmed

that co-variations (i.e., individual-specific spatial effects) could be also generated, since

individual 1 tends to use ‘‘Bicycle’’ for traveling in O–D pair 1 while individual 2 tends to

use ‘‘Public transport’’ even for traveling in the same O–D pair. The purpose of introducing

co-variation term is to capture such variations.

Here it should be noted that, in general, the more complicated variation structures are

employed, the more samples are required. This is similar with the case that a model having

more explanatory variables requires more samples. For this reason, we employ relatively

rough location segmentation as mentioned above. Thus, one should keep in mind that the

spatial variations identified here would be quite rough and may not reflect small spatial

differences. Also, to distinguish between inter-individual and intra-individual variations,

we need a multi-day travel diary survey data.

Model estimation and discussion

In this section, we shall first report the estimation results of the MCLCV model and the

MCL model to determine whether co-variation effects really exist or not. The estimations

were done without any explanatory variables to detect the pure influence of co-variations.

Explanatory variables were then introduced in a sequential manner. We first introduced

only Travel time variables. We then sequentially added the variables Mobility tools,

Decision-maker’s attributes and Situational attributes.

Table 2 shows the definitions of the introduced explanatory variables. With regard to

Travel time, network level-of-service (LOS) values were used for all modes. Theoretically,

it can be expected that Travel time would mainly capture spatial variations. Public

transport travel time included transfer waiting time. Travel cost might be another important

variable in mode choice, but we could not introduce it because the data were unavailable.

In addition, attention needed to be paid to the type of LOS variables used to capture

behavioral variations. For example, one would expect LOS variables derived from network

data to mainly capture spatial variations, while LOS variables based on responses from

respondents would partly represent inter-individual variations because of the reflection of

the respondents’ perception of travel times and costs. Disparities between different types of

LOS variables as well as the effects of other LOS variables such as travel time and the

number of transfers would certainly be worth investigating in future studies.

Mobility tools variables included: license-holder dummy variables, the number of

household members who were the main car users, and the interaction term of these two

variables for the option ‘‘Car (passenger)’’; the number of bicycles in a household divided

by the number of household members for the option ‘‘Bicycle’’; a dummy variable of the

main car users (obtained from the vehicle question ‘‘Who is the main user of this

vehicle?’’) for the option ‘‘Car (driver)’’; and the number of season tickets for the option

‘‘Public transport’’. Decision maker’s attributes included: household income and age

(as categorial variables), gender, marital status with child(ren), and employment status.

Mobility tools and decision maker’s attributes would mainly capture the inter-individual

variations. The following Situational attributes were selected: trip purpose, day of the
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week, departure time and size of the travel party. Intuitively, these variables may capture

intra-individual variations. The above mentioned explanatory variables were introduced in

certain alternatives based on a preliminary cross-tabulation analysis.

Table 2 Explanatory variables used for model estimations

Explanatory variable Definition Mean SD

Travel time Travel time: Car driver and passenger (min.) 10.267 5.976

Travel time: Bicycle (min.) 20.587 14.030

Travel time: Public transport (min.)
[including waiting time]

24.076 16.462

Mobility tools

License Vehicle license (1 = yes; 0 = no) 0.701 0.458

HHcaruse Number of household members who are main car users 0.611 0.634

Lic_Hhcar Interaction effect of ‘‘Vehicle license’’ and ‘‘Number
of HH members who are main car users’’

0.261 0.534

Mob_Bike Number of bicycles in HH/number of HH members 0.873 0.452

Mob_Car Main car user (1 = yes; 0 = no) 0.433 0.496

Mob_PT Number of season tickets 0.356 0.497

Decision maker’s attributes

Marr_chi Married with child(ren) 0.327 0.469

Income Household income (in 1000 DM) 4.635 1.992

Male Male (1 = yes; 0 = no) 0.470 0.499

Age 24 [24 years of age (1 = yes; 0 = no) 0.274 0.446

Age 25–34 25–34 years of age (1 = yes; 0 = no) 0.099 0.299

Age 45–54 45–54 years of age (1 = yes; 0 = no) 0.173 0.378

Age 55–64 55–64 years of age (1 = yes; 0 = no) 0.139 0.346

Age 65– \65 years of age (1 = yes; 0 = no) 0.074 0.261

Fullwork Full-time worker (1 = yes; 0 = no) 0.339 0.473

Student Student (1 = yes; 0 = no) 0.041 0.198

Retired Retired person (1 = yes; 0 = no) 0.129 0.335

Situational attributes

TP_Pick Trip purpose = pick up/drop off (1 = yes; 0 = no) 0.044 0.206

TP_WoRe Trip purpose = work related (1 = yes; 0 = no) 0.030 0.171

TP_School Trip purpose = school (1 = yes; 0 = no) 0.064 0.245

TP_Work Trip purpose = work (1 = yes; 0 = no) 0.114 0.317

TP_Dshop Trip purpose = daily shopping (1 = yes; 0 = no) 0.081 0.273

TP_Nshop Trip purpose = non-daily shopping (1 = yes; 0 = no) 0.043 0.203

TP_Leis Trip purpose = leisure (1 = yes; 0 = no) 0.148 0.355

DW_Fri Day of week = friday (1 = yes; 0 = no) 0.165 0.371

DW _Sat Day of week = saturday (1 = yes; 0 = no) 0.115 0.319

DW _Sun Day of week = sunday (1 = yes; 0 = no) 0.072 0.258

DT_Morn Departure time = 6:00 a.m.– 8:59 a.m. (1 = yes; 0 = no) 0.175 0.380

DT_Even Departure time = 6:00 p.m.– 8:59 p.m. (1 = yes; 0 = no) 0.118 0.323

DT_Leven Departure time = 9:00 p.m.–11:59 p.m. (1 = yes; 0 = no) 0.042 0.200

Party_HH Size of travel party (household members) 0.307 0.605

Party_OT Size of travel party (other members) 0.233 1.478
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Note that the introduced explanatory variables are of course not perfect, and omitted

variables (including travel cost) should be reflected in the unobserved variations. Although

explaining all variations (i.e., there is no unobserved variation) might be impossible, the

remaining unobserved variation for each level could be used for a guidepost for the next

data collection.

Model comparison with and without co-variations

As mentioned above, only differences in utility matter in discrete choice model, and we

thus had to fix one of the utilities as a base. For this case study, we selected ‘‘Car

(passenger)’’ as the base alternative.

The estimation results of the model without co-variations (the MCL model) and the model

with co-variations (the MCLCV model) are shown in Table 3. The estimations were first done

without any explanatory variables (Null models) to detect the pure influence of co-variation

terms. The goodness-of-fit measures of DIC (deviance information criteria) indicate that

co-variation effects certainly exist at a significant level, i.e., the spatial effects on mode choice

behavior differed from individual to individual. The component ratio of each variation type is

shown in Fig. 2. The co-variation shares in the Null model are 9.2% in the category ‘‘Bicy-

cle’’, 1.9% in ‘‘Car (driver)’’ and 12.7% in ‘‘Public transport’’. Thus, while the utility in ‘‘Car

(driver)’’ was neither much affected by individual-specific spatial effects nor by common

spatial effects (i.e., the spatial variation was quite small at only 0.4%), individual-specific

spatial effects might have to be considered in the utility specifications for the categories

‘‘Bicycle’’ and ‘‘Public transport’’. Additionally, even after introducing co-variation terms

into the model, the spatial variation in the ‘‘Public transport’’ option remained significant

(9.0%). These results indicate that there are certainly two different types of spatial effects:

spatial effects which are common to all individuals (spatial variations) and those which are

different across individuals (co-variations). The quantitative discrimination between these

two spatial effects is quite important in terms of data collection and model development,

because when we developed behavioral models with cross-sectional data, the model could not

distinguish between them. This means, for example, that if all spatial effects are individual-

specific, the model just describes differences in perceptions or meanings of space across

individuals rather than a certain spatial attribute itself, implying that there is a possibility that

the change of spatial attributes has little impact on behavior. To distinguish between these two

spatial effects, a multi-day set of survey data is needed, analogous to distinguishing between

inter-individual and intra-individual variations (Hanson and Huff 1986).

With regard to other variation types, it was found that inter-individual variations

dominated, especially in the category ‘‘Car (driver)’’ (88.5%). Also, in the categories

‘‘Bicycle’’ and ‘‘Public transport’’, the shares reached 71.9 and 58.3% respectively, and the

intra-individual variations were only 9.2–20.0%. These results seem to be quite significant

compared to the proportions of variations in other behavioral aspects. Concretely speaking,

previous studies have shown higher shares of intra-individual variations in many cases:

around 50–60% for the number of trips per day, travel time and travel distance (Pas 1987;

Pendyala 1999); 35–85% (depending on the activity type) for departure time choice

(Kitamura et al. 2006; Chikaraishi et al. 2009); and 17–65% for time use behavior (Goulias

2002; Chikaraishi et al. 2010). Given these results, we could say that mode choice behavior

is relatively stable from day to day compared to other behavioral aspects. This might be

quite important for data collection: when we are only interested in mode choice behavior,

behavioral observations on shorter days might be acceptable compared to other behavioral

aspects, although it is of course better to observe behavior across a longer period, since
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there are certain intra-individual variations. In addition, because the significant variations

in travel choice behavior are inter-individual variations, we may have to pay much more

attention to individual-specific influential factors such as individual attributes, mobility

tool ownership and habitual preferences.

Estimation results with explanatory variables

Next, we sequentially introduced four sets of explanatory variables (Travel time, Mobility
tools, Decision maker’s attributes and Situational attributes: see Table 2) into the Null

Table 3 Estimation results of Null models with/without co-variations

Variables Without co-variations With co-variations

Modes Mean SD Mean SD

Constant

Bicycle -2.524 0.370 -3.071 0.377

Car (driver) -0.867 0.380 -0.969 0.373

Public transport 0.020 0.253 -0.265 0.300

Spatial variations

Bicycle 1.158 0.489 0.855 0.418

Car (driver) 0.221 0.081 0.133 0.073

Public transport 1.091 0.305 1.481 0.441

Inter-individual variations

Bicycle 14.90 2.278 15.72 2.472

Car (driver) 29.26 4.220 31.58 4.611

Public transport 7.669 0.966 9.598 1.305

Covariance at inter-individual level

Bicycle and car (driver) 3.916 1.926 3.413 2.116

Bicycle and public transport 1.444 0.928 1.509 1.138

Car (driver) and public transport -0.967 1.292 -1.979 1.536

Co-variations (spatial and inter-individual variations)

Bicycle – – 2.007 0.302

Car (driver) – – 0.665 0.139

Public transport – – 2.087 0.261

Intra-individual variations (for all) 3.290 – 3.290 –

The log-likelihood at sample shares -24294.5

Log{p[x| mean(h)]} -9185.4 -7837.7

Log{mean[p(x|h)]} -9522.9 -8478.1

pD 675.1 1280.8

DIC 19720.9 18237.0

Sample size 18,326

Notes: Car (passenger) is a base alternative. ‘‘log{p[x| mean(h)]}’’ represents the log likelihood with the
posterior means of parameters. ‘‘log{mean[p(x|h)]}’’ represents the posterior mean of the log likelihood.
‘‘pD’’ is defined as 2(log{mean[p(x|h)]} - log{p[x| mean(h)]}), which is used as the Bayesian measure of
model complexity. ‘‘DIC’’ stands for Deviance Information Criterion which is defined as -2(log{p[x|
mean(h)]} - pD). DIC can be viewed as a Bayesian analogue of AIC (Akaike Information Criterion). For
details, please refer to Spiegelhalter et al. (2002)
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model with the co-variations discussed in the previous subsection. We estimated four more

models and compared their variation properties. Here we shall first look at the estimation

results with the full set of explanatory variables (called the Full model) in order to check

the impacts of the introduced explanatory variables. We shall then focus on sequential

changes in the variation properties following the addition of a certain set of explanatory

variables.

Table 4 shows the estimation results of the Full model. As expected, the parameter

Travel time has a negative sign and is statistically significant. In the category Mobility
tools, non-holders of licenses with other household members who were the main car users

tended to choose the option ‘‘Car (passenger)’’, while the main car users were likely to

choose ‘‘Car (driver)’’. The variables of bicycle and season ticket ownership also had

positive impacts on the use of ‘‘Bicycles’’ and ‘‘Public transport’’. In the category Decision
maker’s attributes, married males who had at least one child were likely to choose the

option ‘‘Car (driver)’’, while young people (under 24 years of age) and people with high

incomes tended to use ‘‘Bicycles’’ and ‘‘Public transport’’, compared to Car (passengers).

At the same time, interestingly, age effects on the options ‘‘Bicycle’’ and ‘‘Public trans-

port’’ seem to follow a quadratic function, i.e., the young and elderly people tended to

choose ‘‘Bicycle’’ and ‘‘Public transport’’. With regard to the effects of trip purpose on

mode choice in the category Situational attributes, pick up and drop off behavior of course

had a positive impact on the ‘‘Car (driver)’’ share, as did work-related trips. People were

not likely to use ‘‘Public transport’’ for daily shopping trips. Also, on weekends they used

less ‘‘Public transport’’ and ‘‘Bicycles’’, while the share of ‘‘Car (passengers)’’ tended to

increase. The estimation results of the departure time variables indicate that the share of

‘‘Car (passengers)’’ tended to increase from morning to late evening, while ‘‘Public

transport’’ was likely to decrease: there is a possibility that ‘‘Car (passengers)’’ and ‘‘Public

transport’’ substitute for each other, depending on the time of day. It can be expected that

non-mandatory activities, such as going to restaurant or shopping, might be dominant

purposes of night trips, while mandatory activities might be dominant purposes of morning

trips. Since non-mandatory activities are often done with families or friends, they could

Fig. 2 Proportions of variations in Null models with/without co-variations
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Table 4 Estimation results of the Full model

Variables Car (passenger) Bicycle Car (driver) Public transport

Mean SD Mean SD Mean SD Mean SD

Constant -9.153 1.447 -3.597 0.848 -2.080 1.089

Travel time -0.033 0.004 -0.033 0.004 -0.033 0.004 -0.033 0.004

Mobility tools

License -2.614 0.672 0.0 – 0.0 – 0.0 –

HHcaruse 0.975 0.312 0.0 – 0.0 – 0.0 –

Lic_Hhcar 0.051 0.586 0.0 – 0.0 – 0.0 –

Mob_Bike 0.0 – 3.872 0.660 0.0 – 0.0 –

Mob_Car 0.0 – 0.0 – 3.520 0.448 0.0 –

Mob_PT 0.0 – 0.0 – 0.0 – 3.096 0.507

Decision maker’s attributes

Marr_chi 0.0 – 0.384 0.861 1.469 0.515 -0.192 0.683

Income 0.0 – 0.697 0.160 0.158 0.111 0.224 0.133

Male 0.0 – 1.320 0.699 2.401 0.441 0.011 0.520

Age24 0.0 – 2.111 1.116 -3.127 0.852 2.526 0.977

Age25-34 0.0 – 0.913 1.277 1.021 0.685 0.230 1.039

Age45-54 0.0 – -0.622 1.017 -0.110 0.564 1.085 0.861

Age55-64 0.0 – -1.006 1.193 -0.144 0.624 1.258 0.954

Age65- 0.0 – 2.856 1.842 0.543 1.031 4.713 1.376

Fullwork 0.0 – -1.374 0.842 0.347 0.477 -0.514 0.671

Student 0.0 – -0.577 1.642 -0.031 1.004 -2.647 1.245

Retired 0.0 – -2.002 1.634 0.029 0.794 -1.524 1.137

Situational attributes

TP_Pick 0.0 – 0.0 – 1.947 0.179 0.0 –

TP_WoRe 0.0 – 0.0 – 0.606 0.253 0.0 –

TP_School 0.0 – -0.554 0.207 0.0 – 0.204 0.232

TP_Work 0.0 – 0.0 – -0.152 0.129 0.0 –

TP_Dshop 0.0 – -0.156 0.138 0.0 – -1.053 0.183

TP_Nshop 0.057 0.082 0.0 – 0.0 – 0.0 –

TP_Leis 0.163 0.050 0.0 – 0.0 – -0.156 0.127

DW _Fri 0.075 0.056 -0.009 0.111 0.0 – -0.012 0.117

DW _Sat 0.265 0.060 -0.607 0.139 0.0 – -0.609 0.149

DW _Sun 0.145 0.073 -0.293 0.185 0.0 – -0.833 0.185

DT_Morn -0.172 0.074 0.0 – 0.0 – 0.498 0.139

DT_Even 0.304 0.054 0.0 – 0.0 – -0.698 0.141

DT_Leven 0.565 0.079 0.0 – 0.0 – -0.793 0.217

Party_HH 0.0 – -3.481 0.120 -2.003 0.088 -2.234 0.099

Party_OT 0.0 – -0.922 0.079 -0.733 0.080 0.0 –

Random effects

Spatial variations 0.687 0.342 0.066 0.063 1.906 0.584

Inter-individual variations 18.04 2.900 5.920 1.071 13.20 1.962

Co-variations 1.548 0.332 0.858 0.158 2.505 0.332

Intra-individual variations 3.290 – 3.290 – 3.290 –
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easily be car passengers of their friends or family members. In fact, the results also indicate

that increases in the size of travel parties cause the increases of the share of ‘‘Car (pas-

sengers)’’. Overall, the impacts of the introduced explanatory variables are quite consistent

with previous studies and are intuitively plausible.

Next, we shall consider the sequential changes of variation properties along with the

addition of a certain set of explanatory variables. Figures 3, 4, and 5 show the results of

the sequential changes of proportions of four unobserved variations (spatial variations,

Fig. 3 Proportions of variations in ‘‘Bicycle’’

Table 4 continued

Variables Car (passenger) Bicycle Car (driver) Public transport

Mean SD Mean SD Mean SD Mean SD

Covariance at the inter-individual level

Between bicycle and car (driver) 1.347 (SD = 1.218)

Between bicycle and public transport 4.183 (SD = 1.596)

Between car (driver) and public transport -0.743 (SD = 0.9872)

The log-likelihood at sample shares -24294.5

Log{p[x| mean(h)]} -6271.0

Log{mean[p(x|h)]} -6881.8

pD 1221.7

DIC 14985.3

Notes: Car (passenger) is a base alternative. The cells with mean (0.0) and s.d. (–) indicate corresponding
parameters are fixed as zero based on preliminary cross-tabulation analysis
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Fig. 4 Proportions of variations in ‘‘Car (driver)’’

Fig. 5 Proportions of variations in ‘‘Public transport’’
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inter-individual variations, intra-individual variations and co-variations) as well as

observed variations which were captured by introduced explanatory variables. As expec-

ted, the unobserved variations basically decreased when a set of explanatory variables was

added.

First, by introducing the variable Travel time, 0.0–1.8% of the total variations could be

classified as observed variations. For the option ‘‘Car (driver)’’, the observed variation was

0.0%, because the same travel times are assumed for both ‘‘Car (passengers)’’ and ‘‘Car

(drivers)’’. Amazingly, the contribution of Travel time to the reduction of unobserved

variations was rather small. It might be worth investigating the extent to which detailed

level-of-service variables which were not introduced in this study (such as travel costs and

the number of transfers) could reduce unobserved variations. This may be important for

establishing a model to use for future predictions and policy evaluations: we may at least

have to confirm whether a model with a general set of level-of-service variables would

suffice for making predictions.

Second, we added Mobility tools explanatory variables to the model. The proportions of

observed variations to the total amount of variations become 18.7% in the option

‘‘Bicycle’’, 45.5% in ‘‘Car (driver)’’ and 15.2% in ‘‘Public transport’’. Compared to the

Travel time variable, the Mobility tools variables captured behavioral variations well,

especially in the category ‘‘Car (driver)’’. From a practical perspective, the results seem to

suggest that policies related to Mobility tools change people’s mode choice behavior much

more effectively than improving Travel time. In this sense, a model of mode choice that

simultaneously incorporates bicycle, car and season ticket ownership might be one means

of establishing comprehensive policies for reducing car use. As for which types of

unobserved variations were reduced by introducing Mobility tools variables, they mainly

captured inter-individual variations, as expected. Other types of variations also decreased

for the options ‘‘Bicycle’’ and ‘‘Public transport’’, while they slightly increased for the

option ‘‘Car (driver)’’. There are many possible reasons for such observations: first, when

the spatial distributions of mobility tool ownership are non-uniform, Mobility tools can

capture spatial variations. Second, when the definition of space is too rough to capture non-

uniform spatial distributions of mobility tool ownership, one would expect co-variations

and intra-individual variations to be somewhat captured by Mobility tools. These points

require further exploration in future research.

Third, we added explanatory variables related to Decision maker’s attributes to the

model. The observed variations increased further from 18.7 to 25.4% (?6.7%) for the

option ‘‘Bicycle’’, from 45.5 to 64.8% (?19.3%) for the option ‘‘Car (driver)’’ and from

15.2 to 21.1% (?5.9%) for the option ‘‘Public transport’’. The results indicate that we

should take decision maker’s attributes into account in addition to variables related to

Mobility tools, especially in the utility specification for ‘‘Car (driver)’’. As expected, the

variables introduced to Decision maker’s attributes mainly captured inter-individual

variations (some other types of variations were also captured, probably due to the possible

reasons mentioned in the previous paragraph).

Finally, Situational attributes were added to the model. The observed variations

increased further from 25.4 to 39.8% (?14.4%) for the option ‘‘Bicycle’’, from 64.8 to

70.6% (?5.8%) for the option ‘‘Car (driver)’’ and from 21.2 to 26.6% (?5.4%) for the

option ‘‘Public transport’’. The impacts of Situational attributes were relatively higher on

‘‘Bicycle’’ than on the other modes. Note that although lower-level variations, i.e., intra-

individual variations and co-variations, were mainly captured by Situational attributes, as

expected, Situational attributes also explain a certain amount of inter-individual variations.

This might be because the distributions of trip generation with respect to departure time,
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day of the week, trip purpose and the size of the party differed from individual to indi-

vidual; as a result, Situational attributes tended to capture inter-individual variations.

In total, the behavioral variations in the option ‘‘Car (driver)’’ were quite well captured

by the introduced explanatory variables, especially by Mobility tools, while those in the

option ‘‘Bicycle’’ were much more dependent on Situational attributes. The behavioral

variations in the ‘‘Bicycle’’ and ‘‘Public transport’’ options were also partly derived from

Mobility tools, but unobserved variations still remained at a high level (60.2% for

‘‘Bicycle’’ and 73.4% for ‘‘Public transport’’). Because most of the remaining unobserved

variations were inter-individual variations, there is a possibility that the choices of

‘‘Bicycle’’ and ‘‘Public transport’’ were largely dependent on the participants’ habits

(inertia) or on their positive preferences for the use of these modes, which might be

difficult to measure. If so, the question of ‘‘how bicycle and public transport users create

their mode choice habits’’ might become crucial for further promoting these environ-

mentally friendly modes, in contrast to the existing important question for reducing car use,

i.e., ‘‘how habits are broken, that is, how choices become deliberate and rational again’’

(Gärling and Axhausen 2003). One may also assume that individual-specific spatial effects

(i.e., co-variation effects) might be relevant to the process of creating habits, because

co-variations might reflect differences in people’s perceptions of a certain space. However,

we could not explore this question in depth; it remains a challenging task for future research.

Conclusions

In focusing on the co-variations caused by two or more factors jointly, this study first

developed a multilevel cross-classified logit model with co-variations (MCLCV) and then

applied the model to travel mode choice behavior. In our empirical analysis, we used

Mobidrive data (from a continuous six-week travel survey) to decompose the total vari-

ations in mode choice behavior into: spatial variations, inter-individual variations, intra-

individual variations and co-variations between inter-individual and spatial variations.

Co-variations here represent individual-specific spatial effects.

The proposed MCLCV model is a simple extension of the multilevel cross-classified

logit (MCL) model which can detect pure co-variation effects that are interaction effects

across different cross-classified levels. Quantitative evaluation of these co-variation effects

can provide information on whether the model can accept independent assumptions among

random terms at different cross-classified levels. It can also lead to a better understanding

of travel behavior by providing useful information for data collection and model devel-

opment. In the case of co-variation effects defined as interaction effects between inter-

individual and spatial variations, we can determine whether individual-specific spatial

effects exist or not. This could help us to reconsider how to capture the effects of ‘‘space’’

and to reassess the traditional assumption that all individuals have the same responses to

and/or perceptions of space. In another context, intra-individual variations can actually be

regarded as co-variations between inter-individual variations and temporal variations,

reflecting the fact that responses and/or perceptions may vary considerably over time, even

for the same individual. In this sense, we could say that this study has tried to extend the

ideas of longstanding research on intra-individual variations to other types of variations,

and the proposed method can be used to examine various co-variation effects in various

contexts.

Our empirical analysis, which focused on mode choice behavior, has shown that

co-variation effects, which are defined as interaction effects between inter-individual and
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spatial variations, certainly do exist (except for the utility of ‘‘Car (driver)’’). At the same

time, our results also show that spatial variations, which are homogeneous spatial effects,

play an important role in choice making. These results indicate that there are both

homogeneous and heterogeneous spatial effects across individuals and that these two

spatial effects can not be distinguished by the traditional approach (i.e., by using cross-

sectional data to analyse spatial effects). This is similar to discriminating between inter-

individual variations (i.e., homogeneous individual effects over time) and intra-individual

variations (i.e., heterogeneous individual effects over time). With regard to other variation

types, our results showed large inter-individual variations compared to other variation

types, while substantial intra-individual variations have been reported (e.g., Pas 1987;

Pendyala 1999; Goulias 2002; Kitamura et al. 2006) in connection with other behavioral

aspects. This result might be important in terms of data collection. In particular, since the

information necessary for mode-choice models is mainly related to inter-individual vari-

ations, applying cross-sectional data to mode-choice modeling may be relatively accept-

able compared to modeling other behavioral aspects in which higher intra-individual

variations are observed.

Introducing sets of explanatory variables also led to several interesting findings. First,

we found that Mobility tools have substantial impacts on mode choice, especially on the

option ‘‘Car (driver)’’. According to our results, a mode choice model that simultaneously

incorporates bicycle, car and season ticket ownership might be a means of establishing

comprehensive policies for the reduction of car use. Although the behavioral variations for

the options ‘‘Bicycle’’ and ‘‘Public transport’’ were also partly derived from Mobility tools,

the remaining unobserved variations were still high. One possible reason is that the choices

of ‘‘Bicycle’’ and ‘‘Public transport’’ were largely dependent on the survey participants’

habits (inertia). If so, the process of creating habitual behavior might have to be further

explored to promote environmentally friendly modes. It would also be interesting to reveal

the role of such individual-specific spatial effects in the process of habit formation.

Although this paper has shown the usefulness of examining co-variation effects and

exploring the variation properties of discrete travel choice behavior, a number of unsolved

issues and topics remain to be examined further in future research. First, this study has not

specified the MCLCV model with full variance–covariance matrices for all variation types,

and this kept us from revealing the variation properties of all pairs of alternatives. To

obtain stable estimation results with full variance–covariance matrices, we might have to

reconsider the estimation procedure. Second, it is quite interesting from a practical per-

spective how many variations can be captured by introducing detailed level-of-service

variables. Third, applying different settings of variations and co-variations structures and

comparing the differences among them would be an important future work to check the

reliability of the implications obtained from a single model with a certain setting of

variations/co-variations. Finally, finding out how to measure the process of habit forma-

tion, not only for car users, but also for bicycle and public transport users, would be a very

challenging task.
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