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Abstract. The main purpose of this study was to investigate the predictability of travel time

with a model based on travel time data measured in the field on an interurban highway.

Another purpose was to determine whether the forecasts would be accurate enough to

implement the model in an actual online travel time information service. The study was

carried out on a 28-kilometre-long rural two-lane road section where traffic congestion was a

problem during weekend peak hours. The section was equipped with an automatic travel time

monitoring and information system. The prediction models were made as feedforward

multilayer perceptron neural networks. The main results showed that the majority of the

forecasts were close to the actual measured values. Consequently, use of the prediction model

would improve the quality of travel time information based directly on the sum of the latest

measured travel times.

1. Introduction

1.1. Background

Traditionally, traffic flow has been monitored by point measurements. As

traffic control systems develop from local control towards area control,

the extent of the monitored area increases and implementation of moni-

toring by point measurements turns costly – especially when installing

detectors in rural areas which lack power and communication infra-

structure on the road side. A large network can be covered with fewer

detectors when applying section-based monitoring than with point-based

monitoring to get the same coverage. In addition, for example, the

average travel time of a section gives a good picture of the flow status in

the section (Haugen 1996).

Travel time is also one of the most important pieces of information

that road users need from the road operator. Road users will benefit

more from accurate travel time information where there is great vari-
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ability in travel times. Therefore, road users expect information to be

up-to-date if the actual travel time varies substantially. Travel time

information based directly on the sum of the latest measured travel times

is always outdated and the longer the section is, the more outdated the

information is. The reason for this is that by definition a vehicle has to

drive the whole section before its travel time can be determined. Thus,

the vehicles used for measuring the travel time are different from the

vehicles whose driver sees the information on the road based on those

particular measurements (Figure 1). Without short-term prediction, real-

time information on travel time cannot be given.

Much research has been done over the past decade in the field of travel

time prediction. Many studies are based on simulated, unbiased data, which

leads to well-performing models (Yasui et al. 1995; Suzuki et al. 2000; You

& Kim 2000; Chen & Chien 2001; van Lint et al. 2002, 2003; Nanthawichit

et al. 2003). However, these models cannot cope equally well with imper-

fect, real-life data. Real-life applications should be robust with respect to

faulty and incomplete input (van Lint et al. 2002).

Automatic travel time monitoring systems are not common, and

although the whole road network cannot be covered completely with loop

detectors, the traffic information collected by inductive loops is used as

input for many models that predict travel time (Saito & Watanabe 1995;

Lee & Choi 1998; Lee et al. 1998; Al-Deek 2003; D’Angelo et al. 1999; van

Grol et al. 1999a, b; Kwon et al. 2000; Lindveld et al. 2000; van Lint 2003;

Figure 1. The vehicle whose driver sees the travel time information on the variable message

sign, and the vehicles on whose travel time the information is based. The travel time of a

section is determined as the difference between the passing times at two camera stations.
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Matsui & Fujita 1998; McFadden et al. 2001; Paterson & Rose 1999;

Zhang & Rice 2003). Even though the general relations between travel time

and traffic volume, occupancy and point speed have been widely explored,

these relations might not apply during saturated flow conditions (Chien and

Kuchipudi 2002). However, in those conditions the travel time information

is most valuable.

Studies in which travel time forecasts are based on abundant field

measurements of highway travel time are few. Chien and Kuchipudi (2002)

predicted travel time with a Kalman filtering algorithm and Ohba et al.

(2000) with pattern recognition based on travel time data provided by

tagged vehicles on an urban motorway. Park and Rilett (1998), Park et al.

(1999) and Rilett and Park (2001) predicted travel time with neural net-

works based on travel time data provided by an AVI system on an urban

motorway. To our knowledge, the current literature does not include pre-

diction models based on field measurements of travel times made for two-

lane (1+1 lanes) two-way highways.

Interurban two-lane two-way highways with relatively small capacity

and at-grade junctions differ from motorways, and they are more sensitive

to the impacts of the incidents. Consequently, the results obtained from

them cannot be generalised to two-lane highways as such. However, two-

lane highways are important because they carry most of the traffic in most

countries. Thus, there is a lack of knowledge in the field of predicting travel

time on interurban two-lane highways based on real-time field measure-

ments of travel time.

1.2. Objectives

The purpose of this study was to investigate, first, the predictability of

travel time with a model based on travel time data measured in the field

on an interurban two-lane two-way highway. Second, the purpose was to

determine whether the forecasts would be accurate enough to implement

the model in an actual travel time information service. Specifically, a

target was set to get 90% of the forecasts within a 10-percent error

margin (±10%). Toppen and Wunderlich (2003) found that, when the

accuracy of the travel time information system drops below a critical

point, one is better off not using the information but relying on the

experience with historical traffic patterns. According to their study in

Los Angeles, that point is in the range of 13–21% error. Thus, the limit

we have chosen for the target was tighter than that and corresponded

well to an everyday way of evaluating travel times.
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2. Method

2.1. Study site

The research was carried out on the main road 4 between the cities of Lahti

and Heinola in Southern Finland. The study site was a 28-kilometre-long

two-lane two-way highway section with alternating passing lanes. Because

the site was located between two motorways, traffic congestion was a

problem during weekend peak hours. Specifically, the section was con-

gested on Friday and Sunday afternoons and evenings almost every

weekend between the beginning of May and the end of October. The free-

flow travel speed on the section was around 100 km/h. In congested con-

ditions, the travel time might be up to three times the normal – especially in

the northbound direction on Fridays.

The study section was equipped with an automatic travel time moni-

toring system. The system was based on an image processing and neural

network application, which automatically reads licence plates at four

locations in both directions (Finnra 2000). The system was capable of

reading on average 40% of all licence plates on the monitored lane at a

single point in good conditions when the camera was clean.

There were two types of monitoring stations within or nearby the study

site: camera stations and inductive loop detectors. The study section was

divided into three sub-sections with four camera stations (marked A, B, C

and D in Figure 2) used to measure travel time. The distance between two

consecutive camera stations varied between 8.7 and 10.3 km. The travel

time measurement system covered one lane in each direction (Figure 2), i.e.

the passing lanes were excluded. Thus, there was an unmonitored passing

lane at every measurement point, expect for camera stations B and C in the

northbound direction. The inductive loop detectors were installed at loca-

tion C and 11.9 km south of location A on the other side of the nearby city

that gathered information about traffic volumes and point speeds.

Drivers were informed of the travel time with variable message signs

(VMS) at both ends of the road section. The goal of the system was to

inform drivers about congestion and to offer an estimate of the expected

travel time. The underlying rationale was that congestion is more tolerable

when drivers are aware of the expected traffic conditions, as was shown by

Luoma (1998). In addition, travel time information was provided on the

Internet.

The travel time displayed on VMSs was not a forecast but an estimate of

the travel time. This estimate was based on a sum of the latest measured

travel times on each sub-link – or on a combination of sub-links in case one

or two camera stations were not operating along the section. No matter
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how often the update was made, the problem was that the information was

always outdated (Figure 3). In conditions when the mean travel speed was

lower than 75% of the free flow speed, the VMS in the northbound

direction gave correct travel time information (measured value was between

the upper and lower limit shown on the VMS) 32.9% of the time and in the

opposite direction 49.7% of the time.

If the road has an alternative route, the proportion of vehicles taking the

detour as a function of the information shown on the VMS has to be

considered. However, on the section of this study there was no real route

alternative to which large traffic volumes could be directed. Consequently,

this consideration could be ignored.

2.2. Data

The study was based on data collected during approximately 4 months of

summertime. The data was collected 24 h per day, 7 days per week. The

raw data of individual vehicles produced by the travel time monitoring

system as well as inductive loops near the study site were included.

Figure 2. Study site with number of lanes, link lengths and traffic monitoring equipment. The

section contained four camera stations (A–D) used to measure travel time and inductive loop

detectors at location C and south of location A on the other side of the nearby city (outside

the section).
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Most of the data was from free-flowing traffic (Table 1). Traffic was

defined as congested if the mean travel speed was lower than 75% of the

free-flow speed, i.e. slow, queuing or stopped traffic according to Kiljunen

and Summala (1996).

The sample sizes were small in the travel time monitoring system

(assessed value: 6–19% of travel times were measured, only sub-links CA,
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Figure 3. The travel time estimate (upper and lower limit) given by the non-predictive system

based directly on the sum of the latest measured travel times lagged behind the correct travel

time (dots). The example was from the section AD. The update frequency of the estimate was

10 min.

Table 1. Traffic conditions in the data. The definitions were obtained from Kiljunen and

Summala (1996).

Traffic Free flow-

ing (%)

Heavy

(%)

Slow

(%)

Queuing

(%)

Stopped

(%)

Number

of obs.

Definition

(% of vfree)

>90 75–90 25–75 10–25 <10

AD 77 16 7 0 0 30,323

AC 76 16 8 0 0 42,540

AB 83 13 4 0 0 43,694

BD 78 14 8 0 0 39,747

BC 72 20 6 2 0 51,690

CD 89 10 0 0 0 50,105

DA 74 19 6 0 0 12,712

DB 74 17 9 0 0 9,982

DC 77 15 8 0 0 18,579

CA 77 22 1 0 0 15,681

CB 71 29 1 0 0 13,855

BA 83 17 0 0 0 11,526
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BC and CD having the proportion above 10% – leading for example on

section DA with 73% of periods in free flowing traffic and 56% in slow

traffic with only one vehicle sample) and the number of travel time

observations was not equal to the flow. There were two reasons for this:

first, the travel time measurement system covered only one lane per direc-

tion – as explained earlier – and the travel time of the vehicles driving on

the unmonitored lane at either end of the section could not be measured.

Second, the travel time monitoring system did not detect all the vehicles

driving on the monitored lanes due to faults in the detection of a moving

vehicle or in the automatic recognition of the licence plate. Besides the

small sample size, the samples were also probably slightly biased towards

longer travel times because the unmonitored lane was the overtaking lane.

However, the bias did not matter in this case because although by moni-

toring also the overtaking lane the values would be different (i.e. lower

travel times), the overall accuracy would probably be the same.

A moving average was used in filtering the individual vehicle travel time

data in order to exclude deviating observations. Deviating observations

mean observations of those vehicles that have stopped along the section or

mismatches (i.e. too long or too short travel times). The moving average

was calculated from seven consecutive travel time observations – the travel

time under evaluation being in the middle. If the travel time under evalu-

ation differed by more than 33% of the moving average, the situation was

checked manually. If the large difference was not due to a rapid and dra-

matic change in travel time pattern, for example, then the observation was

removed from the database.

The filtering procedure was developed based on trial and error. It seemed

to detect the deviating observations well but left natural variation to the

data. Partly manual checking was chosen because of the sensitiveness of an

educated human eye. It is hard to replace it with a simple algorithm without

losing also some extra data. As the number of observations measured in

congested conditions was limited, it was in our interest to be able to use as

much of it as possible. Therefore, an objective and rigorous alarm system

(the moving average) was set to identify the data periods that may have

some problems; but as congestion develops sometimes fast, they also may

be samples of a true quickly increasing congestion. The educated human

eye was used in a systematic way to resolve which the case was.

After filtering, the data was aggregated. This data included one-min-

ute average and median travel times, and the median travel time and

standard deviation of the observations from the latest five minutes or the

latest 10 or 20 vehicles. In addition, it included the one-minute flow,

mean point speed and standard deviation of the point speed at the

inductive loop detectors.
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2.3. Prediction models

The models were made as feedforward multilayer perceptron (MLP) neural

networks as the model was to be kept simple but effective. MLP-neural

networks are easy to implement and there have been encouraging results in

previous studies using the same method (Park & Rilett 1999; McFadden

et al. 2001; Shao et al. 2002). MLP-neural networks have also proven to be

good in predicting other measures that describe the traffic situation like

flow rate (Smith & Demetsky 1994, 1997; Lee et al. 1998; Innamaa &

Pursula 2000).

A separate neural network was trained to predict the travel time of each

sub-link. As output, the models gave the average travel time for vehicles

entering the section within the following minute. The one-minute aggre-

gation period was chosen to ensure fast detection of the changes in travel

times. However, it was acknowledged that the one-minute average was less

stable than, for example, a five-minute average as a drawback for fast

detection of tendencies. The sample sizes would also have been greater for a

longer aggregation period, but as this model was made for study purposes

to run offline, and the raw data could be checked manually, the problems

caused by the small sample size could be partly overcome.

The models obtained as input the traffic information based on the latest

measurements. The input parameters are described later in more detail. The

number of input neurons was equal to the number of input parameters; the

number of output neurons was one, since there was just one output

parameter. The input parameters were normalised to have a zero mean and

standard deviation of one.

The structure of the neural network was to be kept simple. Neural net-

works were chosen to have one hidden layer. The number of hidden neurons

was chosen so that the number of training samples was at least ten times the

number of parameters to be estimated. However, the number of hidden

neuronswas limited to be atmost 20 in order to keep the training process fast.

The activation function of the hidden layer was chosen to be a hyper-

bolic tangent and for the output layer a linear function. Innamaa and

Pursula (2000) found that this combination provided good results.

Neural networks were trained with the Fletcher–Reeves update (Demuth

& Beale 1998), which is one of the conjugate gradient algorithms. In those

algorithms, the search is performed along conjugate directions. This pro-

duces generally faster convergence than the steepest descent direction,

which is a common method in basic back propagation algorithms.

If the neural network learns the training data too well, it memorises the

data and cannot generalise. This can be avoided by ensuring that the
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training set is large enough and by setting some stopping criteria for the

training process (Demuth & Beale 1998). In this study, several stopping

conditions were given. These criteria were the maximum number of training

epochs, the minimum values of the gradient and of the mean squared error,

and the situation when the mean squared error of the calibration data

stopped decreasing. In practice, the training was stopped most of the time

because of the last criterion.

For this last mentioned calibration data criterion, the original training

data set was divided into three sub-sets: training, calibration and validation

set. The division was done sequentially from the chronological database:

the first observation for the training set, the second for the calibration set,

the third for the training set, the fourth for the validation set and so forth –

leading the training set to become double in size compared to the other two

sets. The training was performed with the training set. The calibration set

was used to track the point at which the model started to learn the pecu-

liarities of the training set and no longer the general features of the mod-

elled phenomenon. The validation set was not used in the training process

in any way. It was used, however, after the training to check how the model

performed with new data.

2.4. Selection of input parameters

The output of the prediction model was designed for a system that updates

the display (and the forecast) once a minute. In order to present the

expected travel time of the vehicles entering the section at the current time,

the output for a certain section was the one-minute average travel time

of the vehicles entering this particular section during the following minute.

The forecasts were based on the latest information about travel times on

different sub-links and about traffic volumes and point speeds at location C

and south of location A (Figure 2). By using sub-links, the delay caused by

data collection could be kept to a minimum, and information on the

development of the traffic situation was more detailed than without them.

The input parameters of the models were selected according to their

correlation with the travel time to be predicted (hereinafter: the prediction

travel time) and to the mutual correlation of the input parameter candi-

dates. The input parameters of a prediction model need to correlate highly

with the prediction travel time to be able to provide sufficient information

for the model. However, it may be that different input parameters have high

mutual correlation and thereby the additional information that they give to

the model may be small.

The correlation between different parameters and the prediction travel

time was examined, as well as how these input parameter candidates
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correlated mutually. All the traffic data available (listed at the end of the

chapter entitled Data) was used as input parameter candidates. The one-

minute averages were given as time series of varying length.

The time series of the average travel times were chosen to form the basis

for the input of the prediction models. Thus, all the time series of one-

minute average travel time that had a correlation coefficient of at least 0.20

with the prediction travel time were selected for the input. The criterion for

the correlation coefficient between the parameter and the prediction travel

time was the same for other parameters as well. However, if two input

parameter candidates had a high mutual correlation (coefficient of at least

0.95), the parameter that correlated highest with the prediction travel time

was chosen and the other parameter was omitted.

The boundary values 0.20 and 0.95 were selected in order not to limit

the input set too much according to the trial and error method, i.e. to keep

the input set diversified. The minimum value of 0.20 kept practically all the

mean and median travel times in the input set. As the standard deviation

may be biased when the sample size is small, only the best correlating

deviations were kept. Similarly, the boundary value of 0.95 seemed to find

the evident cases but was not too strict.

The correlation coefficients could not answer the question of how long

an optimal time series of each input parameter should be. Thus, several

lengths (3, 4 and 5 min) were used.

Although the input sets of different models were similar, there were slight

differences between the sets. The number of input parameters varied

between 18 and 54 for different models, the model for the last sub-link

having the smallest number of inputs in both directions (18–23 for the

model CD and 22–27 for the model BA). As an example, the contents of the

input data set for the model of section AD is presented here.

AD (total 36–54 inputs depending on the length of the time series): three-

to five-minute-long time series of one-minute average travel times from all

sections; median travel time from the latest 10 or 20 vehicles from sections

AD, BD and CD; standard deviation of the travel time from the latest

5 min from sections AC, AD, BC and BD and standard deviation from the

latest 20 vehicles from sections AB and CD; three- to five-minute-long time

series of one-minute average flows at location C and south of location A,

and similar time series of one-minute average point speeds at location C.

The raw data did not include observations for each sub-link for every

minute. Therefore, the input data set was made according to the principle

that the value of an input parameter was assumed to be invariant until a

new observation was obtained. However, the maximum time between

updates was set to be 30 min, i.e. if the information on some of the input

parameters was older than 30 min, the sample was dropped from the

658



training set. This updating rule was not applied to the output samples of the

training set, i.e. all the samples without a new value for the output

parameter were excluded from the set.

The boundary value of 30 min was selected to exclude only those periods

when one or several detectors had been totally out of order. Thirty minutes

might seem like a long time, but neural networks are not very sensitive to

incomplete inputs, and several detectors seldom suffer from momentary

breaks (e.g. sun shining towards the camera) at the same time. Thus, it was

decided that the model had to rely on the correlation between different

variables, when updates for certain input variables were not received, in

order to gain better reliability of operation for forecasting.

2.5. Procedure

The order of superiority of the models depended on which measure of

effectiveness was used. If the purpose was to select the statistically best

model, the model with the smallest error terms or the best goodness of fit

should be chosen. However, from the point of view of the travel time

information system, the statistically most accurate model may not always

be the best. Road users want information to be sufficiently accurate as

frequently as possible. It does not matter if the model makes slight mis-

takes.

The effectiveness of the models was examined both statistically and from

the point of view of the information system. The statistical examination was

performed with different error terms: the mean error and relative error, the

mean absolute value of error and relative error, and the mean squared

error. The first two error terms measure whether the model tended to

underestimate or overestimate the travel time, while the last three measured

how the errors were distributed around correct values.

Let us assume that the VMS informed the road users that the travel time

was going to be the predicted travel time ±10%. However, the absolute

minimum travel times shown on the VMS would be those based on the

speed limit, i.e. predicted travel times shorter than the travel time based on

the speed limit would not have been shown. Therefore, the displayed travel

time was not considered erroneous if vehicles travelled faster than the limit,

if the VMS showed the minimum travel times allowed. Thus, the travel time

information was correct in two ways: the measured travel time was between

the upper and lower limits shown on the VMS or it was shorter than the

lower limit if the VMS showed the minimum limits.

The erroneous information was divided into two categories: the travel

time information was either pessimistic (travel times on the VMS were too

long) or optimistic (travel times on the VMS were too short). For the road
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user, over-optimistic travel time information is worse than over-pessimistic.

However, the information should be as exact as possible in order to

maintain road users’ confidence in the system.

The correctness of the forecasts was investigated for both uncongested

and congested traffic. In uncongested flow, the travel time does not vary

much and is therefore easy to predict; in addition, the relevance of the

information is less important than in congested conditions. The width of

the error margin was also evaluated.

3. Results

3.1. Statistical examination

Statistical examination of the effectiveness of model was performed with

different error terms that compared predicted average values with measured

averages. The length of the time series was chosen for each model so that

the error terms were minimised. The results showed that the models were

very good at prediction over all time periods and that the majority of the

forecasts were close to the measured values (Table 2). However, on average

the models tended to slightly overestimate the forecasts rather than

underestimate them.

False forecasts could be seen as observations of situations where the

models predicted travel time to be less than 20 min, but in fact the mea-

Table 2. Different statistical error terms of travel time forecasts on different sections. The

predicted average travel times were compared to the measured averages. When a range of the

length of time series is given, the length within that range did not affect the results.

Section Length

(km)

Time

series

(min)

Mean

squared

error

(min2)

Mean

error

(min)

Mean abs.

value of

error

(min)

Mean

relative

error

(%)

Mean abs.

value of

relative

error (%)

AD 28.1 3–5 2.5 0.0 1.1 0.6 6.0

AC 17.8 5 1.3 0.0 0.8 0.7 5.9

AB 9.1 4 0.4 0.0 0.4 0.7 6.5

BD 19.0 5 1.0 0.0 0.7 0.5 5.6

BC 8.7 5 0.5 0.0 0.4 0.6 6.1

CD 10.3 5 0.2 0.0 0.4 0.5 5.5

DA 28.1 4 2.1 0.0 1.1 0.6 6.0

DB 19.0 4 1.0 0.0 0.8 0.5 5.9

DC 10.3 3 0.4 0.0 0.5 0.6 6.9

CA 17.8 4–5 0.7 0.0 0.6 0.5 5.6

CB 8.7 5 0.2 0.0 0.3 0.5 5.8

BA 9.1 5 0.2 0.0 0.3 0.6 5.9
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sured travel time was 22–25 min (Figure 4). On section DA, all these

observations were from situations where the model missed an isolated

longer travel time (an isolated peak). Besides missing isolated peaks, the

model for section AD was also occasionally delayed from the start of

congestion.

Isolated peaks were either local and quickly-resolved incidents or situ-

ations where filtering of the raw data had been too coarse. After filtering,

there remained observations from which it was hard to tell whether the

observation was deviant or not. If the mean value is based on a few

observations only, an individual deviating observation may have a signifi-

cant effect on it.

The first type of error (missing a short isolated peak) was not serious – or

could even be considered beneficial – but errors of the second type (being

delayed from the start of congestion) should be avoided. However, if the

first signs of an unusual situation cannot be measured until after making

the forecast, it is hard to come up with an analysis technique that could

resolve the problem.

The congestions from which the model for section AD was delayed

were typically located between camera stations B and C and therefore

the congestion began clearly after the forecast was made (the first signs

of congestion could be measured approximately 10–20 min after making

the forecast). When random incidents are considered, the delay probably

cannot be avoided. However, congestion due to over-demand should be

better anticipated based on information about incoming flows.

Figure 4. Predicted and measured travel times. The model made for section AD was based

on a 5-minute time series and the model for section DA on a 4-minute time series.
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Along this particular study section, the problem was that information on

flow was available only at location C in the middle of the section, and south

of location A on the other side of the nearby city. The traffic flow at

location C was not problematic in either direction and therefore, in most

cases, could not indicate problems on the section. On this road, the

inductive loop detector station outside the section did not indicate traffic-

related problems directly either, because the vehicles going to the nearby

city were also included in the data and there was no information about

vehicles coming from there.

3.2. Effectiveness from the point of view of the information system

First, the correctness of the forecasts was investigated for both uncongested

and congested traffic all together. The same analysis was also made for

samples in which the average travel speed was less than 75% of the free flow

speed (congested conditions). These proportions could not be defined for all

the sub-links because they had almost no congestion at all during the data

collection period (Table 1).

All the models in direction DA gave correct travel time information on

average more than 97 percent of the time and in the opposite direction more

than 95% of the time (Table 3). If the forecasts for sections AD and DA

had been presented on VMSs, the proportion of correct forecasts would

have been 71% of the time for section AD and 79% for section DA in

congested conditions (Table 4).

A limited examination was performed on the width of the accepted error

margin (Figure 5). A decreasing number of forecasts lay within the mar-

Table 3. Effectiveness of prediction models from the point of view of the information system.

The numbers are based on both uncongested and congested traffic all together.

Section Length

(km)

Time series

(min)

Correct

(%)

Too short

(%)

Too long

(%)

AD 28.1 3–5 97.4 1.5 1.1

AC 17.8 4 96.4 1.9 1.7

AB 9.1 3 96.5 1.8 1.7

BD 19.0 5 97.8 1.2 1.0

BC 8.7 5 95.5 2.1 2.4

CD 10.3 5 99.8 0.2 0.0

DA 28.1 4 98.4 1.1 0.5

DB 19.0 4 97.2 1.8 1.1

DC 10.3 3 97.1 1.5 1.5

CA 17.8 3–5 99.5 0.5 0.0

CB 8.7 4–5 99.5 0.4 0.1

BA 9.1 3–5 100.0 0.0 0.0
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gins, as they were set further away from the zero percent error. When the

width of the accepted margin was changed from 5.0% to 7.5% the share of

correct forecasts improved by 15.4% units on average, whereas the

improvement was only 5.8% units when the width was changed from

12.5% to 15.0%.

4. Discussion

This study was designed to investigate, first, the predictability of travel time

when the forecast was based on travel time data measured in the field on an

interurban two-lane two-way highway. Second, the purpose was to deter-

mine whether the forecasts would be accurate enough to implement the

model in an actual travel time information service.

The target was to predict the travel time correctly more than 90% of the

time. This was on average achieved. However, as the sections had slow,

queuing or stopped traffic only 0–9% of the time, the proportion of correct

forecasts in congested conditions should be chosen as the main criterion for

measuring the effectiveness of the models. Although the target was not

achieved in congested conditions, it must be taken into consideration that

some of these ‘‘false’’ forecasts were undetected isolated peaks, which

cannot be considered serious errors.

The effectiveness of the models was determined as the proportion of

forecasts that lay within an accepted error margin. Hence, the width of this

margin had a great effect on the absolute values that measured the effec-

tiveness. An accepted error margin wider than 13% would not have been

Table 4. Effectiveness of prediction models from the point of view of the information system

in congested conditions only (the average travel speed being less than 75% of the free flow

speed).

Section Length

(km)

Time series

(min)

Correct

(%)

Too short

(%)

Too long

(%)

AD 28.1 3 70.8* 20.8 8.4

AC 17.8 3 64.2 24.2 11.6

AB 9.1 5 39.3 44.5 16.3

BD 19.0 5 76.5 15.4 8.2

BC 8.7 3 62.8 25.0 12.3

DA 28.1 5 78.8* 18.8 2.5

DB 19.0 4 72.8 20.8 6.4

DC 10.3 3 68.4 19.5 12.1

*The proportion was 32.9% for the section AD and 49.7% for the section DA with non-

predictive system.
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justified based on the results of Toppen and Wunderlich (2003). As a great

number of forecasts still lay between the 7.5% and 10.0% margins, a

margin narrower than 10.0% would not have been practical either. Thus,

the width of the 10-percent accepted error margin seemed justified.

The prediction models of Chien and Kuchipudi (2002) and Rilett and

Park (2001) had an equal mean absolute value of relative error value as the

models presented above, while the models of Park and Rilett (1998) and

Park et al. (1999) performed a little worse. However, the degree and type of

congestion as well as the quality and the amount of input information varies

from one study to another, thus direct comparison of mean errors is inap-

propriate. One relevant point of comparison, though, is the non-predictive

model on the study section. The prediction model described above outper-

formed the non-predictive model and fulfilled the target in this respect.

In addition to the travel time information, it would be beneficial if the

input of the model included flows of all the (at least major) incoming and

outgoing flows and the flows at problematic locations (bottlenecks etc.).

This way, information would be obtained about flows that are entering the

section in question and their effect on travel time could be estimated as a

result. Comprehensive flow information could resolve the problem of the

model being late from the start of the congestion caused by over-demand.

This kind of measurement system would also better allow the faster

detection of an increase in travel time caused by random incidents (i.e. the

cause being other than over-demand). In practice, a random incident would

show as an increase in the difference in incoming and outgoing flows
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Figure 5. Improvement in forecasts, measured as the proportion of correct forecasts in

congested conditions as a function of change in the width of the accepted error margin when

comparing with the 5% error margin. The heavy black line is the average of all the models.
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(incident detection algorithms). Another important aspect in which the flow

information could be helpful is the evaluation of whether the measured

travel times make sense. If there is no information on flow rates, it is

impossible to say whether long travel times are likely due to over-demand, a

random incident, or a failure in the measurement system.

It would be desirable if the flow information could be measured directly

by the travel time measurement system. This way, overlapping systems

could be avoided and costs would be lower. However, this would require an

improvement in the current monitoring system such that a larger propor-

tion of vehicles could be detected and all the lanes monitored. The current

system was capable of reading on average 40% of all the licence plates on

the monitored lane at a single point in good conditions when the cameras

were clean. However, the actual sample size of travel time observations of

all the potential vehicles was significantly smaller as the conditions were not

always good, all the lanes were not monitored, and the vehicles that were

detected at one camera point may not have been detected at the next one.

A small sample size is not a problem if we merely want to estimate an

average travel time – assuming that an effective filtering of deviating

observations can be carried out. An increase in standard deviation could be

used as a sign of incidents or changes in the traffic situation. However, the

standard deviation of the travel time cannot be estimated from small

samples.

Besides getting better information about traffic, a modular approach

could also improve the model’s ability to predict travel time in different

circumstances. A separate neural network trained for a special task only

gives better results than one single neural network predicting all kinds of

situations. However, if a prediction model is run online, there must anyway

be several neural networks to predict the travel time of one single section to

ensure the model’s ability to work also with imperfect input information. If

the model has already been divided into several parts predicting different

kinds of traffic situations, this leads to a rather complicated model. Thus

the price of improved ability to make forecasts is – as usual – increased

complexity.

5. Conclusions

In conclusion, the results of the travel time prediction model were prom-

ising, and even a simple prediction model could improve the quality of

travel time information especially in congested conditions. The findings

suggest that the forecasts could be improved by setting up an adequate

monitoring system.
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The structure of the monitoring system has effects on the forecasts.

Additional camera stations and inductive loop detectors can offer

information that improves the model’s ability to react to changes in a

traffic situation. Consequently, the effects of the section length and the

location of different additional measurement stations should be investi-

gated. This information will be important when new, but relatively

similar systems are implemented and the structure of the monitoring

system is designed.

The online filtering of data should be studied. Periods when there are

problems with the monitoring system could be omitted from the data set

when working with an offline model. In addition, filtering of the raw data

can be done manually if needed. However, when the model is working

online this is not possible. The model should work smoothly despite

imperfect input information.

Another matter for future research could be the training method. Such a

training method should be developed that would weight more heavily errors

in congested conditions more than during free flow conditions.

Acknowledgements

The research was funded by the Ministry of Transport and Communica-

tions and by the Finnish Road Administration. The study formed part of

the Finnish National Research and Development Program on Transport

Telematics Infrastructure (TETRA) 1998–2000 and the Finnish Research

and Development Programme on ITS Infrastructures and Services (FITS)

2001–2004.

The author would like to thank Risto Kulmala, Juha Luoma and
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