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Abstract. Activity-based demand generation contructs complete all-day activity plans for

each member of a population, and derives transportation demand from the fact that

consecutive activities at different locations need to be connected by travel. Besides many

other advantages, activity-based demand generation also fits well into the paradigm of multi-

agent simulation, where each traveler is kept as an individual throughout the whole modeling

process. In this paper, we present a new approach to the problem, which uses genetic

algorithms (GA). Our GA keeps, for each member of the population, several instances of

possible all-day activity plans in memory. Those plans are modified by mutation and

crossover, while ‘bad’ instances are eventually discarded. Any GA needs a fitness function to

evaluate the performance of each instance. For all-day activity plans, it makes sense to use a

utility function to obtain such a fitness. In consequence, a significant part of the paper is

spent discussing such a utility function. In addition, the paper shows the performance of the

algorithm to a few selected problems, including very busy and rather non-busy days.

1. Introduction

The larger context of the work presented in this paper is the attempt to

build an integrated multi-agent simulation model for transportation plan-

ning, ‘multi-agent’ meaning that each traveler in the simulation is indi-

vidually resolved. Multi-agent simulations can be employed on many levels,

from housing choice down to driving behavior. Our own initial goal is to

replace the four-step process by a multi-agent simulation. This implies the

following modules and methods:

– The process starts by generating a synthetic population from census data

(e.g. Beckman et al. 1996).

– Next, for each synthetic person of the synthetic population a plan is

generated. Plans consist of activity patterns, activity locations, activity
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times, mode choice, route, etc. (e.g. TRANSIMS www page accessed

2004; Pendyala, accessed 2004; Bhat et al. forthcoming).

– Up to here, the computations of the agents are essentially independent,

apart from possible small-scale coordination problems such as house-

hold coordination or ride sharing. In contrast, in the mobility simula-

tion, all agents’ plans are simultaneously executed and the results of

interaction are computed (e.g. DYNASMART www page, accessed

2003; MATSIM www page, accessed 2004). One important interaction

result is congestion. Note that most traffic micro-simulations do not

truly execute agent plans at the route level, but rather keep the travelers’

destinations and have the routing done by the network.

– As is well known, the causal relation between the modules goes into

both directions. For example, if many agents choose activities at many

different and far apart locations, then this will cause congestion. This

congestion will cause them to select activities which necessitate less

travel. The typical way to solve this problem is to use iterations between

the modules (e.g. Cascetta 1989; Kaufman et al. 1991; Nagel & Barrett

1997). This can be either interpreted as relaxation or as human learning.

For this approach, many collaborating modules need to be designed,

implemented, and tested. An important part of those modules concerns

activity generation: for each synthetic individual, a sequence of activities is

generated, including activity location and activity times. Activity-based

demand generation is a very active field of research; see, e.g., the

proceedings of two recent conferences (IATBR’03, 2003; EIRASS’04,

2004). The mainstay of activity-based demand generation are random

utility models (RUMs) (Ben-Akiva & Lerman 1985; Bowman et al. 1999;

Pendyala, accessed 2004; Bhat et al. forthcoming). RUMs, however,

arguably have the disadvantage that they are behaviorally not very realistic.

In consequence, alternatives are also investigated, such as behaviorally or

rule-based approaches (e.g. Arentze et al. 2000; Miller & Roorda 2003).

The question that will be considered in this paper is in how far genetic

algorithms (GA) can contribute to the field of activity generation. GA are

biologically inspired optimization methods that are relatively inefficient

computationally but extremely flexible. In consequence, the question to be

treated in this paper is if this flexibility can be stretched to include activity

generation, and what the resulting computational burden is.

The paper starts with a more precise problem description (Section 2),

followed by a short review of previous work in the area of activity gener-

ation (Section 3). Section 4 then discusses a concept of how GA could be

used to generate daily activities; Section 5 contains details about our specific

computational implementation. GAs work by maintaining a population of
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solutions; they improve the best known solution by mutating and combining

members of that population. In order for this to work, individuals need to be

given scores. This is normally called a fitness function; in social science

research, it is plausible to use utility functions instead. In consequence,

Section 6 describes the requirements that a utility function for the GA

approach needs to fulfill, and which particular utility function we selected.

However, any function that gives scores to activity chains will

work. Section 7 then contains tests and results for several illustrative

examples. The paper is concluded by an outlook on future work

(Section 8) and a summary (Section 9).

2. Problem description

The problem of activity planning is the task to generate a complete activity

plan for an agent from a set of possible activities (an activity repertoire). A

complete activity plan stores which activities are to be executed and in

which order, it assigns a location to each activity and also an execution time

and a duration.

Activity planning divides into three subproblems:

– The first subproblem is to select activities to be executed and to decide

in which order they should be executed. We refer to this subproblem as

activity pattern generation.

– The second subproblem is to find the places where the activities are

going to be executed. We call this location selection. The location

selection has to fulfil a number of constraints in order to be meaningful.

For instance children should be fetched from school at the same place

where they were dropped off before.

– The third subproblem is to decide when the activities have to be executed

and for how long.We call this time allocation. Once again, time allocation

is subject to several restrictions. The simplest one is that the execution

times should be ordered in correspondence with the activity pattern.

In reality, all of us do activity planning every day with sufficient speed

and satisfactory results. Nevertheless, this problem is quite difficult to solve

automatically on the computer. The main problem with activity planning is

the huge amount of possible plans for a given set of activities. Even if one is

just concentrating on activity pattern generation for a list of 10 activities,

there are almost 10 million possible solutions. It is clear that we get even

more problems if we want to include location selection and time allocation.

To make the problem even worse, it would be desirable to extend the

length of the activity plan to a week or even a month because day plans are
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not independent in general as some activities do not have to be executed

every day. For instance you do not have to go shopping every day, but you

also cannot omit shopping for a longer period.

Since the space for possible solutions scales exponentially with the length

of the desired activity plan, generating complete week plans is a problem that

is several orders of magnitude more complex than generating day plans.

3. Related work

There are many models tackling the same problem. One can, may be,

differentiate the following directions:

(1) A possible way to solve this problem is to use a nested multinomial logit

model. One such system is described by Bowman (1998). The decision is

decomposed into many hierarchical levels, such as: the choice between

different activity patterns, the choice between different locations, the

choice between different starting times for the patterns, etc. This

method demands that approximations of the lower level results are

available at the upper levels: for example, in order to decide between

different activity patterns, it is necessary to have a performance esti-

mate for each pattern, which can only be obtained if the algorithm has

some idea about the locations and times that will be chosen for each

pattern. In practice, this is achieved via the so-called logsum terms,

which backpropagate the lower level solutions to the higher levels. That

is, the algorithm starts at the leaves of the decision tree. There, it

computes, for each given activity pattern and location choice, utilities

for each possible time choice. It then calculates the expected utility from

this, and passes this on to the location choice level. The location choice

level then calculates, for each given pattern, the expected utility for each

location choice and passes the resulting expected utility for each pattern

one level up, etc. Once the algorithm is at the highest level, it selects

between the patterns according to the utilities. Once the pattern is

selected, for this given pattern it selects between the locations. Once the

locations are selected, it decides on the time-of-day when the pattern is

started.

Discrete choice models have a similar conceptual approach as our

model in that they make choices based on utilities. The two main dif-

ferences are that, at least conceptually, discrete choice models enu-

merate all possible alternatives, and that they do not choose the option

with the best utility but they choose between options with probabilities

which are related to utilities. The first aspect means that a huge number
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of options needs to be considered; the second (behaviorally somewhat

justified) aspect means that efficient search methods such as branch-

and-bound cannot be used because even ‘bad’ branches of the search

tree have a probability that they will be selected.

(2) An arguably related approach is STARCHILD and successors. Instead

of making a probabilistic choice between different options, it finds the

optimal solution. Because of this simplification, methods from mathe-

matical programming can be applied (e.g. Recker 1995).

(3) Jara-Diaz et al. (2003) look at complete daily schedules in terms of an

econometric interpretation. For example, the ratio of the durations of

work vs. non-work is explained by a combination of the value of time

and the wage rate.

(4) All approaches mentioned so far always look at the complete schedule.

As an alternative, a traveler may build the schedule as he/she goes. An

extreme version of this is PCATS (e.g. Kitamura 1996), which condi-

tions decisions on the past history, but does not look into the future.

The advantage is a much more manageable computational complexity;

the disadvantage is that the algorithm does not pick up scheduling

constraints which lie in the future.

(5) The work by Doherty and coworkers (e.g. Doherty & Axhausen 1998)

implies that real-world activity scheduling is a combination of the

above aspects, i.e. that some decisions are made a long time in advance

while others are rather spontaneous. An implementation of this

approach is ALBATROSS (e.g. Arentze et al. 2000).

(6) Miller has attempted to build a model that is considerably more process

oriented than typical RUM models. It was applied to the Toronto

metropolitan area (Miller & Roorda 2003).

4. Idea: Genetic algorithms

Trying to solve the problem by enumerating all possibilities – a complete

search – is infeasible. This is especially true if one has only very limited

computer time for program execution, as is the case with large scale multi-

agent implementations. Furthermore, for our problem it is not absolutely

necessary to find the global optimal solution. In fact, in many cases what

people use as their plan is far from being optimal. It would be sufficient to

find a ‘good’ solution.

The idea for this paper is to use a GA to find good all-day activity plans.

GAs have been used for many problems with huge search spaces; a

suggestion to use them in the context of transport/land-use research is by

Abraham and Hunt (2002). GAs maintain a population of solution

373



instances during the search process, and search progress is made by mutation,

crossover, and selection, as explained below. In our case, the population of

solution instances consists of many possible day plans for a single given

traveler. The quality of such a day plan is rated by a fitness function, which

uses informations and restrictions known about the activities, and estimates

how well the day plan meets them.

A random population of such day plans is created at the beginning of the

algorithm. New individuals are created by crossover between two good day

plans (the ‘parents’) and mutating the offspring.1 When a better day plan is

found, then the worst plan is removed, keeping a population of constant

size. This procedure is repeated a number of times. At the end, the best day

plan is used as solution of the problem.

Note that ‘population’ of ‘individuals’ is used with two different mean-

ings in this text: first, there is a population of travelers that populates the

multi-agent traffic simulation. But second, there is also a population of

solution instances within the GA. In the remainder of the text, the second

meaning will be used if not stated otherwise.

5. Implementation

As mentioned above, crossover, mutation, and selection are vital compo-

nents of each GA. Before these operators can be defined, it is necessary to

come up with a way of representing a solution instance in the computer.

This way of representation is referred to as encoding. Encoding is of prime

importance for the definition of crossover and mutation and it has a large

influence on the potential performance of a GA. For our problem of

activity planning, we used a combination of binary encoding, permutation

encoding and value encoding in the following way (Figure 1):

– Each activity (of a given and fixed set) can be either included in the day

plan or excluded from it (binary encoding). This information – which

we will refer to as membership information later on – is stored in an

array of bits, where each bit holds this information for one activity. If a

bit is set to one the corresponding activity is included in the day plan

(i.e. it is a member of the day plan), if it is set to zero the corresponding

activity is excluded from the plan.

32 4 5 11 2 3 4 5

ordermembership

2 4 1

resulting pattern 

Figure 1. Encoding of the activity pattern ‘241’.
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– A second array stores the order of the activities (permutation encoding).

It holds always a full set of activities, regardless of which activities are

actually member of the day plan and which not. When evaluating the

day plan, the positions with disabled activities are ignored.

– Our day plans also include information about the location choice. In

our model, we assume that there exists a facility that is assigned to each

activity. This facility can be thought of as a type of building or place

that is needed in order to perform the activity. For instance, for the

activity ‘go shopping’ one needs the facility ‘shop’. We also assume that

for each facility there exist multiple locations as for example there are

multiple shops in a city where shopping can be done. The concept of

facilities makes it possible to have locations of activities that depend on

each other. For instance, this is needed to take care of the fact that one

has to fetch one’s children at the same school as one has dropped them

off before. The day plan has to store the selected location for each

facility. This information is held in a third array storing the ID of the

location for each facility (value encoding).

– The activity durations are stored in a fourth array which stores floating

point numbers (once more value encoding); in addition, there is an

entry, which contains the starting time of the day plan. Activity starting

times of the allocated time slots are a result of adding up all previous

durations and travel times (see below).

The parents for a new individual are selected at random out of the current

population. When the offspring is better than the currently worst member of

the population, then the worst member is replaced by the new offspring.

Otherwise, the offspring is not kept. Since there is no selection at the parent

level, all existing solutions except the worst are treated equivalently, which

maintains a relatively large degree of diversity in the population. Slow

progress towards better solutions is made by removing the worst member.

The implementation of the crossover operator is built of three parts:

– First, the array which stores the membership information is processed

using uniform crossover. That is, each membership bit is copied ran-

domly from either one of the parents.

– Second, we crossover the arrays that store the order information

(Figure 2). Before we start, we decide randomly which parent should

precede (i.e. which parent’s activity should come first) in case of a

collision. For each activity (‘1’ to ‘5’ in Figure 2), we randomly select a

parent and put the activity at the same position in the offspring as it was

in the selected parent (see ‘(*)’ in Figure 2). If there are collisions (i.e.

two activities in the same cell), then their sequence is decided first (see

‘(**)’), and then the resulting new sequence is copied into its correct
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location. This, somewhat involved algorithm was developed since it

does not depend on the sequence in which it goes through the activities,

and therefore it does not introduce a bias caused by the ordering in

which the activities are processed in this sub-step.

– Third, for each activity one of the the two parents is randomly selected

and the new duration is set to the duration of the same activity in the

selected parent. Note that this makes it quite possible that the position

of an activity in the sequence order is taken from one parent, but the

duration of the activity from the other parent.

Note that standard single point crossover would not work. In single

point crossover, the offspring is created from the parents by taking their

representations, choosing a random crossover point and copying the first

part up to this point from the first parent and the second part beginning at

this point from the second parent. However, for sequencing problems such

as ours, this approach does not work since in general, in the offspring some

activities will be performed twice while some others will have vanished.

A solution, coming from GA encoding for the Traveling Salesman

Problem, is to take the first part verbatim from the first parent, and then to

fill up the remaining spots with the remaining activities in the sequence they

are in the second parent, skipping activities which are already present in

order to avoid duplicate activities in the offspring. That encoding has,

however, the disadvantage that it only looks at the sequence and not at all

at time-of-day. In contrast, in our implementation, activities have a ten-

dency to stay at their position within the day plan. In addition, our

crossover operator shuffles the activities more than a single point crossover

would, and our tests showed that this yields a more stable – although

slower – convergence. This is desirable, because our experience with GAs

2315 4

5234 1

5/234 1

2/534 1

14 532 parent 1

offspring with collision (*)

offspring with correct sequence (**)

parent 2 (selected for precedence)

final offspring

Figure 2. Illustration of crossover operator.
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shows a considerable tendency to keep stuck in local optima when using

single point crossover.

The mutation operator is split into four parts: first, for each activity, the

membership information is flipped with a probability pmut. Second, the

order of the activities is permuted: with a probability pmut two activities,

both chosen at random, are exchanged. This is done n times, where n is the

total number of activities. Using the same idea as in the crossover operator,

the activities are exchanged ignoring the membership information. Third,

the duration of each activity is changed by multiplying it with a factor

f ¼ eX, where X is drawn uniformly from the interval ½�pmut=2; pmut=2�.
Fourth, a new start time of the activity plan is calculated by adding a

random time uniformly drawn from ½�pmut � 12h; pmut � 12h�.

6. Utility function

As already mentioned earlier, our GA needs to rate the quality of the day

plans in the population. For that purpose one has to define a fitness function

which somehow defines what a ‘good’ day plan is. An important advantage

of using GA is that the fitness function can be changed very easily

according to the preferences of the user.

We use a fitness function that is the sum of the utilities of all activities

that are performed, plus the sum of all travel (dis)utilities:

F ¼
Xn

i¼1
Uactðtypei; starti; duriÞ þ

Xn

i¼2
Utravðloci�1; lociÞ ð1Þ

Here, typei is the type of the activity, starti is the starting time of the

activity, duri is the amount of time allocated to the activity, and loci is the

location of the activity. In the following part, we will discuss all aspects of

our utility function in detail.

In our model, the utility of an activity depends on the following

variables:

– The time of day when the time slot for the activity starts.

– The allocated time to the activity.

– The location where the activity takes place.

– The location where the last activity took place.

The utility of an activity i is – in our model – the sum of four terms, each

of which is modeling a certain aspect of the utility function.

Uactl;i ¼ Udur;i þUwait;i þUlate:ar;i þUearly:dp;i þUshort:dur;i: ð2Þ
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Udur;i denotes the utility of executing the activity for a certain duration,

Uwait;i denotes the (dis)utility of waiting (for instance waiting for a shop to

open), Ulate:ar;i and Uearly:dp;i denote penalties for coming too late or leaving

too early respectively, and Ushort:dur;i is a penalty if an activity is performed

for too short a time.

Utrav denotes the (dis)utility of traveling from the last location to the next

one.

This approach has the consequence that when removing an activity, the

travel terms at both ends are modified. That is, if an activity is far out of the

way, then dropping that activity will reduce overall travel considerably,

while dropping an activity that is on the way will have a negligible effect on

travel times.

In the following, the different terms and their parameters will be dis-

cussed in detail. All terms except Udur are modeled to be linear in the time

needed for that activity. Despite the detailed discussion, it should be kept in

mind that the technology of using a GA is entirely independent from the

specific utility function. If a different utility (or general scoring) function is

desired, it is very simple to replace it.

6.1. Utilities for performing activities

Although fitness functions can be easily replaced in GA approaches, a

specific fitness function needs to be selected in order to run tests. We

decided to use a logarithmic function as utility of duration:

UdurðtdurÞ ¼ bdur � t� � ln
tdur
t0

� �
: ð3Þ

Here, tdur is the duration of the activity as it is actually performed, and bdur,

t�, and t0 are parameters, to be explained later.

Logarithmic utility functions have the property that the marginal utility

of doing more of the same activity is decreasing with longer durations, but

it is always positive. This may seem implausible because then there is

nothing that limits the execution time of activities. However, considering

more than one activity and a limited time budget, the available time will be

distributed in order to achieve a higher overall utility, thus limiting the time

spent at each individual activity.

In the absence of other restrictions such as opening times, the optimal

time allocation for an activity pattern is reached if all activities have the

same marginal utility of duration. Otherwise, the agent could gain by

reallocating time from activities with small marginal utilities to activities

with large marginal utilities.
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t� is the duration at which the marginal utility is bdur, as can be seen by

taking the partial derivative:

@U

@tdur
ðtdurÞ ¼

bdur � t�
tdur

ð4Þ

and setting tdur ¼ t� yields indeed bdur for the marginal utility. t�i gives the

typical duration of activity i. Or more precisely: The t�i yield the ratios of the

durations of different activities in equilibrium.

t0 is the duration at which the utility starts to be positive. It plays a

double role:

– It determines the minimum duration of an activity. If the duration falls

below this value, then it is more beneficial to drop the activity and do

nothing instead.

– It determines the priority of an activity: Themarginal utility at tdur ¼ t0 is

@U

@tdur
ðt0Þ ¼

bdur � t�
t0

: ð5Þ

If one sets t0 proportional to t�, i.e. t0 ¼ at�, then the proportionality

factor a will decide over the marginal utility at t0, and therefore

over the priority with which an activity is maintained when time gets

tight.

In our case, the specific form of

a ¼ e�200/ðt
��p�bdurÞ ð6Þ

was used, where p is the priority. This specific form has the consequence

that all activities of the same priority have the same utility at tdur ¼ t�.
Note that even activities with a high priority can be dropped if they are

very inconvenient. As we will see later, this has sometimes implausible

results, such as picking up a child from kindergarten but never dropping it

off. On the other hand, it is certainly true that schedules can become so

tight that even high priority items are dropped, for example by asking

someone else to help out. For that reason, making high priority activities

completely obligatory seems not plausible.

6.2. Penalties

All penalty terms follow the penalty terms of the Vickrey model of

departure time choice (e.g. Arnott et al. 1993) in that they are modeled to

be linear in their time consumption:

379



UtravðttravÞ ¼ btrav � ttrav;
UwaitðtwaitÞ ¼ bwait � twait:

Ulate:arðtstartÞ ¼
blate:arðtstart � tlatest:arÞ if tstart > tlatest:ar

0 else

�

(where tstart is the starting time of the activity and tlatest:ar is the latest

possible starting time for the activity),

Uearly:dpðtendÞ ¼ bearly:dpðtearliest:dp � tendÞ if tend < tearliest:dp
0 else.

�

(where tend is the ending time of the activity and tearliest:dp is the earliest

possible ending time for the activity), and

Ushort:durðtstart; tendÞ ¼ bshort:durðtshort:dur � ðtend � tstartÞÞ if tend < tshort:dur
0 else.

�

(where tshort:dur is the shortest duration for the activity),

At this point, one could discuss plausible relations between the different

b, for example using the typical Vickrey scenario values of �6=h, �12=h,
and �18=h for bwait, btrav, and blate:ar. However, as will be discussed in

Section 8, in our framework there are interactions between the marginal

utility of doing activities and the effective marginal utility of the penalty

terms, so that the effective marginal utilities that guide behavior are more

complicated than one would assume by the above numbers. This is caused

by the fact that some of the penalized items, such as waiting and traveling,

also incur the additional penalty of not being able to earn positive utility

from doing an activity at the same time (opportunity cost). The other

penalized items – arriving late, leaving early, or staying for too short – do

not have this property. Therefore, the values used in the tests will just be

stated in Section 6.4 and be used without further comment except for the

discussion in Section 8. Once more, please note that this paper describes a

prototype implementation rather than an operational model.

6.3. Opening times and similar constraints

Many activities can only be carried out during certain times of the day.

For instance shopping can only be done when the stores are open. The

question is what utility we want to assign to activities which violate

these constraints.

One possibility would be to assign a very low utility to those activities,

e.g. minus infinity. This policy would be very efficient in avoiding invalid

day plans. But it would not make very much sense, for the following reason:
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assume that you have to compare two time allocations for the activity

‘shop’. In the first scenario, you go shopping at 7:59 am and shop for 2 h.

In the second scenario, you go shopping at 8:00 am and shop also for

2 hours. The shop opens at 8 am. The first time allocation is invalid

because you try to shop while the shop is closed. So the utility of the first

scenario would be very low. The second scenario, however, has a very high

utility. With this policy, the minimal change of one minute in time allo-

cation would produce a huge change in utility which is certainly not real-

istic. In reality, we would have waited one minute in front of the shop. That

means that one should set parameters such that both utilities are almost the

same.

Based on these reflections, we come up with the following constraint

handling policy:

– At the beginning of the allocated time slot, we assume that the agent

travels from the location of the last activity to the location of the new

activity. The time spent for traveling yields a (dis)utility according to the

section about travel costs.

– From the moment of arrival at the activity location until the end of the

time slot, as much time as possible is spent actually performing the

activity.

– If for some reason, for instance because of opening hours, it is not

possible to use all this time for performing the activity, the

remaining time is spent waiting. Waiting yields a negative utility of

bwait � twait.
– Since we use a logarithmic function for the utility of duration, it is

possible that this utility becomes negative. If this is the case, and if

it is more efficient to spend the whole time waiting,2 the activity is

not executed at all. It may sound weird to travel to an activity that

is not executed. However, it is important to note that we need to

calculate meaningful utilities for no matter which day plans the GA

generates, because this is the material the GA works with. Since

traveling to an activity location without executing the activity does

not make sense, the GA will eventually find a better solution, such

as either completely dropping the activity, or allocating sufficient

time for it.

6.4. Summary of parameters

The following is a listing of all parameters of our utility function and the

values that were used.
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Marginal utility of any activity: bdur ¼ 20 =h:

Marginal utility of travel time: btrav ¼ �12 =h:

Marginal utility of waiting: bwait ¼ �6 =h:

Marginal utility of coming late: blate:ar ¼ �18 =h:

Marginal utility of leaving too early: bearly:dp ¼ �6 =h:

Marginal utility of staying too short: bshort:dur ¼ �6 =h:

These parameters were selected in order to match the typical Vickrey

scenario values of �6, �12, and �18. Upon further reflection, one does,

however, recognize that the above values in conjunction with our approach

do not do this, since when traveling or waiting, one incurs the additional

penalty of time that one could spend doing an activity, at the ‘cost’ of

�20=h (opportunity cost). Section 7 discusses better values.

6.5. Examples of utility landscapes

In order to show some properties of the utility landscape, we exemplarily

analyze plots of some activity patterns. Because of the limited number of

displayable dimensions, our choice is restricted to very short activity

patterns with a maximum of four activities.

Now, if we would use full length day plans with such a limited number of

activities, the resulting day plans would be rather slack, and as a result of

that, many of the typical problems with activity planning would not arise.

Our way out of this problem is to use shorter time budgets for our

example activity plans. In consequence, the plans that we are going to talk

about here are no longer complete day plans but rather partial plans.

However, since the calculation of the utility values is completely additive,

having a look at partial plans does make sense.

As a further simplification, we assume during this part of our investi-

gations that all activities can be carried out at the same location. By

applying this simplification, we do not have to define a lot of location

related parameters. However, the problems that can be observed in this

simplified context have the same complexity as with traveling enabled. This

is due to the fact that our travel times are independent of time of day and

because they are linear in the geometric distance of the locations.

We first show the typical utility landscape of an activity chain with four

activities home, work, leisure and home. The t� for work, leisure and home

had been set to 8, 2 and 4 hours, respectively. There were no additional

constraints that had to be fulfilled except that the total length of the plan

was fixed to 16 hours (Figure 3).
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The utility function as a function of the two parameters duration of work

and duration of home has one clean global optimum. It should be easy to

find the global optimum of this activity pattern even with standard opti-

mization techniques. At the borders of the domain, there exist small regions

where the utility increases again. This is due to the definition of the utility

function which has a cutoff at very short durations. For example, when the

duration of work becomes less than two hours, it becomes better to not

work at all, in which case the additional leisure time makes a positive

contribution.

In order to show the effect of the time budget on the time allocation, we

show another plot of the same activity pattern but this time with a desired

plan length of 12 hours (Figure 3). The optimum is shifted towards shorter

times and the utility of the optimum is roughly 100 lower. The utility
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Figure 3. Utility of activity pattern home-work-leisure-home. t� of work, leisure and home set

to 8, 2 and 4 hours, respectively. (a) Total time budget of 16 hours. (b) Total time budget of

12 hours.
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landscape of activities with opening hours is more complex. As an example

we show the utility of shopping in a store that is open during the morning

from 9 until 11 and in the afternoon from 14 until 17. Without opening

hours the landscape would be very smooth and completely independent of

time of day. With the opening hours some interesting new properties can be

observed.

In Figure 4 we see that now there exist three local optima. The global

optimum (top left) corresponds to showing up in the shop at 9 in the

morning and staying there until 17 in the evening. The lunch break is spent

waiting. The two local optima in the morning and the afternoon are much

more meaningful. The early local optimum corresponds to coming at 9 am

when the shop opens and leaving the shop at 11 am when it closes. The late

local optimum corresponds to coming at 14 when the shop opens and

leaving at 17 when it closes.

The structure of the fitness (utility) landscape becomes even more

complex when we consider an activity chain that includes a complex activity

with opening hours. Figure 5 shows the utility of the activity pattern work-

shop-work. t� was set to 8 hours for the total working duration and 2 hours

for the shopping activity. The overall plan was set to start at 8 and last until

17. One sees that good plans set the shopping time to 1.5 hours; the overall

work time will then be set to 7.5 hours.
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Figure 4. Utility of activity shop. Shop open 9–11, 14–17. There is no constraint on the total

length of the partial plan.
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The utility for this activity pattern shows two equivalent global optima.

They correspond to go shopping in the morning for almost 2 hours and to

go shopping in the afternoon. The optimum in the afternoon is wider,

because the shop is open for 3 hours in the afternoon.

7. Tests and results for complete day-plans

In this section, we want to show the general ability of our model to generate

complete day plans. For that purpose, we designed a simple city. In our city

there exist a number of different facilities including apartments, working

places, shops, kindergartens and recreational areas. For each of these

facilities, there exist three different locations between which an agent can

choose. The different locations of the facilities are summarized in a map.

See, e.g., Figure 7.

A possible oddity of our examples is that all locations can be changed on

the same time scale. That is, even the home location can change between

different solutions. It is, however, very easy to keep some of these things

fixed by just reducing the choice in the corresponding category to one. This

would also allow to run the algorithm at several levels, for example:

– Run the algorithm while long-term locations (e.g. home, work, kin-

dergarten) are fixed in order to determine the short-term flexible parts of

a daily schedule.

– Run the algorithm, say, for a possible new home location in order to

test if an agent could improve its daily utility function by moving to this
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Figure 5. Utility of activity pattern work-shop-work. The shop is open 9–11 and 14–17. For

the calculation of the utility of work only the total working duration is regarded. That is, the

sum of working duration before shopping and after shopping is first calculated and then the

utility for work is calculated. Note also that the axes in this plot are reversed for visibility

reasons.
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location (Abraham & Hunt 2002). In this situation, the algorithm would

model the ‘what-if’s’ of humans when they consider alternative options

without actually executing them.

– Clearly, any intermediate level is possible as well, for example when home

and work are kept fixed but a kindergarten location is searched for.

For our tests, we assume that travel times are proportional to the geo-

metric distance between two locations and that the travel speed is constantly

10 km/h.

We want to test our algorithm for different kinds of agents with different

lists of activities that they would like to accomplish. For this purpose, we

defined three different scenarios. Each scenario is defined by a set of

activities that are available. The scenario ‘full10’ is the one with the largest

set and consist of 10 activities which are listed in Table 1. The other two

scenarios use a subset of these activities.

All facilities needed by the activities except for the facility ‘home’ are not

open during the whole day. The opening times used for our investigations

are summarized in Table 2.

The three scenarios are defined as follows:

– As mentioned above, the ‘full10’ scenario defines a scenario with set of

10 activities. This scenario consists of the activities ‘sleep’, ‘breakfast’,

‘lunch’, ‘dinner’, ‘early work’, ‘late work’, ‘bring children to kinder-

garten’, ‘fetch children from kindergarten’, ‘shop’, and ‘leisure’. The

Table 1. Activities of our test case.

Name Priority t*1 tlatest.ar2 tearliest.dp3 tshort.dur3 Facility

Sleep 1 8.0 25.0 29.0 6.0 Home

Early work 1 4.0 9.0 11.0 3.5 Work

Late work 1 4.0 14.0 15.0 3.5 Work

Breakfast 3 0.5 10.0 0.25 Home

Lunch 2 1.25 14.0 12.0 0.75 Work/Home4

Dinner 2 2.0 21.0 18.0 0.75 Home

Bring to kindergarten 1 0.25 9.0 8.5 0.25 Kindergarten

Fetch from kindergarten 1 0.25 16.0 15.5 0.25 Kindergarten

Shopping 3 2.0 0.5 Shop

Leisure 3 2.0 1.0 Leisure

1 t0 (not shown in table) is derived from the priority and t*. See Section 6.1 and Eq. (6).
2 Latest starting time. If the activity starts later a penalty is applied. See Section 6.2.
3 Both tearliest.dp and tshort.dur address the problem of not executing an activity long enough. If

the activity is ended before tearliest.dp a penalty applies. The same penalty applies if the

duration of the activity is shorter than tshort.dur. See Section 6.2.
4 Depending on the scenario, the facility of the activity ‘lunch’ was either work or home. See

description of the scenarios.
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purpose of this scenario is to show the performance of our algorithm if

there are very many activities to perform.

– In the ‘houseman’ scenario, the agent has only 8 of the 10 activities of

the ‘full10’ scenario to choose from, leaving out both work activities.

That is, the remaining activities are: ‘sleep’, ‘breakfast’, ‘lunch’, ‘dinner’,

‘bring children to kindergarten’, ‘fetch children from kindergarten’,

‘shop’ and ‘leisure’. Since in this scenario the agent does not have a work

location, we changed the facility for eating lunch from ‘work’ to ‘home’.

This scenario simulates a rather dense day plan of a non-working person.

– In the ‘pensioner’ scenario, the set of activities consists only of 5

activities; these are ‘sleep’, ‘lunch’, ‘dinner’, ‘shopping’ and ‘leisure’. As

in the ‘houseman’ scenario, the facility for having lunch was changed to

‘home’. With this scenario we want to show how our model deals with

day plans with a large freedom in time allocation.

In all these scenarios, the set of activities is endogenous to the model.

This is discussed in Section. 8.

We do two separate investigations for each scenario. In the first inves-

tigation we run the algorithm for a long time in order to rate the quality of

the best solution that the algorithm possibly produces. In the second

investigation we want to rate if the algorithm is capable of finding usable

day plans within a limited time, therefore we run the program for a short

time. This second question is especially important if we want to generate

day plans for a large number of agents.

For the quality investigation we run the algorithm for 10,000,000

generations with a GA-population size of 300. The execution takes between

140 and 230 seconds on a 2.4-GHz Pentium 4 Laptop. For the usability and

speed investigation we change the parameters in order to achieve a higher

convergence speed taking into account that we sacrifice some stability for

that reason. The GA-population size is reduced to 50 and the number of

Table 2. Opening times of the facilities. An activity can only be carried out when the required

facility is open.

Facility name Opening times

Home 00:00–24:00

Work 06:00–20:00

Kindergarten 08:30–9:00 15:30–16:00

Shop 09:00–19:00

Leisure 14:00–24:00

Note: Facility ‘‘Kindergarten’’ has two opening times. The first one defines when children

can be dropped off and the second when they can be picked up.
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generations is limited to 200,000. Here, the execution takes between 3 and

5 seconds.

The quality test for the ‘full10’ scenario was run with 5 different ini-

tializations. At the end of each run, the day plan with the highest utility

value was always identical in terms of generated pattern and location

selection. Only the time allocations differed, but the differences were within

very few minutes. In Figure 6 we show a typical convergence graph for the

quality tests. The best day plan found for the ‘full10’ scenario in the quality

test is shown in Figure 6. Note that the children are not dropped off at

home before continuing with the day plan; especially ‘leisure’ is performed

together with the children. This can be observed in almost all generated day

plans. There is nothing that would force the agents to drop children off

before starting with the next activity. However, if desired, this could be

easily modified in the utility function.
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Figure 6. Convergence graphs. (a) ‘Full10’ scenario with 10 million generations in order to

get the best possible quality of the resulting day plan. The graph shows the maximal and

average utility of the population of a typical long run, (b) ‘Full10’ scenario with only 200,000

generations to test the performance of the algorithm if there is only limited time for finding a

good day plan. The graph shows the maximum utility of the population for the best and the

worst short run and (c) ‘Pensioner’ scenario for a typical short run. In this test, the goal was

to find a good day plan within limited time.
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In the five short runs for investigation of speed and usability for the

scenario ‘full10’ three times a solution was found that is identical to the one

shown in Figure 7 in terms of generated pattern and selected locations.

Only the time allocations were not as sophisticated. The total utility varied

between 1277.54 and 1278.84. In the two remaining runs, two different

solutions were found. The solution shown in Figure 8 differs only in terms

of location selection and time allocation while the solution shown in

Figure 9 differs also in the generated pattern. Note that in this day plan the

activity ‘bring children to kindergarten’ is left out. In Figure 6 we compare

the convergence of the best and the worst short run.
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Activity Name Travel Time Execution Time    Location

Breakfast 06:56–07:26 home0

Bring children1 07:26–08:30 08:30–08:40 kiga3 2

Early work 08:40–08:46 08:46–11:52 work 2

Lunch 11:52–12:40 work 2

Late work 12:40–15:40 work 2

Fetch children2 15:40–15:46 15:46–16:00 kiga3 2

Shop 16:01–16:43 16:43–18:26 shop 0

Leisure 18:26–18:48 18:48–20:27 leisure1

Dinner 20:27–21:03 21:03–23:02 home0

Sleep 23:02–06:56 home0

Figure 7. Best day plan for the ‘full10’ scenario after 10 million generations. The total utility

is 1284.93. The map graphically summarizes the day plan.
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In all runs for the ‘pensioner’ scenario (five long runs and five short runs)

the samedayplanwas foundwith respect to the generated activity pattern and

the selected locations. The time allocations to the different activities was also

very similar. The similarity of the day plans can also be seen when looking at

the total utility which was always between 638.483 and 638.514 – a very

narrow interval. The only difference between the plans was their starting time

which varied in the range from10:33 am to 11:45 am.This is due to the lackof

constraints for the activities. That is, it does not matter at which time inside

the range the day plan starts.

It seems that our algorithm has no problems to find a good solution for

the ‘pensioner’ scenario. In order to test this assumption, we show the
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Activity Name Travel Time Execution Time Location

Breakfast 07:27–07:56 home 0

Bring children 07:56–08:30 08:30–08:42 kiga 1
Early work 08:42–09:03 09:03–11:54 work 0
Lunch 11:54–12:49 work 0
Late work 11:54–12:49 work 0
Fetch children 15:18–15:39 15:39–15:57 kiga 1
Shop 15:57–16:33 16:33–18:13 shop 0

Leisure 18:13–18:35 18:35–20:26 leisure 1

Dinner 20:26–21:02 21:02–23:30 home 0

Sleep 23:30–07:27 home 0

Figure 8. First alternative day plan for the ‘full10’ scenario after 200,000 generations. The

total utility is 1276.46.
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convergence graph of one of the usability runs in Figure 6. One can see that

the algorithm converges already very early. In fact, a solution identical to

the one found in the end in terms of generated pattern and selected loca-

tions is already found after 30,000 generations – which is only 15% of total

number of generations.

In all five long runs for the ‘houseman’ scenario and in four of the five

short runs the same day plan was found with respect to the generated

activity pattern and the selected locations. The time allocations were also

very similar, they all lay within 10 minutes. The resulting utilities vary

between 1040.51 and 1043.04. We show the best day plan found in

Figure 10.
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Activity Name Travel Time Execution Time Location

Breakfast 06:14–06:46 home 0

Early work 06:46–06:59 06:59–10:56 work 1

Lunch 10:56–11:59 work 1

Late work 11:59–15:04 work 1

Fetch children 15:04–15:51 15:51–16:00 kiga 1

Shop 16:00–16:37 16:37–18:26 shop 0

Leisure 18:26–18:47 18:47–20:27 leisure 1

Dinner 20:27–21:03 21:03–23:06 home 0

Sleep 23:06–06:14 home 0

Figure 9. Second alternative day plan for the ‘full10’ scenario after 200,000 generations. The

total utility is 1107.89. Note, the activity ‘bring children to kindergarten’ is left out.
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The day plan found in the remaining short run is topologically different

from the other day plans. It leaves out the activity ‘leisure’ (not shown).

The resulting day plans for all three scenarios are plausible. All aspects

of activity planning – activity pattern generation, location selection and

time allocation – are taken care of. The convergence of the genetic algo-

rithm seems to be very stable, as for each scenario at the end of almost all

test runs the same good solution is found. It seems, that our tests have not

yet pushed our algorithm to its limits, it would be interesting to see how it

performs on generating complete week plans.
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Activity Name Travel Time Execution Time Location

Bring children 08:08–08:42 08:42–08:59 kiga 1

Breakfast 08:59–09:33 09:33–10:17 home 0

Lunch 10:17–12:02 home 0

Shop 12:02–12:23 12:23–14:58 shop 0

Fetch children 14:58–15:35 15:35–15:52 kiga 1

Leisure 15:52–16:19 16:19–18:51 leisure 1

Dinner 18:51–19:27 19:27–22:02 home 0

Sleep 22:02–08:08 homa

Figure 10. Best day plan found for the ‘houseman’ scenario. The total utility is 1043.04. Note

that the agent fetches the children and performs activity ‘leisure’ with them. The reason why

it does not drop them off at home before is that there is no constraint forcing it to do so and

the presented day plan minimizes travel time.
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8. Discussion and further work

The values for the marginal utilities (Section 6.4) were selected to match

typical values of the Vickrey scenario (e.g. Arnott et al. 1993). It turns out,

however, that in our framework the effective penalties of traveling or

waiting are not the values of Section 6.4, but they are those values plus the

utility lost by not doing any activity, i.e. �20/h (opportunity cost). This

means that the effective marginal disutilities of traveling and waiting are

�32/h and �26/h, respectively. The correct values of our system to obtain

the typical Vickrey penalties of �6, �12 and �18 for waiting, traveling, and
being late are thus

Marginal utility of any activity: bdur ¼ 6 =h:

Marginal utility of travel time: btrav ¼ �6 =h:

Marginal utility of waiting: bwait ¼ 0 =h:

Marginal utility of coming late: blate:ar ¼ �18 =h:

Marginal utility of leaving early: bearly:dp ¼ �18 =h:

These are the values we will use in some of our future research.

An interesting consequence of the above observations is that it is not

necessary to assume any disutility (negative utility) of travel at all. As

long as there are activities whose marginal utilities are more strongly

positive than the marginal utility of travel, agents will still attempt to

minimize travel time. And if one wants to introduce a more sophisticated

utility function for travel, for example first positive and then becoming

negative, then this could be easily done. This means, in particular, that

our approach will not have any problems with the recently discussed

‘positive utility of travel’. Clearly, such work should be done in con-

junction with survey data that can then be used to estimate and test

models.

In all scenarios of Section 7, the set of activities is endogenous to the

model. Such sets could for example come from separate models of activity

repertoires. However, our algorithm is in principle capable to drop low

priority activities, although that was not systematically investigated.

Therefore, one could imagine to start from a maximum set of activities,

possibly with the desire of intermediate home stops between any two

activities, and then have the algorithm drop intermediate home stops and/

or low priority activities. The priorities could even be coupled to household

or weekly agendas, discussed below.

GA are known as rather inefficient, but very flexible search methods.

This flexibility means that extensions can be easily introduced. Examples

for such possible extensions are:
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– The present model for the estimation of travel times between different

locations is not very realistic. It would be possible to use travel times

from a simulation in order to increase realism. With time dependent

travel times, phenomena like congestion avoidance within the day plans

should emerge.

– The paper pretends that all activity scheduling problems can be solved

with a single utility function. This is improbable, and variations of the

relevant coefficients could be easily introduced. Such coefficients could

for example be obtained from estimated econometric models of daily

activity schedules (e.g. Jara-Diaz et al. 2003). That paper also explains

how such econometric explanations relate to random utility theory.

– Aspects of limited information could be modeled by only making

subsets of possible locations available to the algorithm. Such sets would

need to be generated by other methods, for example by random sampling,

by information transmission via sodkistler (Marchal & Nagel 2005), or

by using mental maps (Arentze & Timmermans 2003; Kistler 2004).

– The paper assumes that each agent optimizes for him-/herself. This

reflects our observation that simple copying of partial strategies from

other people does not work in the real world. For example, I cannot

simply copy the shopping location from my neighbor because in all

probability he/she works somewhere else and so this may not be con-

venient. A possible approach might once more be the use of social

networks (Marchal & Nagel 2005) which ensures that information is

primarily passed between people who share some similarities.

– One interesting aspect of activity planning is to generate activity

plans for households and/or for full weeks instead of generating them

for single agents and single days. This problem is more complex than

simply generating individual day plans for each of the occupants of a

household since the activity plans of different occupants or of con-

secutive days depend on each other. For instance, only one of the

agents living in a household has to go shopping, or shopping only

needs to be done once a week. An investigation of this has been done

by Meister et al. (2004).

More complicated would be the interaction of agents that do not live in

easily identifiable groups, such as the coordination of shared rides or of

leisure activities. Here, some other method would first have to provide the

social links (e.g. Marchal & Nagel 2005). However, even once social links

are known, the GA approach would probably fail since too many agents

would have to be coordinated at the same time. A sequential activity

planning process, such as described by Doherty and Axhausen, possibly

combined with a GA, might be a possible approach.
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9. Summary

A GA was presented that constructs all-day activity plans. It uses as input a

set of possible activities, and a utility function to score activity schedules.

The GA attempts to construct good solutions which maximize the utility

function. It does that by maintaining a population of solution instances,

which are mutated, and which, importantly, breed new solutions by

crossover. Crossover means that two solution instances are selected, and

part of the new solution comes from one parent, and the other part from

the other parent.

The algorithm is then run on several examples. It is shown that the

algorithm generates plausible solutions both for crowded and for relaxed

activity sets, and that it can do so even when the computation time is

restricted.

The most important aspect of this work is that arbitrary utility functions

can be used. A GA does not guarantee optimal solutions, but it will nearly

always generate plausible solutions. Given that humans do no better, this

may be sufficient for many travel forecasting purposes.

Acknowledgement

Kay Axhausen helped us with numerous pointers to all-day utility

functions. Nevertheless, the responsibility for our choices remains with us.

Notes

1. In this paper, the word ‘parents’ is only used in the computational sense, never in the biological

sense.

2. The second if-condition is only relevant if bwait is different from zero. As will be discussed in

Section 8, it makes much sense to set it to zero, in which case this condition is no longer

relevant.
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