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Abstract Spatially explicit data pose a series of opportunities and challenges for

all the actors involved in providing data for long-term preservation and secondary

analysis—the data producer, the data archive, and the data user. We report on

opportunities and challenges for each of the three players, and then turn to a

summary of current thinking about how best to prepare, archive, disseminate, and

make use of social science data that have spatially explicit identification. The core

issue that runs through the paper is the risk of the disclosure of the identity of

respondents. If we know where they live, where they work, or where they own

property, it is possible to find out who they are. Those involved in collecting,

archiving, and using data need to be aware of the risks of disclosure and become

familiar with best practices to avoid disclosures that will be harmful to respondents.
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This paper is about the challenges involved in producing, archiving, and sharing

social science data that have spatially explicit information embedded within them,

all while avoiding the risk of disclosing private information about the individuals

who have consented to share information about themselves, in the case of survey

research, or who are part of the universe of individuals included in an administrative

record system or database. It takes as its starting point the perspective of the data

archivist, but it tries to maintain a clear understanding of the competing interests of

the data producer, the data user, the survey respondent, and the manager of the data
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repository, not to mention whatever organization has provided the resources

required to collect, clean, document, and disseminate the data. Like others who are

concerned about protecting the confidentiality of survey respondents, we are acutely

aware that the wealth of information publicly available today increases the risk that

someone will breach the promise of confidentiality that is made when most social

science data are collected. Spatially explicit data, because they are by definition

linked to a specific location that might be someone’s home or another easily

identifiable place, have the potential to aggravate that risk. Our goal here is to

describe many of the issues, identify some of the ways that confidentiality can be

protected, and then draw conclusions about current best practices.

Our work arises out of ICPSR’s commitment to disclosure analysis and

reduction, and an ongoing program of work designed to ensure that the data we

archive and disseminate is as safe as possible from disclosure risk (O’Rourke et al.

2006; O’Rourke 2003; Dunn and Austin 1998). This work has led to our

involvement in a group of projects at the University of Michigan’s Institute for

Social Research, designed to help learn more about the risk of disclosure in social

survey data, the attitudes that survey respondents have about the risk of

confidentiality breach, and current practices within the research community

designed to protect survey respondents, and then to ensure that the information

we gather is disseminated widely to the research community.1

Before we flesh out our discussion, we begin with a simple definition of

disclosure as it is associated with social science research data.

For our purposes, we define Disclosure as:

the breach of confidentiality that allows an outsider, whom we call the

‘‘intruder,’’ to discern the identity of an individual or business respondent or to

associate the individual or business’s identity with characteristics reported in a

survey or administrative database under a pledge of confidentiality.2

Going further, we can define two elements, attribute disclosure and identity
disclosure (Duncan and Lambert 1989; Lambert 1993). Attribute disclosure takes as

its basic premise that an individual is a respondent in a survey or a subject in an

administrative database, and that the intruder knows that the individual is represented

in the database. In this case the intruder knows the identity of the respondent but

wishes to know specific responses or attributes of that person as recorded in the

1 Myron Gutmann is principal investigator of NICHD Program Project P01-HD045753, ‘‘Human Subject

Protection and Disclosure Risk Analysis.’’ The projects are ‘‘Informed Consent and Perceptions of Risk and

Harm in Survey Participation,’’ directed by Eleanor Singer, Fred Conrad, and Robert Groves, ‘‘Estimation of

Disclosure Risk and Statistical Methods for Disclosure Limitation,’’ directed by T.E. Raghunathan,

Roderick Little, and Richard Valliant, ‘‘Disclosure Control: Best Practices & Tools for the Social Sciences,’’

directed by JoAnne M. O’Rourke, and ‘‘Resources for the Secure Dissemination of Human Subjects Data,’’

directed by James McNally and Myron Gutmann. The project has a web site at http://www.icpsr.umich.

edu/HSP/. We have contributed to related work published as VanWey et al. (2005) and National Research

Council (2007), both of which benefited from the fundamental work reported in this paper.
2 This statement is the authors’ working definition, not intentionally a quotation from another source. We

believe that the term ‘‘intruder’’ has its origins in the work of Duncan and Lambert (1989). Within the

Disclosure literature, data users who attempt to identify anonymized records are called ‘‘Intruders’’ (Elliot

2001) or ‘‘Statistical Spies’’ (Roberts 1986).
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database. The intruder attempts to figure out which set of characteristics in the

database belongs to the known subject, so that she or he can learn that person’s

characteristics or attributes. One classic example is that a parent knows that his or her

child participated in a school-based survey, but wishes to know the child’s response

to certain questions, for example about sexual activity or experience with drugs.

Identity disclosure takes as its basic premise that the intruder does not know that any

given individual is a respondent in a survey, but wishes to learn the identity of survey

respondents in order to know something about them, to make contact with them, or to

harm them or the survey sponsor in some way. Here an example is a marketing firm

with a consumer database that it wishes to enrich by identifying and linking

information from a large national survey. It would then use its enriched data base to

communicate with or sell to those individuals. Another, more pernicious, example

would be for the intruder to attempt to identify individuals in a survey merely for the

purpose of making their responses known to the general public.

Still more serious, identity disclosure from survey or administrative data might

be used by private or public groups to target or harm individuals, population

subgroups, or business enterprises. While there are relatively few cases of

confidentiality breach by individuals, researchers have found all too many examples

of this last form of disclosure risk, whereby groups are identified and harmed using

data from official statistics, if not from academic survey research activities (Seltzer

and Anderson 2001, 2005, 2007; Anderson and Seltzer 2007). Most analyses of

disclosure risk focus on the possibility that an individual may be identified and

harmed based on analysis of individual micro-data cases that are publicly released,

but this perspective also emphasizes the use of meso- or macro-level data, publicly

released or not. In this case, the intruder uses the attributes of a small area (a census

tract, for example) to identify the fact that there are individuals in that area who

have certain characteristics (an ethnicity, for example), thereby making it

worthwhile to target them for repression or other harm. The salient recent example

is the use of small area data from the U.S. Census of Population for 2000 to identify

areas with large proportions of Arab-Americans after the events of September 11,

2001 (Clemetson 2004; El-Badry and Swanson 2007).

Later we will outline many of the best-known and most widely practiced methods

for limiting disclosure risk. There is a growing literature on this topic, in part because

both researchers and the statistical agencies of the U.S. government are deeply

concerned about the tension between disclosure of public data and protection of

confidentiality.3 The most important element as we begin this discussion is to

understand that virtually all widely-used disclosure limitation practices reduce the

amount of detail as well as the quality of the information available to the data user.

Many of those information reduction activities—for example removing the name of

the respondent—have little impact on the analytic value of the data, while others—

3 The Federal Committee on Statistical Methodology of the U.S. Office of Management and Budget

sponsors the Confidentiality and Data Access Committee, which coordinates disclosure management

issues for the U.S. government. Its informative web site is at http://www.fcsm.gov/cdac/. This committee

is responsible for the Checklist on Disclosure Potential of Proposed Data Releases (http://www.fcsm.gov/

committees/cdac/checklist_799.doc), which is widely used by agencies and researchers as a starting point

for disclosure review and disclosure limitation.
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for example reducing the number of locations or occupational categories preserved in

the data in order to eliminate ones that might lead to identification—may reduce the

data’s analytic value. These procedures all assume that most data are being used for

research, and that they can be restricted to use for research and not for other harmful

purposes, because restricting those other potential uses requires an entirely different

approach, rooted in government policy and public (rather than research) ethics.

The question that we need to focus on here, then, is how we can maximize

analytic value while minimizing the risk of disclosure, and to do so for the special

case of spatial information linked to social science data. This is a topic that has not

been explored in depth until recently, although there have been two important

publications in recent years (VanWey et al. 2005; National Research Council 2007).

This article takes a different perspective than either of those, based around the issues

faced by data archivists and data users. To make the issue yet more difficult, we

need to consider the extent to which it is possible to preserve the concept of public

use data (those that are publicly available with little or no restriction on use) while

maintaining their research utility. In doing so, we need to think about all the parties

to the research enterprise, including data producers, data users, and the respondents

whose information we value so highly.

The Data Archivist’s Nightmare

The widespread interest in gathering, using, and analyzing spatially explicit

information along with social survey data has produced a new nightmare for those

of us in the business of preserving and disseminating data. The nightmare stems

from a mix of our traditional assumptions about the way that we should do our job

and the rapidly changing world of data. We ordinarily assume that with the careful

exclusion of direct identifiers (name, address, phone number, social security

number), as well as the most common sources of indirect identification (rare

occupations or rare places of birth, or rare combinations of these or other variables,

for example) from any data that we make public, respondent privacy and

confidentiality will be preserved. New technology and the use of spatially explicit

data by researchers call these strategies into question.

Our nightmare involves a data producer who deposits data at ICPSR or some

other public data repository, and whose data after review are free of all obvious

direct and indirect identifiers. As is the case for other data archives and data

producers—such as the Census Bureau—who make microdata available, our

practice is to provide these data to our community of data users with very limited

restrictions. In the case of ICPSR, most such data sets are available for download

after the data user agrees electronically to ICPSR’s Responsible Use Statement.4

4 ICPSR’s Responsible Use Statement is located at http://www.icpsr.umich.edu/org/policies/respuse.html

. The data user agrees to these provisions relating to confidentiality: ‘‘(1) To use these datasets solely for

statistical analysis and reporting of aggregated information, and not for investigation of specific indi-

viduals or organizations, except when identification is authorized in writing by ICPSR; (2) To make no

use of the identity of any person or establishment discovered inadvertently, and to advise ICPSR of any

such discovery; (3) To produce no links among ICPSR datasets or among ICPSR data and other datasets

that could identify individuals or organizations.’’

642 M. P. Gutmann et al.

123

http://www.icpsr.umich.edu/org/policies/respuse.html


This is all fine, but the nightmare risk comes in the case that the researcher who

collected the data reveals other information about respondents, especially when those

data are revealed spatially. Even quite simple information linked to spatially explicit

identifiers can be dangerous, for example a map that is part of a presentation,

publication, or web site. A potential intruder may be able to derive an address (or

address range) from a published or presented map, use the address to narrow the

potential group of households that might include the respondent, and then use other

information in the map or presentation to link to the public access data.

Figure 1 represents hypothetical mapped data for Washtenaw County, Michigan.

Initially, it might just be a map of points representing the residences of respondents

to a hypothetical survey.5 This particular map—which we might imagine appearing

in a researcher’s presentation, publication, or web site—tells us that at one location

we know that the respondent is a male African American, aged over 50, who works

within five miles of his residence. Those are straightforward characteristics, and on

their own they are unlikely to carry a substantial disclosure risk in most parts of the

U.S. What would be frightening for everyone involved would be if someone

matched this location to a street address map and pinpointed this respondent to a

single house or more likely (given the scale) to a residential block. That makes the

risk of disclosure much greater, because even these generic characteristics might

lead to identification if the universe from which we choose is so small. If the

intruder goes one step further and finds this case in the public data file, the risk

Fig. 1 Hypothetical map of Washtenaw County, Michigan, revealing the characteristics of a single
respondent, with the location of that respondent’s home

5 It is important to note that addresses are never available for U.S. census data, and could never be

mapped in this way. This is not necessarily the case for other data sources, however, where members of

the data production team might have access to addresses and believe that mapping them would be useful.
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becomes much greater. Not only are there many more attributes in the public data

file that might make it possible to identify the survey respondent, but there may be

responses to other, more sensitive questions in the public data file. The data

producer may be willing to take a chance that an intruder can identify an individual

and know that he is male, black, 50 and over, and works within five miles of his

residence, but questions about income or personal behavior may reveal something

that the respondent did not want others to know. This could seriously compromise

not only the study in question, but the whole process by which social scientists

convince their research subjects to reveal information (Singer et al. 1993).

This nightmare exists because researchers have changed their approach to

managing, collecting, and analyzing data, and they have done so for the good reason

that they can answer important questions by doing so (Rindfuss 2002). Researchers

wish to make use of information such as location in their analysis; this by design has

an increased risk of disclosure. Most of the data collected are not new: data

producers have always had to know the identity of their respondents, including

name, address, telephone number, or school, and possibly their social security or

driver’s license number, the location of their employment, or the places where they

own agricultural or other property. Until the change that we document here, few

data producers had the means to release spatially explicit information (for example

through maps), and extremely few potential intruders had the technical expertise to

use what information was released to identify survey respondents. Moreover, until

fairly recently data producers and secondary data users were content to operate

within a system that tried to ensure that data subject to long-term preservation and

used for secondary analysis had all direct identifiers removed, including locations as

well as name, address, telephone, and social security number.

There is a good reason why researchers wish to make use of spatial data: it has

the potential to produce answers to important questions. Among the earliest known

models for this kind of productive research is John Snow’s famous study of the

London Cholera epidemic of 1854 (see Fig. 2), where he mapped the prevalence of

disease and the proximity of disease to the pumps that London’s population used to

obtain drinking water (Snow 1855; Tufte 2001).6 The pump closest to the most

cholera cases was the likely source of the disease. The value of the cartographic

analysis is in direct proportion to the precision with which the researcher knows the

location of the disease outbreak. Yet that precision also has the potential to reveal

information about the individuals or households whose attributes are included in the

map. The growing use of spatially explicit information derives not only from

advances in social science theory, but in technological changes, including the

increased availability and usability of Geographical Information Systems, and the

increased reliance on hierarchical and multi-level statistical models that often call

for information about spatial location in order to insert the individual or household

in its appropriate context, for example a block, census tract, or city (Armstrong

2002; Goss 1995; Armstrong and Ruggles 2005; Boulos et al. 2006; Brownstein

et al. 2006).

6 For an excellent summary of Snow’s work and its impact, see this web site maintained by the UCLA

School of Public Health: http://www.ph.ucla.edu/epi/snow.html.
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Much is new in spatial social science research, despite its antecedents. Since the

1990s (if not earlier), social scientists have been gathering information as part of

their surveys that is spatially explicit and integral to the analytic core of their

research. Researchers who study the relationship between population, land use, and

environment have asked respondents about the location of their agricultural plots,

and then surveyed those plots and recorded their location. They have also linked

those locations to remotely-sensed satellite and aerial photo data.7 These data give

their research an unequalled spatial richness that is resonant with that of the

classical works of epidemiology, and has similar potential to answer important

research questions.

The tension revealed by the data archivist’s nightmare is a conflict between two

concepts. On the one hand, disclosure limitation procedures are designed to

eliminate those attributes or combinations of attributes that make any respondent

unique. We work to eliminate uniqueness. On the other hand, as in the case of

Snow’s map, the locations in spatial data are unique by definition, and their value

comes from their uniqueness. In this case, we work to preserve uniqueness. This

conflict can also partly be revealed as reflecting the interests of the parties whose

interests are at play in terms of spatial data and disclosure.

Competing Needs in the World of Data

The data world is populated by individuals and groups who have competing needs

and goals. In the simplest way (Fig. 3), we can represent three classes of individuals

with a professional interest in data (data producers, data archivists, and data users),

as well as the survey respondent, who is a crucial participant but not professionally

involved. Each of these parties has its own view of the world of data dissemination,

with its own needs and sources of anxiety. Data producers are involved in the

process of data production because they see a need to answer important research

questions; that need is primary. At the same time, they are increasingly pressured—

both by research funders and by professional values—to release their data for use by

Data
Producer

Survey
Respondent

Data
Archive

(Respons-
ible to 

Everyone

Data User

Data User

Data User

Data User

Data User

Fig. 3 A simple model of actors and actions in the public data world

7 Some of this work is well summarized in two National Academy Publications (Liverman et al. 1998;

Entwisle and Stern 2005), and especially in Moran and Brondizio (1998) and Entwisle et al. (1998).
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others. They also sometimes face with ambivalence the conflict between a goal of

maintaining complete control over their data and an alternative approach that hands

the data over to the data archive’s specialists in the preservation and dissemination

of data. Data users are not a totally separate group, because they overlap in many

cases with data producers. Data users, on the other hand, need access to data that can

serve their research questions without being subject either to restraints on access to

data or to limits on the analytic utility of the data. Survey respondents have been

brought into the research process because information about them has value for

important societal questions. Researchers promise them confidentiality and

preservation from unnecessary risk of harm in order to secure their consent to

participate (Singer 1993, 1978; Singer et al. 1992, 1995). These promises must be

kept, ensuring the long-term protection from harm of survey respondents. The data

archivist attempts to serve all the needs just listed, and more. We are responsible for

helping the data producer preserve and share his or her data, for helping the data

user get relatively easy access to data that will answer the research questions that

they have identified, and for constantly being on the watch to preserve the

confidentiality promises given to the survey respondent.

Meeting all these needs by and for all the parties to the research process has

become a constantly moving target and an ever more complicated process,

especially over the past decade. At the very heart of the problem is the increasing

quantity of information about individuals that is available to the public, or available

with relatively little difficulty and at relatively low cost (Sweeney 2001). On-line

telephone directories are the simplest of these publicly available and searchable

databases. Others are more restricted, but they have much more information, such as

proprietary (but still widely available) marketing and credit databases (such as

Experian—http://www.experian.com), and other more public sources, such as the

Aristotle database (http://www.aristotle.com) that is largely built from voter regis-

tration data, are available to anyone who is willing to pay a fee. One only has to

spend a short time searching the web to know that there is a great deal of infor-

mation readily available.8 The danger of public release of information is made more

complicated by the rapid increase in computing power available to all, which means

that efforts at data matching and data mining that would have been unattainable to

most intruders a few years ago are no longer outside the realm of possibility. Spatial

data add to this problem by making it easier for the intruder to refine the search

based on geographical constraints.

At the same time that it has become easier for the intruder, the public—and

public officials—have become more sensitive to the risk of disclosure (Robbin

2001).9 This sensitivity has increased the resistance of potential respondents to

participation in surveys. Throughout the U.S. the public discussion of identity theft

8 Searching any of the commonly used online directories (whitepages.com, netscape.com, etc.) for a

name yields a link to a service that will do a background check on that individual, as well as perform

other kinds of searches, all for a moderate fee. For an example, see http://www.publicdata.com/.
9 On March 1, 2005, the U.S. Census Bureau named Gerald W. Gates its first ‘‘Privacy Officer.’’ The

Bureau’s concern about public perceptions and their impact on doing its job is evident in the web page

entitled ‘‘Are you in a survey,’’ which is part of the Bureau’s Data Protection and Privacy Policy web

page: http://www.census.gov/privacy.
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has grown in volume and frequency, leading to increasing caution about the sharing

of information.10 The general discourse about these issues has been heightened by a

number of legislative initiatives.11 There have been a steady stream of efforts since

the 1970s to protect privacy (the Privacy Act of 1974), keep student and other public

records from being disclosed (the Federal Family Educational Rights and Privacy

Act of 1974), and culminating recently with the extensive requirements of the

Health Insurance Portability and Accountability Act of 1996 (PL 104-191),

otherwise known as HIPAA, and the Confidential Information Protection and

Statistical Efficiency Act of 2002 (CIPSEA).12 While it is important to emphasize

that the most damaging public releases of information have come from intrusions

into confidential administrative databases held by universities, government agen-

cies, and private businesses, and not from statistical or research data, the discussion

has led to heightened public anxiety about all forms of data collection and data

maintenance.13

This is where the intruder, the last party to our public data world, enters the

picture (Fig. 4). By adding the intruder to our picture, we see that in many ways the

data files become the central element in our conceptualization, with a variety of

actors surrounding them. Each of these actors—the human subject, the various

research interests, and the intruder—have their own goals with regard to the data

and their own relationship with the other parties. And each is constrained differently

by legal and regulatory constraints, no more so than the actors who are committed to

conducting and facilitating research.

The identity of intruders into social science data remains a mystery to us, which

is probably a good thing because it means that there have not yet been enough

intrusions into these research data to warrant serious study. It is likely—but not at

all certain—that such intruders are different from the criminals who are known to

exploit commercial databases in order to commit identity theft. We presume that

one category of intruders are those who know someone is involved in a study,

perhaps an angry spouse or a curious parent who feels that they have sufficient

reason to tackle data in order to discover important information. We presume that

another category of intruder is a ‘‘hacker’’—someone who has an interest in

understanding technology and a grudge against the system—who attacks a data

source merely because he can and because he enjoys disruption. There is limited

evidence about the existence of both of these categories of intruders, but it is limited

10 There are a large number of discussions of identity theft in the news media and on public agency web

sites, as well as special-purpose organizations that purport to work to thwart identity theft, but the

quantity of serious academic and legal discussion of the problem thus far is quite limited.
11 The University of California Libraries have a good web site on Privacy legislation and issues at

http://libraries.universityofcalifornia.edu/privacy/legis.html#federal.
12 The Privacy Act of 1974 (PL 93-579-5 U.S.C. 552a); the Federal Family Educational Rights and

Privacy Act of 1974 (FERPA), dated July 17, 1976 (20 U.S.C. Section 1232g-34 CFR Part 99); and the

Health Insurance Portability and Accountability Act of 1996 (PL 104-191); Confidential Information

Protection and Statistical Efficiency Act of 2002 (PL 107-347-44 USC 3501).
13 In February and March, 2005, the major story has been the unintentional sale of data by the data

brokers ChoicePoint and Lexis-Nexis to criminals who apparently used the information for identity theft.

See, for example the multitude of stories in the New York Times, or Bruce Schneier’s weblog:

http://www.schneier.com/blog/archives/2005/02/choicepoint.html.
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for good reason: data producers and repositories rarely disclose any evidence they

might have of intrusions or intruders, or even whether such intrusions have taken

place. Our limited knowledge about intrusions means that we can only speculate

about intruders, their practices, and their motives.

Disclosure Limitation Basics

The body of literature on disclosure limitation methodology dates to the 1970s and

has become quite large.14 The field emerged in the late 1960s as computer scientists

discovered new efficient means to link administrative records (Fellegi 1972). In

1976, the Federal Committee on Statistical Methodology (FCSM) formed a

subcommittee to investigate ways to release statistically useful information without

subjecting respondents to confidentiality risks. In 1978, the committee issued its first

report, ‘‘Statistical Policy Working Paper 2: Report on Statistical Disclosure and

Disclosure Avoidance Techniques’’ (Subcommittee on Disclosure-Avoidance

Techniques 1978). Working Paper 2 set forth a framework for defining statistical

disclosure and summarized the techniques available for limiting disclosure risk in

data products. Although updated during the past quarter-century (Subcommittee on

Disclosure Limitation Methodology 1994), these techniques continue to be used as

the foundation of disclosure limitation practice today.

Data 
Files

Research 
Interests:

Data Producer

Data Archivist

Data User

Legal & 
Regulatory 
Constraints

Human
Subject’s:

• Comprehension of
informed consent 
statements
• Perceived 
likelihood of 
intrusion attempt
• Perceived 
success of attempt
• Perceived harm of 
disclosure Intruder’s:

• Motivation to learn 
data
• Prior knowledge 
about subject
•  Technical 
capabilities 
regarding intrusion

Fig. 4 A more complex model of actors and actions in the public data world

14 Duncan (2001) provides a brief and effective overview, with a bibliography. For a fuller (but

obviously not complete) bibliography on the topic, see O’Rourke and Gutmann (2005), on-line at

http://www.icpsr.umich.edu/HSP/citations/index.html.

Providing Spatial Data for Secondary Analysis 649

123

http://www.icpsr.umich.edu/HSP/citations/index.html


The principles laid out in Working paper 2 and in important subsequent work by

many authors include: (1) Releasing samples from larger populations; (2) Reducing

variability of categorical data where the attributes facilitate identification of specific

sub-populations in the data; (3) Suppressing data that render unique cases visible;

and (4) Stochastically perturbing individual values in a manner that retains the

original covariate structure. In technical terms disclosure limitation involves

manipulating or masking a data matrix. Following important work by Cox (1980),

Dalenius and Reiss (1982), Roberts (1986), Dalenius (1986), and Duncan and

Lambert (1986), Duncan and Pearson (1991) provide a clear and accessible

description of the methods available for the reduction of disclosure risk. More

recent monographic treatments by Willenborg and de Waal (1996, 2001) and Doyle

et al. (2001) update the framework to emphasize disclosure risk assessment and

administrative alternatives to statistical solutions.

In this section we provide an overview of disclosure limitation and attempt to

establish some ground-rules for understanding how disclosure risk can be

minimized and what such minimized disclosure risk means for subsequent analysis.

Here, we are concentrating on disclosure limitation in situations where spatial data

are not explicitly in play.

Our goal in limiting disclosure risk is to minimize the visibility of unique

respondents. The simplest and most dangerous case of a unique occurs when an

individual in a survey has a combination of characteristics that would make him or

her unique in the general population, thus making the respondent easily identifiable.

Consider an individual who has a unique occupation within a large geographic area,

such as the single member of the U.S. House of Representatives within some states.

Somewhat less dangerous occurrences arise when a respondent has unique

characteristics within the survey (but not necessarily in the general public), and

when there are attributes of the survey design that make it possible to identify that

individual. An example of this kind of unique would be a study with a highly

clustered design (for example, schools), where it was possible to find out about the

sampling frame. It would not be a surprise, for example, that students, parents,

teachers, and staff, not to mention other members of the community, had learned

that a given school was a primary sampling unit for a school-based survey. Highly

clustered sample designs pose serious disclosure risks, both because they provide so

many opportunities for there to be unique cases, and because so many individuals

are likely to know of the study’s existence. Most forms of explicit spatial data also

pose serious disclosure risks.

We limit disclosure risk first by eliminating all obvious identifiers, whether they

be direct or indirect. A direct identifier is an attribute like a name, social security

number, telephone number, and so on. Indirect identifiers are attributes which are

not necessarily exclusive to the individual in question, but can be used in

combination with other measures to unambiguously identify. For instance, in a

demographic dataset, the date of birth and date of death taken together with county

of residence can work as indirect identification mechanisms. After addressing

obvious identifiers, we focus on other cases that have unique combinations of key

attributes. Data from these cases can be modified or transformed in a number of

ways to confuse potential intruders.
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We explain this in more detail later, but the key is to change the data matrix (by

adding, subtracting, or modifying cases) in order to prevent the intruder from

knowing with certainty if re-identification occurred.15 What may be most important

in thinking about disclosure limitation is that the data producer consider these issues

as close to the beginning of the project as possible. A dissemination strategy is not

sufficient if it only consists of a statement to the sponsors of the research that says

that the investigator will share the data. Rather, it is essential that the investigators

plan for dissemination from the very start of their research, and possibly even

earlier. Many things can go wrong if not planned for early. Early planning helps

everyone involved in the process make good decisions about the ultimate

dissemination of a data collection and helps prevent inadvertent mistakes that can

complicate dissemination. The publication of maps with individual cases shown is

one of them. Appropriate informed consent procedures and discussions with local

Institutional Review Boards for human subjects are another. Moreover, it is not

good practice to announce to the public or the research community the location of

research sites that can be thought of as primary sampling units, despite how grateful

we are that a school, hospital, location, or other site has agreed to participate. That

information alone is enough to compromise a data sharing plan for a project, and

limit our ability to share the data in the future.

Conceptually, in order to understand how to think about disclosure risk and

disclosure limitation, we should see the data in a set of survey responses as an n-by-

p matrix (Fig. 5). Each of the n-rows provides information on i subjects for p
attributes. The rows represent records for individual respondents, while the columns

represent the values provided by the respondent to each question. Key attributes are

those that when combined can identify a respondent, even when identification

requires information coming from other, external sources. Disclosure risk is reduced

by eliminating unique sets of key attributes, and by adding noise to data elements

(Kim 1986; Kim and Winkler 2003). We accomplish this by changing either

records, or attributes, or both.

Records can be changed by making public only a sample of the original cases, so

intruders cannot be sure that someone they know in the sample is actually

represented by the record identified (Fig. 6a). An example is a parent of a child

enumerated in a school-based study. The parent knows that the child is in the overall

sample because he signed a release, but he may not be able to be certain that he has

4414

411

pnpn

pnpn i

X = 

Fig. 5 Disclosure limitation
techniques: matrix masking of
non-spatial data. Consider the
dataset X to be an n-by-p matrix.
Each of the n-rows provides
information on i subjects for p
attributes

15 For example, the public use files from the National Longitudinal Study of Adolescent Health (Add

health) that are distributed by the Sociometrics Corporation (www.socio.com) only contain a randomly

chosen one-in-two sample of the original cases.
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identified the correct respondent in the sub-sample because some cases have been

eliminated. Alternatively, we can add synthetically generated records to multiply

the number of cases that share key attributes, eliminating uniques. In this case we

create a situation where every unique in the original sample was represented by two

or more cases, making it impossible to know which one of them is actually the case

the intruder has in mind. A third alternative for record changing is to displace

records spatially (Fig. 6d). In this transformation, we swap records from one place

to another, so that information from an individual with a certain set of key attributes

is exchanged with the information from another individual, located in a different

geographical area, but who matches the same attributes. (Dalenius and Reiss 1982;

Fienberg and McIntyre 2004; Takemura 2002; Zayatz 2003). In this case, the

intruder believes that he has identified an individual he knows, but attributes that are

not shared between the two cases are not necessarily the same. They may have the

same age, sex, race, occupation, and marital status, but their response on income,

attitudes, or other behaviors may be different. The intruder believes that he has

A. Releasing only a sample of the data (subtracting rows from X) 

 del del del del 

  n2 p1  n2 p3

    X sampled =

  n4 p1  … … n4 p4

B. Dropping sensitive variables from the file (subtracting columns from X) 

 n2 p1 … … del 

  del 

    X -sp =  del

  n4 p1  … … del 

C. Altering sensitive cells through recoding, collapsing, top or bottom coding,  
    or adding stochastic error (perturbing X) 

 n2 p1 … … del 

 n2 p3’

    X perturbed =         n3 p2’

  n4 p1  … … n4 p4

D. Swapping or relocating attributes from one record to another 

 del del del del 

  n4 p1 n4p2 n4p3 n4 p4

    X swapped =

  n2 p1 n2p2   n2 p3 n2p4

Fig. 6 Disclosure limitation techniques: matrix masking of non-spatial data. Four specific approaches
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identified a case, but he is mistaken in the information that he draws from the

process.

Transforming attributes is a different process, although it shares characteristics

with record-changing procedures, specifically with record swapping. In general,

attribute transformations require us to change the values of one or more of the

attributes of an individual case in the study in order to reduce the likelihood of their

being identified by values in the data. The simplest way to do this, although it can

represent a substantial reduction in the analytic value of the data, is to eliminate

sensitive variables completely (Fig. 6b). Tail-censoring (of which top-coding is a

special case) is another category of attribute transformation, where rare values in the

tail of a distribution are grouped together so that none of them exceeds a certain

range, for example recoding incomes over a certain amount so that all those

individuals have as their income the cut-off (say by recoding all incomes over

$100,000 to ‘‘$100,000 or more’’). Tail-censoring or top-coding is a special case of

all forms of perturbation, including recoding, collapsing, bottom coding, and adding

stochastic error (Fig. 6c). Some of the other widely-used approaches are micro-

aggregation, where individual values are clustered into small aggregates of size k,

and then replaced with the average value from the aggregate (Domingo-Ferrer and

Mateo-Sanz 2002; Domingo-Ferrer et al. 2002; Sande 2002), and the post-

randomization method (PRAM), where scores from categorical variables are

changed to a different score prescribed by a probability mechanism.

The best efforts at disclosure limitation make use of a wide range of expertise,

drawn not only from the producers of the data, but also data users, statisticians, and

experts on data dissemination and disclosure (O’Rourke 2003). When done

effectively, it retains statistically useful variables and does not change the statistical

properties of the data. In reality, changes to the statistical properties may be

inevitable, and at the very least these changes may not always be fully understood in

advance (Little 1993; Domingo-Ferrer and Torra 2001; Armstrong et al. 1999). A

further limitation is that many disclosure limitation procedures have a dispropor-

tionate impact on the analysis of small sub-populations that may be of high research

interest, for example racial minorities, pregnant women, and people with rare health

problems. Because these individuals are infrequent in the population, they may

require more data transformations to prevent disclosure, thereby further complicat-

ing statistical analysis.

As a practical matter, researchers and data archivists have learned that they

cannot always limit disclosure risk enough so that data may be made available to the

general public, even under data use limitations like those imposed by ICPSR.

Instead, the most effective practitioners of data sharing for sensitive data have

developed schemes whereby they categorize data into as many as four or five

categories, depending on the sensitivity of the data and the risk of disclosure after

masking procedures have been completed.16 Low risk data can be shared widely. In

the case of sensitive data or data with higher disclosure risk, restricted use

16 See, for example, the restricted data protections for the Los Angeles Family and Neighborhood Survey

(L.A. FANS) at http://www.lasurvey.rand.org/data/restricted; the National Longitudinal Adolescent

Health Survey (Add Health) at http://www.cpc.unc.edu/projects/addhealth/data; and the Health and

Retirement Survey (HRS) at http://hrsonline.isr.umich.edu/rda/reslis2.php.
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dissemination may be more desirable. An example would be when the data user

(and his or her employer) is required to implement data protection technology and

sign a contract ensuring the promise of non-disclosure. In the most sensitive cases,

these data may only be made available in a data enclave, like those at major data

centers like the Carolina Population Center, ICPSR, the Institute for Social Research

at the University of Michigan, the National Center for Health Statistics’ Research

Data Center, and the network of Census Research Data Centers maintained by the

U.S. Bureau of the Census.17 These more restrictive solutions—especially those

involving enclave protection—are an important solution but a last resort for all

concerned because they severely restrict access to data for many potential data users

who have difficulty relocating to the site of the enclave.

Recent research has also led to insights into an alternative to restrictive solutions,

in the form of synthetic data (Little 1993; Rubin 1993; Raghunathan et al. 2003;

Abowd and Lane 2004; Reiter 2002, 2005). Conceptually, synthetic data can be

created by modeling the attributes of a given research data set, and then using those

modeled attributes to create a synthetic population with the same statistical

characteristics. Because the cases in the data file are all created by the

‘‘synthesizer,’’ they can be publicly disseminated without any disclosure risk at

all: all of them are made up in the modeling process, and none of them are actual

human research subjects. Rubin (1993) argues that datasets generated through

multiple imputation procedures can actually provide more useful information to an

analyst than ‘‘real’’ data coarsened through more traditional disclosure techniques.

While it is not yet clear to what extent synthetic data will be useful for all research

questions, they constitute an important starting point for thinking about ways of

making data public while still preserving the confidentiality and privacy of survey

respondents.

Disclosure Limitation and Spatial Data

Spatial data add a wealth of opportunities for social science research, while

simultaneously adding disclosure risk because of their very precision. In this

discussion we do not attempt to differentiate between the growing variety of forms

of spatial data that are available or may be available. Some of these data are as

simple as the exact address or latitude and longitude of a house, school, medical

facility, or place of work, obtained during survey data collection. Other forms of

spatial data come from various kinds of remotely-sensed sources, including aerial

photographs, satellite imagery, and the output from devices that help ascertain and

record an individual’s location, such as a cell phone or the toll-paying tags now used

in many localities. From our point of view the source of information is less relevant

than the fact that one or more precise locations can be associated with data of use to

social science researchers.

17 For the NCHS Research Data Center, see http://www.cdc.gov/nchs/r&d/rdc.htm. For the Census

Research Data Center program and centers (there are currently 9, with a 10th opening soon) see

http://www.ces.census.gov/index.php/ces/researchprogram.
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We begin our discussion of ways to deal with spatially explicit data by

emphasizing that most mechanisms for limiting disclosure in data where locational

precision is not required involve collapsing geographical categories. The widely-

used Public-Use Microdata Samples (PUMS) produced by the U.S. Bureau of the

census for the 2000 enumeration of the United States are a case in point (U.S.

Bureau of the Census 2003).18 In these data, for example, no area with a population

smaller than 100,000 persons is identified in the 5% sample, and none with a

population smaller than 400,000 is identified in the 1% sample.19 By collapsing

geography to these categories, and then by invoking a series of other disclosure-

reduction measures, the Census Bureau ensures that there are no unique individuals

in any of the geographic areas it reports.20 The PUMS, of course, is drawn from

what is already a very large sample, consisting of approximately 15.8% of U.S.

residents, those who completed the long form of the census questionnaire. Smaller

samples can require more substantial collapsing of geographical units, and might

report geography at a larger scale, for example the state or region, or in some

instances, without any geographical precision at all, besides reporting that all of the

respondents live within the United States.

Aggregating geography has the desirable effect of easily reducing disclosure risk,

but it does so at great cost, because it limits the precision with which we know

where people live, or work, or transact other activities in their lives. We see in

Figs. 7 and 8 the dramatic impact of reducing spatial precision, here by collapsing

our imagined Washtenaw county population (divided into Black and a non-Black

respondents) to the scale of census tracts. Figure 8 is interesting, but it can’t give us

the detail shown in Fig. 7, and if we were to collapse even more thoroughly—to the

city, county, or state—we would have a very different kind of geographical

information, with much less precision. Spatial precision, as we learned from John

Snow’s work, can have important analytic value. The key to defining best practices

for public use of spatially explicit data will be to find the most effective compromise

between masking data by aggregating geography so that data can be made public,

and restricting data so that the maximum analytic value can be preserved. We need

to keep as much information as possible while protecting respondents from breach

of confidentiality, at the same time not losing sight of the special characteristics of

spatial information: it is useful because it is precise.

When we turn to strategies for diminishing disclosure risk for spatially explicit

data, we find ourselves with three major alternatives, each designed to reduce the

level of risk while maintaining as much analytic utility as possible (Armstrong et al.

1999). We can summarize these approaches as ones that adjust the coordinates, ones

that aggregate points, and ones that attach contextual data prior to dissemination.

18 The areas of 100,000 or more in the PUMS are called Public Use Microdata Areas (PUMAs), and the

areas of 400,000 are called super-PUMAs. The full range of disclosure avoidance techniques used by the

Census Bureau are described in the PUMS Technical Documentation (U.S. Bureau of the Census 2003),

and in Hawala (2003). For the debate that led to these classifications, see Robbin (2001).
19 The 100,000 rule is embedded in the FCSM Checklist (Interagency Confidentiality and Data Access

Group, Federal Committee on Statistical Methodology 1999).
20 Zayatz (2002); Zayatz et al. (1996). For other U.S. agencies, see Jabine (1993). For the more general

question, see Duncan et al. (1993).
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All of these can be successful at masking the identity of respondents, and all do so

by reducing some of the potential data use or analysis that can be done. The problem

posed by spatial data makes these solutions both necessary and obvious. When we

attach specific geographic coordinates to social survey data, we provide those with

access to the data with an absolute means to recognize the location at which the

Fig. 8 Data about hypothetical respondents to survey, aggregated to census tract

Fig. 7 Highly detailed data about hypothetical respondents to a survey
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activity (living, working) takes place. Only by changing those coordinates in some

way can we limit disclosure, but by changing or masking those coordinates we

reduce their precision. The key is to make those changes while still retaining as

much of the core information represented by the coordinates as possible.

Adjusting Coordinates

The simplest way to minimize the risk of disclosure in the case of data with exact

spatial coordinates is to displace those coordinates in some way. The risk in doing

so, of course, is that displacement may distort the spatial information that makes the

data valuable in the first place. Among the techniques used to adjust coordinates, the

first and most straightforward is to displace points, either by shifting them with a

fixed or random increment. We can, for example, add or subtract a fixed or random

amount to both the x-axis and the y-axis. Other alternatives that fall in the same

family of procedures are to change the scale that represents the relationship between

points, to rotate them, or to use some combination of displacement, scale change,

and rotation.21 Adjusting coordinates in a systematic way may preserve internal

spatial relationships, so that a study designed to measure the distances family

members travel to assist each other may maintain those distances, but the more

systematic the adjustment, the more likely that an intruder can reverse the process

and decode the original locations. Combining adjustment procedures makes it easier

to mask location, but at the same time makes analysis more difficult. It may also be

necessary to individualize data sets with adjusted coordinates, each designed to

optimize analytic capacity for a given research application while minimizing the

risk of disclosure. Yet creating a multitude of individualized data sets based on a

single original study increases the risk of confusion among data users and makes it

possible—at least in theory—for an intruder to combine customized but public data

sets and reverse-engineer the masking used in them.

Aggregation

An alternative to adjusting coordinates is to aggregate points. At its simplest,

aggregation is exactly what researchers have always done to mask location and

minimize the possibility of disclosure. Instead of representing the exact location, we

collect and summarize values for an administrative unit, such as a census tract,

county, city, state, or even country. There are also more sophisticated ways of doing

this, which are fundamentally similar to other kinds of micro-aggregation. If we

believe that the distance between relatively close-by points is not essential to the

analysis, we can take a fixed or varying number of nearby points and give them the

same location, either that of one of the points, or some synthesized location (for

example the centroid of the polygon implied by the original points). This has the

potential to maintain certain information for analysis at a scale less than that of an

21 It is usually not possible to perform these adjustments automatically, because it is often necessary to

ensure that the adjusted coordinates do not conflict with physical realities, for example by putting a house

in a lake, or a road that mounts straight up a hill or mountain.
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arbitrary administrative unit, while still masking exact locations. It is less useful if

the exact spatial relationship of one location to the others is essential to the analysis.

Attaching Contextual Variables

Sometimes the only reason that researchers require spatial information is in order to

be able to attach contextual variables. We want to know, for example, the

characteristics of the population (or some other set of attributes) of the

administrative unit in which the individual lives, rather than the exact location of

that residence or the distance from that residence to place of work or health care. By

providing the data user with the exact location of the respondent’s home we give

that data user the flexibility to merge individual-level data with whatever contextual

data are most appropriate. At the same time, this strategy raises the risk of

disclosure. The alternative is for the data producer to attach a set of contextual

variables to the individual-level data, while removing the precise location from the

data set.22 This has the advantage of preserving confidentiality while giving the data

user a range of contextual variables with which to enrich his or her analysis. On the

other hand, it reduces the data user’s flexibility, because she or he is dependent on

the contextual variable choices of the producer. And unless done carefully, it does

not necessarily eliminate disclosure risk. Depending on sample design and the

contextual variables attached, the contextual variables themselves may constitute a

unique geographic definition, and allow an intruder to identify the location of the

contextual unit, for example a census tract or county. It is easy to imagine that a

combination of population size broken down by sex and race might uniquely

identify an area the size of a census tract, at least within a known state or census

region. If it were possible to match a respondent to an area that small, the task of

identification based on other attributes would be much easier. The same is true if the

respondent were identified by area code and telephone exchange, especially given

the newly published demographic data available at that resolution, as well as at the

resolution of the nine-digit zip code.23

This discussion of spatial data and the means that might be used to mask location

produces a few key findings. The first is that it is possible to preserve spatial

relationships within data while reducing disclosure risk, but the task is not an easy

one. Either we reduce the analytic value of the data or we increase the risk of

disclosure. If the attributes of interest can be preserved by aggregating locations,

either through ordinary aggregation or micro-aggregation, or by adding contextual

variables and eliminating the precise locations, the task is much simpler—again at

the expense of losing spatial precision. Whatever approach we take, Armstrong and

his colleagues have shown that different approaches allow different kinds of spatial

analysis, implying the creation of more than one public-use data set to represent a

single original study. That may be satisfactory, but there is an unmeasured risk

22 This is the practice of the National Survey of Family Growth (NSFG), for example.
23 These data are available from Geolytics, Inc., a producer of high quality and widely used demographic

products. The risk posed by these products with demographic attributes and differing geographies, when

coupled with other attributes, is well-described in Steel and Sperling (2001).
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created by putting multiple data sets in the public domain, because it may be

possible to combine them and reverse-engineer the masking in order to discover the

original locations. Spatial data are also prime candidates for restricted-use data

agreements and enclave protections, with the same warning that all such restrictions

sharply diminish the availability of research data to many potential users and

thereby limit the return on investment. Synthetic data are an enticing prospect for

spatial data, but relatively little work has been done in this area, and the value of

synthesizing data with specific spatial attributes is still unknown.

Challenges for the Actors

Early in this paper we identified a group of actors whose roles are important in

understanding disclosure risk. Before we turn to best practices and recommenda-

tions it is worthwhile returning to them and their concerns, and to highlight the

challenges each faces, especially in the situation where spatially explicit data have

been created and have the potential to be shared with other researchers.

Data producers need to be applauded for their determination and creativity in

coming up with ways to collect and analyze data with so much more valuable

information than has been previously available. Spatial data are a wonderful tool

that enhances research possibilities for everyone. At the same time, data producers

need to understand from the very beginning of the research process that there are

risks associated with sharing their data, and they need to work with determination to

overcome those risks without giving up and without falling back on needlessly

restrictive practices that make data sharing difficult for the rest of the community.

They need to embrace and support innovative work in the area of data

transformation and synthetic data creation if those new ideas will lead to wider

use of their data. Similarly, they need to form partnerships with the data archiving

and preservation community to ensure that they are aware of the most up-to-date

techniques for ensuring that their data are preserved and made available for others.

Their other close partners are survey respondents, who need to be protected in a

rapidly changing world, but who also are required to take seriously the informed

consent that they give.

Secondary data users need to be aware of the risks of disclosure and the

obligations that data producers and data archivists have taken on in the area of

respondent protection. They need to understand that spatially explicit data and data

with other kinds of highly clustered sample designs pose special disclosure risks that

require special protection and treatment. Their challenge is to find ways to work with

data that have in some cases been transformed in ways that make them less useful for

secondary analysis than they were to the primary analyst, or that have restrictions on

use that make them less than optimally accessible. Data users have an obligation to

engage with all the other actors in a constructive way to make sure that as much

research as possible is done, with as little risk of harm to respondents as possible.

We in the archiving community have the challenging role of being in the middle

of all the action, with the responsibility to protect the interests of all the other

parties: producers, users, and respondents. Our challenge is to be pro-active in
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seeking out the best ways to preserve data and make them available, to

communicate these best practices to data producers, and then to document and

explain the resulting decisions to data users. Spatial data make that task more

difficult, because our world is increasingly changing from one where our only

obligation was to distribute totally safe and anonymous data to all who wanted it,

and where we knew how to ensure that safety. We now are part of a world where

opportunities to identify respondents grows daily, and where spatial information

makes that ever easier. Studies that were safe to distribute just two or three years

ago may no longer be safe to distribute without a refreshed disclosure review, or

without restrictions that make it difficult for data users to complete their research.

Best Practices and Recommendations

In addressing this moving target, part of our long-term research project involves a

survey of data producers funded by federal agencies, in which we ask them about

their practices for protecting the confidentiality of respondents. We will use the

results of that survey to continue to develop a list of best practices. We summarize

our discussion by emphasizing four main points.

(1) It is essential that the data producer think about dissemination planning as

early in the research process as possible, and consider questions of disclosure risk at

every stage in the research design. This is especially important in the case of spatial

data because the inadvertent release of certain kinds of spatial information can

diminish the ability to make other forms of data publicly available later.

For example, at the stage at which the investigator is applying for funds, she or he

should inform the potential funder that spatially explicit data are involved, and that

they cannot easily be released as anonymous public data, but may require some

form of restricted data release. These forms of data release may lead to additional

costs, which need to be born by one party or another, either funder, data producer,

data user, or data archive. In addition, it is crucial to reveal to Human Subjects

review boards that location data will be collected or merged with social survey data,

and that data dissemination is planned. It is equally important to include this notice

in the informed consent process. At the same time, it is reasonable to say that the

investigators will not publicly release identities or locations associated with survey

respondents.

At later stages in the process, it is equally important that researchers keep

disclosure risk in mind, especially for spatial data. We have shown the dangers that

follow from the publication of maps that identify individual respondents along with

their responses to individual survey questions. Any disseminated information that

reveals primary sampling units in highly clustered designs makes public release

sensitive, whether that information reveals the primary sampling unit directly (by

giving its name) or indirectly (for example by publishing characteristics of the PSU

that would allow it to be identified).

(2) There exists a large body of well-known practices that mask identities in data

and limit disclosure risk. These practices—briefly introduced and documented in

this paper—constitute the starting point for all assessments of disclosure risk and
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implementations of disclosure limitation strategies. Those who work on data sharing

are well advised to use those procedures as an explicit checklist, starting with the

work of the Subcommittee on Disclosure Avoidance Techniques (1978, 1994),

continuing with the work of Duncan and Pearson (1991), and including the recent

recommendations from Armstrong et al. (1999); Doyle et al. (2001); and Willen-

borg and de Waal (2001). The Checklist on Disclosure Potential of Proposed Data

Releases (Interagency Confidentiality and Data Access Group 1999) is a starting

point for the verification of these processes, which our research on best practices is

designed to complement and enhance. Those procedures that allow public data

dissemination often limit the analytic utility of the data, however, especially for

spatially explicit data.

The simplest example of the loss of analytic utility comes from removing spatial

information from the data file, especially if that removal takes away information that

was crucial to the study design (sample weights) or to the analysis that the original

research team conducted. Eliminating spatial variables used by the initial

investigators in their research may protect respondents, but it does not permit

secondary analysis or replication, which is the goal of data sharing. Effective data

sharing designs need to protect the needs of respondents while understanding the

needs of secondary data users, and not focus exclusively on the needs and desires of

data producers.

(3) One size does not fit all types of data and all types of users. Different data

users sometimes require different types of data, with different attributes from a

disclosure risk perspective. As Armstrong et al. (1999) show, it is possible to share

spatial data in more ways if the data producer is willing to transform the data

differently for different users, for example by performing microaggregation for

some while rotating the locations of points for others. The notion of customizable

distribution of data is an enticing prospect for the future, especially if we find a way

to ensure that multiple versions of the same underlying data do not lead to

potentially risky situations.

(4) The data producer and the data archivist need to be sensitive to the wide

variety of ways that data can be disseminated effectively, not all of which involve

masked public-use data sets. Other options, including restricted-use contracts, the

deposit of data in protective enclaves, and the enticing but not yet fully developed

concept of synthetic data sets are all options. Where precise information on location

is crucial to successful research, these options may be the only ones available.

Following those best practices will go a long way towards preventing our data

disclosure nightmare from ever coming to pass. The nightmare does not require that

someone has made spatial data public, only that whatever spatial information (maps,

for example) is made public be sensitive to ways that it can be used by an intruder to

locate respondents and then link them to non-spatial information that is made

public. Avoiding the nightmare requires a great deal of advance thought on the part

of the data producer about what she or he can publish without risking disclosure of

the identities of respondents, and about the fact that new technologies and systemic

weaknesses in our data systems make protecting the confidentiality a game with

moving targets. It is essential that we be proactive in ensuring as much protection as

possible.
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