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Abstract Recent studies indicate a relationship between measures of urban form as

applied to urban and suburban areas, and obesity, a risk factor for heart disease.

Measures of urban form for exurban and rural areas are considerably scarce; such

measures could prove useful in measuring relationships between urban form and both

mortality and morbidity in such areas. In modeling area-level mortality, geographic

relationships between counties warrant consideration because geographically adjacent

areas tend to have more in common than areas farther from each other. We modify

county-level indices of urban form found in the literature so that they can be applied

to exurban and rural counties. We then use these indices in a Bayesian spatial model

that accounts for spatial autocorrelation to determine if there is a relationship between

such measures and cardiovascular disease mortality for white males age 35 and older

for the time period 1999–2001. Issues related to the formation and usefulness of the

indices, and issues related to the spatial model, are discussed. Maps of observed and

expected relative risk of mortality are presented.
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Introduction

Over the past few decades there has been considerable increase in the number and

percentage of adults and children considered obese and overweight (Flegal et al.

2002; Mokdad et al. 2001). The medical consequences of obesity, including

increased risk of coronary heart disease, have been thoroughly documented (Rashid

et al. 2003; Surgeon General 2001). Substantial evidence also indicates that lack of

physical activity increases the risk of obesity and its consequences, while increased

exercise reduces obesity and heart disease risk (Surgeon General 1996).

The purpose of the present study was to examine the relationship between urban

form and heart disease. In this paper we use the term ‘‘urban form’’ to denote the

organization and structure of buildings, roads, and other physical components.

Urban form is not the same as urban sprawl. Urban sprawl denotes negative

examples of urban form. For example, Ewing (1997, as cited in Ewing, Schieber

et al. 2003, p. 1541) ‘‘consider[s] the term ‘sprawl’ to apply to any environment

characterized by the following: a population widely dispersed in low-density

residential development; rigid separation of homes, shops and workplaces; a lack of

distinct, thriving activity centers, such as strong downtowns or suburban town

centers; and a network of roads marked by very large block size and poor access

from one place to another.’’

Ewing, Schmid et al. (2003) in their study of 448 urban and suburban counties

found a relationship between a six-variable county sprawl index and body mass

index (BMI), minutes walked, and hypertension. Individual covariates in their study

included age, education level, and smoking status. Their sprawl index is an

abbreviated version of Smart Growth America’s sprawl index of metropolitan areas

(Ewing et al. 2002). Data sources included the Behavioral Risk Factor Surveillance

System surveys of the Center for Disease Control, U.S. Census data, and the Natural

Resources Inventory of the U.S. Department of Agriculture. High BMI is an

indicator of obesity, a risk factor for heart and cardiovascular disease (Rashid et al.

2003; Surgeon General 2001).

Applying urban-based concepts of urban form to nonurban areas is problematic.

For example, Theobald (2001, pp. 544, 548) found that data aggregated at county and

other coarse levels did not capture more finely-grained patterns in land use changes in

more rural and exurban areas, and that ‘‘relying solely on urban-based land-cover

classifications will likely underestimate large areas of low-density human settlement

beyond the urban fringe.’’ He further notes that a poverty of data, clear definitions,

and clear land-cover and land-use categories makes delineating land-use changes in

exurbia difficult. One result of this is a potential underestimation of the amount of

farm land lost to urbanization and development over time. Similarly, relationships

between health or other issues and increased development may not be easily seen if

measuring devices and techniques for determining land use and other changes in less

urban areas do not account for the unique characteristics of such areas.

Geography is essential in understanding both urban form and disease mortality.

Longley et al. (2001, p. 99), summarizing Tobler’s (1970) so-called First Law of

Geography, said ‘‘Everything is related to everything else, but near things are more

related than distant things.’’ Within a geographic area (e.g., a county) measures of
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spatial autocorrelation, both alone or with other characteristics, can be important

measures of urban form that in turn can illuminate other issues (housing, poverty,

etc.).

Spatial autocorrelation between areas also warrants consideration. Most statis-

tical models assume that the response variables (county-level heart disease mortality

for our context) are independent. If spatial autocorrelation exists between nearby

geographic areas for the response variable, then independence does not hold and

standard statistical variables are not valid. Today methods exist to perform both

normal and Poisson regression with a spatial autocorrelation component (Lawson

et al. 2003; Anselin et al. 2006).

The focus of the present study is more pedagogical and demonstrative, with

primary emphasis on index formation and the presentation of spatial modeling

issues. Substantive results, while not a primary emphasis of the paper, are briefly

presented and discussed. Using only 1990 U.S. Census data, we adapt components

of the Smart Growth America index of Ewing et al. (2002) that is designed for

suburban and urban counties to create measures of urban form that could be applied

to exurban and rural areas. These indices are then used in a Bayesian spatial model

to determine if they are predictors of county-level heart disease mortality counts for

white males age 35 and over for 1999–2001. In our spatial model areal

socioeconomic deprivation, age, lung cancer mortality (used here as a proxy for

air pollution), and spatial autocorrelation are all controlled for. The study includes a

discussion of issues of model fit and parameter estimation peculiar to spatial

modeling.

Study Population

The study population was comprised of white males age 35 years of age and older

who resided in the United States during the 1999–2001 period. About 35 years of

age was the cut-off age because the prevalence of cardiovascular disease is

considerably lower for younger people (Benjamin et al. 2003, p. 1065) while the

risk of heart attack and stroke is markedly higher for those aged 35 and over (Mayo

Clinic 2007). The study population has been restricted to white men because of

differences between men and women and between people of different races. There

are differences between males and females with regard to diagnosis and treatment of

heart attacks (AHRQ 2006; Riccotti 2003) as well as risk (NWHIC 2007). African-

Americans and other minority groups face a higher risk of heart disease than whites

(American Heart Association 2007a) and risk probably differs between nonwhite

groups. Future research on nonwhite groups will necessarily include developing

models involving counties with small or nonexistent nonwhite populations.

Data Sets

Counts of deaths due to heart disease, and age-adjusted mortality rates for lung

cancer mortality, were obtained using Type II Multiple Cause of Death Files for
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1999–2001 (NCHS 1999–2001) from the National Center for Health Statistics and

1990 and 2000 Population SF1 and SF3 Census Files (U.S. Census Bureau 1990,

2002a, b). All deaths, and only such deaths, whose underlying cause as per the death

certificate can be classified as I00–I09, I11, I13, or I20–I51 of the International

Classification of Diseases, 10th Revision (World Health Organization 1992) are

counted as due to heart disease. Measures of mortality, deprivation indices, and

1990 urban form indices (indices explained below) were calculated for 3,137

counties, combinations of counties, or county equivalents in the United States.

Counties and their equivalents in parts of Alaska, Virginia, and Montana were

combined (see Appendix A).

Urban Form Measurement

In a study of 101 metropolitan areas, Ewing et al. (2002, p. 10) note that ‘‘Sprawl,

and its antithesis, compact development, are constructs…they must be operation-
alized to be investigated empirically.’’ In operationalizing these constructs, the

authors created four factors using data from U.S. government and private databases:

density, land use mix, degree of centering, and street accessibility. The density

factor focused on residential population density and included measures of

residential population density for both the entire county and for more urban and

rural subsets, and average lot sizes of single-family homes. The land use mix factor

focused on diversity of land uses within a county: are homes, jobs, and businesses

geographically mixed or separated, and how much? A centering factor measured to

what degree residences and businesses cluster in limited areas within a metropolitan

area. Variables included percentages of the population within certain distances from

the central business district and the ‘‘coefficient of variation of population density

across census tracts’’ (2002, p. 23). The street accessibility factor was formed with

measures of block size. They reasoned that smaller blocks correspond to more

compact development while the larger blocks formed from curvilinear and

discontinuous road networks indicated less dense development.

After the variables were sorted into their four factors, principal components

analysis (PCA) (Kim and Mueller 1978a, b) was performed separately on the

variables comprising each factor. The principal component (PC) used to represent

the factor was the one that accounted for the greatest amount of variation among the

variables comprising that factor. For example, the component for street accessibility

that captured the largest amount of variance among its variables was considered to

be a reliable and valid measure of street accessibility. The authors then computed

one composite sprawl index from the four individual factors.

Formation of Urban Form Indices

The present study builds on the sprawl index developed by Ewing et al. (2002),

discussed above, which included over 100 metropolitan areas. We wanted to measure

every county in the United States. We found, however, that many of Ewing et al.’s
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variables were not easily (if at all) available for counties or nonurban areas. Therefore,

only 1990 U.S. Census data were used to derive the indices. The variables used by

Ewing et al. (2002) focused on urban characteristics, but we wanted both urban and

rural characteristics to be included. Therefore their factors were modified so they could

be used with both urban and rural areas. Given these restrictions, only measures of

density and street accessibility were generated for this study. Formation of land use

mix and degree of centering measures is left for later research. Finally, while Ewing

et al. used population counts, we use housing counts in our study. Theobald (2001)

recommends using housing density as opposed to population density to gauge changes

in land use, and our concern with the impact of the built environment points to use of an

indicator of built environment.

The density index of Ewing et al. was modified to add measures of exurban and

rural counties obtainable with U.S. Census data. As census definitions of urban and

rural have changed from 1990 to 2000, and since our eventual dependent variable is

1999–2001 mortality, we used Theobald’s (2001) definitions of urban and exurban/

rural housing density, listed below.

1. Urban blockgroups have a housing density of at least 1 unit/acre or 640 units/

square mile, slightly higher than U.S. Census.

2. Suburban blockgroups have a housing density of between 1 unit/acre and

1 unit/10 acres (64–640 units/square mile).

3. Exurban/rural blockgroups have a housing density of at most 1 unit/10 acres or

64 units/square mile.

Five variables comprise the density index. They are listed below.

1. Overall housing density (units/square mile).

2. Percentage of the area of the county covered by urban blockgroups (100 times

the total area of the urban blockgroups divided by the area of the county).

3. Percentage of the area of the county covered by exurban/rural blockgroups (100

times the total area of the exurban and rural blockgroups divided by the area of

the county).

4. Density (units/square mile) of urban blockgroups.

5. Density (units/square mile) of exurban/rural blockgroups. If the county has no

such blockgroups, then the variable is set at 64 units/square mile, the upper

bound for the density of such blockgroups.

These five variables were obtained or derived for each county in the United

States. Principal components were extracted on the five variables comprising the

density factor using PROC FACTOR (SAS Institute 1999a, pp. 1121–1193) in SAS

8.2 (SAS Institute 1999–2001). The factor that accounted for the greatest amount of

variation among the five variables was used to form the index. Factor loadings were

obtained for each of the five variables based on the PCA. The density index value

for a county is the sum of the five variables for that county weighted by the factor

loadings. For later analysis these indices were then standardized to have mean of

zero and standard deviation of one.
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The density factor accounts for 58% of the variation in our five-variable data set.

The reliability coefficient a = 0.81, indicating strong internal consistency among the

five variables. A higher index value indicates a more condensed area and less

sprawl.

The road accessibility index modifies Ewing et al.’s streets factor to include

larger blocks more likely to be found in exurban and rural areas. The variables

comprising our factor are:

1. The percentage of blocks in the county with area less than 0.01 square miles

(also used in Ewing et al.; 100 times the count of such blocks divided by the

total count of blocks).

2. The percentage of blocks in the county with area more than 1 square mile

(intended as a measure of proportion of larger blocks found in exurban and rural

areas, it is calculated as 100 times the count of such blocks divided by the total

count of blocks).

3. The mean area of all blocks with area less than 1 square mile (intended as mean

area of small and medium size blocks, it is calculated by finding the total area of

such blocks divided by the total count of such blocks).

These three variables were obtained or derived for each county in the United

States. Principal components were extracted on the three variables comprising the

road accessibility factor, and indices calculated for each county obtained, in the

same manner as for the density factor. The road accessibility factor accounted for

72% of the variation in our three-variable data set. The reliability coefficient,

a = 0.81, indicates strong internal consistency among the three variables. A higher

index value indicates a more condensed area and less sprawl.

Usefulness of Indices

An important question to consider is whether the indices discriminate between

urban and exurban/rural counties. We compared our indices against the 1993 Rural–

Urban Continuum Codes (RUCC) (USDA 2003). These codes classify counties that

are part of a U.S. Census-defined Metropolitan Statistical Area (MSA) by

population, and remaining counties by their level of urbanization and whether or

not they are adjacent to an MSA. While we do not claim that the RUCC codes are

necessarily the best standard of comparison or that our method is the best or only

method to use, we do submit that it is a reasonable first attempt.

The density and road accessibility indices were separately compared to the 1993

RUCC codes as follows. The RUCC classify all United States counties into 10

groups based on population and adjacency to a metropolitan county. We condensed

their 10 groups into three and classified each county into one of the three groups

below.

1. RUCC-1 consists of counties in MSAs with population of at least 250,000 (813

counties). This category covers most urban and suburban areas.
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2. RUCC-2 consists of non-MSA counties with urban population of 20,000 or

more (244 counties). Some of these are adjacent to an MSA and hence could be

smaller suburbs. Many of the counties not adjacent to an MSA may be stand-

alone small towns. We use this category as a buffer zone between clearly urban/

suburban counties and the exurban/rural counties.

3. RUCC-3 consists of non-MSA counties with urban population of less than

20,000 (2,029 counties).

The density and road accessibility index values were put in descending order. Higher

indices imply a more condensed environment and less sprawl. The 813 counties with the

highest index values were assigned to Density-1 (analogous to the RUCC-1), the

counties with the 244 next highest indices were assigned to Density-2, and the remaining

counties were assigned to Density-3. The road accessibility indices were handled the

same way. Nine counties with 1993 RUCC codes that did not have index values because

of boundary changes since 1990 were removed from this analysis. Crosstabulation

tables and inferential statistics for Chi-Square tests of independence were then obtained

on the three-level density variable versus the three-level RUCC codes, and on the three-

level road accessibility variable versus the three-level RUCC codes.

For the density index 2,351 (76%) of the 3,076 counties were in the same numbered

Density Level and RUCC Level (e.g., in Density-1 and RUCC-1, etc.). For these

counties both the index and the RUCC group indicated that they were in the same group

on the three-group urban-rural continuum. On the other hand, 303 (10%) of the 3,076

counties were at opposite levels of the continuum (e.g., in RUCC-1 and Density-3).

These counties were either in an MSA with a low density index or a county with a small

or nonexistent metro area with a high density index. The remaining counties differed in

their level numbers by one unit (e.g., in Density-1 and RUCC-2).

We found the road accessibility index to be slightly less satisfactory than the

density index. For the road accessibility index 2,203 (76%) of the 3,076 counties were

in the same numbered Road Accessibility Level and RUCC Level. On the other hand,

455 (15%) of the 3,076 counties were at opposite levels of the three-level continuum.

The remaining counties differed in their level numbers by one level.

Based on the comparison with the three-level RUCC continuum we conclude that

both the Density and Road Accessibility indices work reasonably well for

discriminating between urban and exurban/rural counties. With further study and

adjustments they may prove to be useful in making distinctions among exurban and

rural counties. The inconsistencies between our indices and the RUCC codes

indicate that further study is required to see how our (or their) measures can be

adjusted to account for these inconsistencies. So, while we cannot say that our

indices are a major improvement in urban form measurement for exurban and rural

counties, we do hold that they are a respectable step in that direction.

Spatial Modeling

A Bayesian spatial model was used to determine whether our indices of urban form

are predictors of heart disease mortality for our study population, controlling for

certain covariates (listed below). Before proceeding, we state two sets of disclaimers
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on what this section will do and what it will not do. First, we present and explain our

Bayesian model and its components only as applied to our study. We do not argue

that a Bayesian hierarchical approach is the best or only proper approach. Second,

with regard to spatial autocorrelation we only present and apply a model that could

be used in a Bayesian context to account for spatial autocorrelation. A statistical test

for spatial autocorrelation is presented later in the paper. The model used here, the

Intrinisic Conditional Autoregression (ICAR) model, is a specific form of the

Conditional Autoregression (CAR) model (Wakefield et al. 2001; Clayton and

Kaldor 1987). We do not argue for the ICAR or CAR as the best or only proper

approach to model spatial autocorrelation.

Statement of the Model

The outcome variable is the observed number of deaths due to heart disease given

the expected number of deaths and other covariates. It is reasonable to assess

observed and expected mortality or incidence counts in an area and then compare

the observed and expected counts (Lawson et al. 2003, p. 4). Since the dependent

variable is mortality or disease counts, a distribution appropriate for count data

should be used (Lawson et al. 2003, p. 38). The Poisson distribution is indeed such a

distribution. Therefore, Poisson regression with a log-linear link function was used.

Our model (in matrix form below) is the Poisson version of the generalized linear

model:

Y�Poisson kð Þ
lnðkÞ ¼ aþ lnðeÞ þ Xbþ e

�
ð1Þ

where:

• i = county (1–3,137),

• j = age group (j = 1, 2,...,6 for age groups 35–44, 45–54,…,85+),

• for each (i,j) set a unique index k ¼ 3137ðj� 1Þ þ i; k ¼ 1; 2. . .; 18822;
• Y ¼ ½Y1. . .Y18822�T is the observed number of deaths of white males age 35+ for

county-ages k = 1,2,…,18822; the Yk’s are assumed to be independent.

• a ¼ 18822x1 matrix with all elements equal to the logarithm of overall relative

risk a; in our Bayesian context a has an improper uniform distribution,

• lnðeÞ ¼ ½lnðe1Þ. . . lnðe18822Þ�T is the matrix of the natural logarithms of the

expected number of deaths ek of white males age 35+ (defined below) for

county-ages k;
• X = covariance matrix with kth row xT

k ¼ xk1 xk2. . .xk6½ �;
• xk1 ¼ j� 3:5 for age group j; set so that the mean of the xk1’s ¼ 0;
• xk2 ¼ ðj� 3:5Þ2 � 35=12 ¼ square of age terms, set so that the mean of the

xk2’s ¼ 0;
• xk3 ¼ ðj� 3:5Þ3 for age group j;
• xk4 = 1990 Deprivation Index (standardized) for county i;
• xk5 = 1990 Sprawl Index (either Density or Road Accessibility, standardized) for

county i;
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• xk6 = County-level Lung Cancer Mortality for white males age 35 and over

(standardized) for county i;
• b ¼ The 6� 1 matrix of covariate parameters,

• e ¼ ½e1. . .e18822�T ¼ the matrix of regression error terms, and

• ek ¼ ui þ vk; where ui = structured (spatial) variation for county i based on

ICAR model (defined below) with overall variance r2
u; vk = unstructured

(random) variation having normal distribution with mean 0 and variance r2
v ; and

ui and vk are assumed to be independent of each other. This particular set-up of

the error terms is sometimes called the convolution model (Besag et al. 1991).

Parameter estimates were calculated using a Bayesian approach. In the classical

(frequentist) statistical approach the parameters are estimated via sample data, while

in the Bayesian approach the parameters are treated as random variables. Prior

distributions are set on the parameters before data analysis, samples are taken for the

random variables and then based on the data the prior distributions (called priors)

are adjusted using Bayes’ Rule. The adjusted priors are called posterior distributions

(see Casella and Berger 2002, p. 324; NIST 2005). Here priors are set on r2
u; r

2
v ; a,

and the individual b0s, a Poisson distribution is the sampling distribution, and

Bayes’ rule is used to obtain posterior distributions. See Appendix B for a listing of

the priors for our parameters.

Prior to the advent of powerful computing technology statisticians avoided

Bayesian methods because these posterior distributions usually cannot be written in

a mathematically closed form. Hence, finding characteristics of the distributions

(mean, variance, etc.) was difficult or impossible. Today computer simulations

based on Markov Chain Monte Carlo (MCMC) methods ‘‘allow posterior sampling

from models of considerable complexity’’ (Lawson 2001, p. 239). After an initial

‘‘burn-in’’ phase of some number of iterations the MCMC method converges to the

true posterior distribution. One MCMC method, the Gibbs sampler, generates

random variables from a marginal distribution without explicitly knowing the

distribution. Large samples are simulated from the posterior distribution so that

desired characteristics of the distribution can be obtained accurately (Casella and

George 1992). A summary of MCMC methods is in Lawson (2001, pp. 239–243).

Much of the procedure for obtaining parameter estimates parallels that of

Johnson (2004) and closely parallels that of Shoultz and Givens (in progress).

Details are found there and in Appendix C. For our model 10,000 iterations of our

simulation were obtained to make sure that parameter estimates converged, and an

additional 30,000 iterations to obtain the parameter estimates.

Calculation of Expected Counts and Relative Risk (Rate Ratio)

The standardized mortality ratio (SMR) compares the actual number of deaths with

the number of deaths one would expect from an external reference population. An

SMR greater than one indicates that the actual number of deaths is more than what

would be expected of the reference population. Here the reference population is the

same as the study population, white males age 35+. The SMR for our model (Szklo

and Nieto 2000, p. 272) is
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SMR ¼ Observed Number of Deaths

Expected Number of Deaths
¼ Yk

ek
; ek ¼ Pk�

P18822

k¼1

Yk

P18822

k¼1

Pk

; ð2Þ

where Pk is the population of white males for county-age k. The SMR is an estimate

of relative risk for each county-age k (Lawson et al. 2003, p. 4). Setting ek in (1) as

defined in (2) leads to estimates of the true relative risk hk that account for desired

covariates (i.e., smoothed SMRs) are obtained. The true relative risk for county-age

k with county i is

hk ¼ exp aþ xT
k bþ ui þ vk

� �
ð3Þ

To obtain smoothed mortality rates instead of smoothed SMR’s set ek = Pk in

(1). The raw mortality rate for index k is Yk=Pk; and the smoothed mortality rate

is hk.

Further Definition of Variables

Age as a controlling variable is modeled via a cubic polynomial. Pickle et al. (1996)

used a cubic spline with a knot to fit chronic disease mortality. Since our age range

(35 and over) is smaller than Pickle et al. the knot is discarded.

Lung Cancer Mortality serves as a proxy for several items in combination,

including smoking and the environment. ‘‘Cigarette and tobacco smoke…are [two

of] the six major independent risk factors for coronary heart disease that you can

modify or control…[Cigarette smoke] increases the risk of coronary heart disease

by itself. When it acts with other factors, it greatly increases risk…[Cigarette smoke

is] the most important risk factor for young men and women’’ (American Heart

Association 2007b). Exposure to air pollution has been found to be related to both

Lung Cancer and Cardiopulmonary mortality (Pope et al. 2002). Many epidemi-

ological studies find greater risk of lung cancer among those in urban areas (Nielsen

et al. 1996). Finally Lung Cancer Mortality has been previously used as a proxy for

smoking in modeling Chronic Obstructive Pulmonary Disease mortality (Nandram

et al. 2000).

Greater socioeconomic deprivation is also associated with higher levels of

cardiovascular disease mortality (Hayes et al. 2005). County-level socioeconomic

deprivation is controlled for with a 16 variable composite deprivation index based

on 1990 census data. The index is a modification of Singh (2003) and Singh and

Siahpush (2002). The 16 variables included housing, education level, and income

data. The index accounted for 54% of the variation in the 16 variables controlling

the index. The reliability coefficient a = 0.94 for the standardized county indices,

indicating a high level of internal consistency among the variables (Carmines and

Zeller 1979). Higher index values indicate higher levels of deprivation. Indices were

calculated for 3,137 counties or combinations, with boundaries adjusted as per

Appendix A.
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Variation is separated into two terms ui and vk. The SMR ĥk ¼ Yk=ek is the

maximum likelihood estimate (MLE) of hk; for small areas, the ĥks will be unstable

because of the sparseness of the data (Wakefield et al. 2001). To handle this problem

Wakefield et al. recommend using a multivariate probability distribution for

h ¼ h11; . . .; h18822ð ÞT ; where each estimate of hk is formed by ‘‘borrowing strength’’

from the other estimates. This is done by adding the component vk to the log-link

function, with vij being normally distributed with mean zero and common variance r2
v :

Intrinsic Conditional Autoregression (ICAR) Model for Spatial Autocorrelation

Numerous methods for modeling spatial and other autocorrelation exist in the

literature (e.g., Anselin 1993, 1988; Cressie 1993; Whittle 1954). A concise

overview of such methods is found in Bao (no date). The ICAR model (Besag et al.

1991), a special case of the CAR model used to map disease and cancer rates

(Wakefield et al. 2001, pp. 116–122; Clayton and Kaldor 1987) is used here. In the

CAR approach the distribution of each mortality count Yk (or its regression error) is

conditioned only upon the remaining Y1; Y2; . . .; Yk�1; Ykþ1; . . . A CAR model can

be formed using geographic adjacencies or distances between points. The ICAR

estimates the distribution of each mortality count Yk (or its regression error) using

only its geographic neighbors. The ICAR model is given below. The CAR model,

and a proof of the ICAR’s equivalence to it, is found in Appendix C.

The ICAR model for our 3,137 counties is

Uij Ud ¼ ud; d 6¼ ið Þ�N

P3137

d¼1

udwid

ai
;
r2

u

ai

0
BBB@

1
CCCA; ð4Þ

where:

• Uij Ud ¼ ud; d 6¼ ið Þ = the distribution of the spatial autocorrelation term ui for

county i conditioned upon the spatial autocorrelation terms for all the other

3,136 counties, i,d = 1,2,…,3,137,

• N

P3137

d¼1

udwid

ai
;
r2

u

ai

0
B@

1
CA is a normal distribution with mean

P3137

d¼1

udwid

� ��
ai and

variance r2
u

�
ai;

• wid ¼
1 if i and d are adjacent; i 6¼ d
0 otherwise

�
;

• ai ¼
P3137

d¼1

wid is the number of counties adjacent to county i, and

• r2
u is a measure of overall variance of the ui’s.
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The distribution of each ui has mean equal to the average of the ud; d 6¼ i that are

its neighbors. The overall variance r2
u is a random variable with its own prior

distribution (see Appendix B).

CAR and ICAR models have at least two benefits. The explicit conditional

structure of the CAR and ICAR models is readily modeled with a hierarchical

Bayesian approach. The spatial weightings wid=ai have a symmetry common to

CAR models: wid=ai ¼ wdi=ad: Unfortunately, CAR models often have computa-

tional and theoretical difficulties. Covariance matrices for the joint distributions of

the ui’s that do not have inverses lead to joint distributions whose means and/or

variances are infinite (Arab et al. 2007; Bannerjee et al. 2004). While methods to

handle these problems have been proposed (Bannerjee et al. 2004; Cressie 1993),

means to handle such issues are a source of ongoing research (Arab et al. 2007).

Results

Parameter Estimates

Posterior parameter estimates for the density and road accessibility indices were

obtained using WINBUGS 1.4 (The BUGS Project 2004; Spiegelhalter et al.

2003) and are in Tables 1 and 2 respectively. Signs of the indices for the density

and road accessibility indices are consistent with Ewing et al. (2002): Higher

levels of sprawl indicate higher risk of heart disease mortality. Credible intervals

are the Bayesian equivalent of confidence intervals. A 95% credible interval is

formed by the endpoints of the middle 95% of the posterior estimates of the

parameters. The data indicate that our indices of urban form are indicators of heart

disease mortality.

For the 3,137 counties the relative risk estimates (rate ratios) of mortality due to

urban form as measured by our indices were at most 1.02 and 1.09, respectively for

the density and road accessibility indices (with a rate ratio of 1 indicating no

impact). So while the indices were statistically significant in the model the ‘‘real

world’’ impact of urban form as measured here was relatively small.

Table 1 Parameter estimates with 1990 density index

Mean Standard deviation 95% Credible interval

Intercept 0.0264 0.00253 (0.0214, 0.0314)

Age 0.8940 0.00284 (0.8883, 0.8995)

Age2 –0.0143 0.00089 (–0.0161, –0.0126)

Age3 0.0179 0.00058 (0.0168, 0.0190)

1990 Deprivation Index (Mean 0, SD 1) 0.1086 0.00412 (0.1004, 0.1166)

Lung Cancer Mortality (Mean 0, SD 1) 0.0534 0.00419 (0.0453, 0.0616)

1990 Density Index (Mean 0, SD 1) –0.0288 0.00401 (–0.0366, –0.0209)

Higher Deprivation Index implies greater socioeconomic deprivation. Higher Density Index indicates

more condensed area (less sprawl)
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Evidence of Spatial Autocorrelation: Model Comparison

Consider two models H1 and H0, identical in every way except H1 has a term to

account for spatial autocorrelation and H0 does not. Then H1 and H0 are nested

models, with H0 nested within H1. To determine if there is evidence of spatial

autocorrelation ‘‘one could calculate their goodness-of-fit statistics for the two

models (call them G1 and G0, respectively), find the difference (or ratio) in their

goodness-of-fit statistics G1–G0 (or G1/G0), and compare them to some sampling

distribution of G1–G0 (or G1/G0)’’ (Dobson 2002, p. 69).

In classical statistics the deviance or some form of the log likelihood is used to

compare nested models. Bayesian statisticians tend to use other measures (Congdon

2001, pp. 465–494). The Deviance Information Criterion (DIC) (Spiegelhalter et al.

2002, pp. 583–584, 2003), one such Bayesian measure for model comparison, was

developed to handle model comparison when it is not clear how many parameters there

are in the model. The DIC essentially adds a factor for the level of complexity of the

model. A lower DIC implies improved fit of the model. A more complete explanation

of the DIC (including definition and calculation) for our model is in Appendix F.

The DIC was used to determine whether there is evidence of spatial autocorre-

lation in and of itself, without controlling for any other variable. The log-link

functions are F1 = ln (lij) = ln (eij) + ui + vij (spatial autocorrelation included and no

covariates) and F0 ¼ lnðlijÞ ¼ lnðeijÞ þ vij (spatial autocorrelation not included and

no covariates) respectively, with variables defined as in (1). For F1 and F0 the DIC’s

were 117,477 and 117,519, respectively. The addition of the spatial autocorrelation

component drops the DIC 42 units—a statistically significant amount in the eyes of

many (David Spiegelhalter personal correspondence; Holsinger 2006), but as it is a

less than 0.1% drop one could reasonably conclude that the impact of spatial

autocorrelation on risk of mortality due to heart disease is small.

Chloropleth Maps

Maps of observed standardized mortality ratios (also found in Shoultz and Givens in

progress) and smoothed relative risk estimates for those 55–64 years of age are

Table 2 Parameter estimates with 1990 road accessibility index

Mean Standard deviation 95% Credible interval

Intercept 0.0288 0.00249 (0.0239, 0.0337)

Age 0.8937 0.00292 (0.8879, 0.8984)

Age2 –0.0144 0.00088 (–0.0161, –0.0127)

Age3 0.0179 0.00059 (0.0168, 0.0191)

1990 Deprivation Index (Mean 0, SD 1) 0.1030 0.00378 (0.0955, 0.1105)

Lung Cancer Mortality (Mean 0, SD 1) 0.0586 0.00406 (0.0507, 0.0665)

1990 Road Accessibility Index (Mean 0, SD 1) –0.0180 –0.00330 (–0.0117, –0.0247)

Higher Deprivation Index implies greater socioeconomic deprivation. Higher Road Accessibility Index

indicates more condensed area (less sprawl)
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found in Figs. 1 and 2 at the end of the paper. Both maps clearly indicate higher

relative risk estimates of heart disease mortality found in the southeastern part of the

country. The smoothing impact of the spatial model is clearly seen in the second

map.

A related issue is the relative risk (RR) of heart disease mortality due to

geographically based variables while controlling for remaining nongeographic

variables. Rejection of the null hypothesis Ho : RR = 1 in favor of the alternative H1

: RR [ 1 implies that overall the geographic variables for that county indicate risk

of mortality due to heart disease for white males age 35 and over living in the

county even after controlling for age and unstructured variation. In a Bayesian

context one can take posterior estimates of relative risk and use those posterior

estimates to obtain empirical estimates of the probability of that alternative

hypothesis. A map of these estimated probabilities with non-geographic variables

(age and unstructured variation) excluded is found in Fig. 3. The darker areas have

higher empirical probabilities that RR [ 1. For these areas the probability that the

population relative risk due to mortality in these geographic areas is higher than one.

The darker areas are concentrated in the southeast, southern California and parts of

the northeastern United States.

Discussion

In this paper we modified two county-level measures of urban form found in the

literature for use with exurban and rural areas. We then used the indices in a

Bayesian hierarchical model that accounted for spatial autocorrelation to determine

whether these measures were predictors of heart disease mortality. As substantive

Hawaii

Alaska

Standardized Mortality Ratios 
(Non-zero Quintiles)

No Deaths Reported

0.0529 - 0.4870

0.4871 - 0.6350

0.6351 - 0.7610

0.9541 - 4.0344

0.7611 - 0.9540

Fig. 1 Standardized mortality ratios (raw estimates of relative risk), age 55–64. Note: SMR = observed
count of deaths/expected counts of deaths
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results are not a primary emphasis of the paper we briefly summarize them here

before discussing the index formation and spatial modeling issues that form the

primary emphasis of this paper.

Fig. 2 Overall estimates of relative risk (covariates: age, lung cancer mortality, 1990 density index, 1990
socioeconomic deprivation index, spatial autocorrelation and unstructured variation, age 55–64. Note: Mean

of 30,000 Posterior Estimates of hij ¼ exp
aþ bageAgej þ bage2 ðAgejÞ2 � 35=12

h i
þ bage3 ðAgejÞ3þ

bDep90Dep90i þ bSprawl90Spraw90i þ bLCMLCMi þ ui þ vij

( )

Hawaii

Alaska

Fig. 3 Posterior probabilities of county-level relative risk being greater than one, controlling for age,
estimates of relative risk (covariates: lung cancer mortality, 1990 density index, 1990 socioeconomic
deprivation index, structured variation. Note: Empirical estimates of P bDep90Dep90i þ bSprawl90

�
Sprawl90i þ bLCMLCMi þ ui [ 1Þ based on 30,000 iterations
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We found the density and road accessibility indices to be predictors of heart

disease mortality in the expected direction: less condensed counties have higher

rates of heart disease mortality. The small rate ratios of our indices (1.09 at most,

with rate ratio of 1 implying no effect) imply that the substantive impact of urban

form (as measured) on heart disease mortality was small. These results are

consistent with those of Ewing, Schmid et al. (2003). Spatial autocorrelation was

found to be a statistically significant predictor of heart disease mortality but the

substantive impact on such mortality is small. Maps of raw and smoothed estimates

of heart disease mortality indicate that the southeastern and far western areas of the

country are of higher risk of heart disease mortality even after accounting for

measures of urban form, lung cancer mortality, spatial autocorrelation, and

socioeconomic deprivation.

Serious problems exist with the urban form indices. One reviewer found the lack

of substantive importance of our results to be a sign that (1) the indices themselves

are questionable measures of urban form and (2) a different spatial scale other than

the county level is needed. Both may well be the case. The two indices cover related

yet separate aspects of urban form. Further research could include combinations of

the variables forming the indices, as per Ewing, Schmid et al. (2003). Generally,

sound urban form measurement may require a smaller land scale than the county

level, and any county measure will likely lose the potentially rich variation of land

uses within a county.

Data limitations are also a problem with our indices. Desiring to develop a scale

usable for all U.S. counties and not just urban and suburban ones, we restricted

ourselves to U.S. census data. Ewing et al. (2002) used other data sources in

addition to the U.S. census and examined only areas where such data was available.

Our modifications of Ewing et al.’s scales to account for urban characteristics gave

indices with questionable usefulness. More detailed data would potentially improve

the accuracy and usefulness of our indices. The lack of detailed land-cover and land-

use data, and other pertinent data sets, for smaller communities makes urban form

measurement for more rural areas difficult (Theobald 2001). We conclude that

studies similar to this one are better done with smaller geographic areas where more

precise data in addition to census data could be obtained. This is especially

important for analysis of exurban and rural areas where data are likely to be

considerably sparse in comparison to cities.

Our testing of the indices for whether or not they made distinctions between

urban and rural areas is another concern. More extreme inconsistencies between the

RUCC designations and our indices occurred in 10–15% of urban and exurban/rural

counties. The RUCC codes used urban population within a county and living in (or

county-level adjacency to) a metro area to set its scale. For our density scale we

used measures of housing density, and for our road accessibility scale we used block

sizes and block areas. While all of these are related in some manner they measure

very different characteristics. These differences likely account for some of the

inconsistencies. Further research could include examining counties with such

inconsistencies to better understand the reasons for inconsistencies. Such informa-

tion could result in more useful and accurate indices that account for these

inconsistencies.
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A Bayesian hierarchical version of Poisson regression was used here. With

diseases having relatively rare mortality, a Zero-Inflated Model or Negative

Binomial (Lee et al. 2002; Durham et al. 2004) may be more appropriate. The

availability of such software as WinBUGS that capably handles the computational

issues that come with Bayesian methodology allows modeling possibilities that

were previously difficult or impossible.

Spatial autocorrelation was controlled for in the model. Given the geographic

nature of both mortality and of urban form we argue that one should continue to

consider some form of spatial autocorrelation in models of mortality and morbidity.

Other models exist to measure spatial autocorrelation. The Simultaneous Autore-

gression (SAR) model (Whittle 1954) is popular in the econometrics literature.

While the CAR approach models the distribution of each Yk (or its regression error)

conditional only upon the remaining Y1; Y2; . . .; Yk�1; Ykþ1; . . . the SAR approach

models the distribution of the regression errors (or the Yk’s) simultaneously. A

presentation of a SAR model, and a comparison of the CAR and the SAR models, is

in Appendix F. Other software packages, especially GeoDa (Anselin et al. 1998–

2004), allow modeling to account for spatial autocorrelation by other means (e.g.,

Spatial Lag and Spatial Error models).

By mapping measures of relative risk and related posterior probabilities we saw

geographic patterns of mortality. Such maps have interpretation issues. Moulton

et al. (1994, p. 297) observe that ‘‘[while] mapping the actual rates of standardized

mortality ratios (SMRs) can be informative, such an approach can be misleading

when the denominators vary across geographic units. Those regions with the

smallest populations will tend to have both the highest and lowest rates merely

because they have the greatest variability.’’ Therefore, Bayesian methods, in which

a proposed prior distribution of rates is combined with the observed rates to obtain

posterior rates, are applied. These posterior rates are called stabilized rates because

the variability of the original estimated rates is reduced. In examining mortality

rates for cancer Gelman and Price (1999) found a pattern similar to Moulton et al.

when mapping both posterior estimates and measures of statistical significance.

Explanatory variables, according to Gelman and Price, will not abolish such

artifacts but can sometimes mitigate them by reducing uncertainty in the parameters.

Acknowledgments Disclaimer This publication was made possible through a fellowship sponsored by
the Center for Disease Control (CDC), National Center for Health Statistics (NCHS) and the Association
of Schools of Public Health (ASPH). The findings and conclusions contained in this paper represent the
views of the authors. No official support or endorsement by either the Grand Valley State University
Department of Statistics or the Centers for Disease Control and Prevention, Department of Health and
Human Services is intended, nor should be inferred.

Appendix A

This study used 1990 Census data but 1999–2001 mortality data. Therefore changes

in county boundaries 1990 and 2000 (U.S. Census Bureau 2001–2005) are

accounted for as follows: In Montana the portion of Yellowstone National Park

inside of Montana was divided between Gallatin and Park Counties; therefore,
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Gallatin and Park Counties are pooled for this study. In Virginia South Boston town

(a county equivalent) was merged into Halifax County; for this study South Boston

and Halifax County are pooled. In Alaska Denali borough was formed from parts of

Yukon-Koyukak and Southeast Fairbanks boroughs; for this study the areas for

Yukon-Koyukak, Southeast Fairbanks, and Denali boroughs are merged. Also in

Alaska, Skagway-Yakutat-Angoon borough was divided into Skagway-Hoonan-

Angoon borough and Yakutat Borough; for this study the boroughs are merged.

Annexations of portions of a county into another county that did not dissolve a

county were not accounted for.

Appendix B

For our model the priors are: 1=r2
u; 1=r

2
v�Cð0:5; 1=0:0005Þ; and all b0s�N

ð0; 1=0:00001Þ; where C a; eð Þ is a Gamma function with shape parameters a and e
and N(l, r2) is a Normal distribution with mean l and variance r2.

Appendix C

For each sprawl index WINBUGS 1.4 (The BUGS Project 2004; Spiegelhalter et al.

2003) was used for running three independent Markov Chains. First, for each of our

two urban form indices (density and road accessibility), model (1) without spatial

autocorrelation and unstructured variation components (e.g., without the terms ui

and vk) was run in PROC GENMOD in SAS (SAS Institute 1999b, pp. 1365–1464)

to obtain maximum likelihood estimates of the coefficients. Initial values for the

three chains were those estimates plus 4, 0 and –4 standard deviations. Initial values

for 1=r2
u and 1=r2

v were taken as 0.001, 1,000 (mean of the prior distribution) and

7,000, respectively. Initial values for ui and vk were all set at 0.

Time series Gelman-Rubin diagnostic graphs and trace graphs were used to

check convergence of relative risk estimates and parameter estimates for all three

chains (Spiegelhalter et al. 2003). After 10,000 iterations the traces of the parameter

estimates had good mixing around a common value, with varying degrees of white

noise around those values. Gelman–Rubin graphs were convergent and stable.

Chains were examined for 1=r2
u; 1=r

2
v ; ru and rv; these chains also mixed well.

Hence, after 10,000 iterations convergence of all parameters was concluded. An

additional 30,000 iterations were then taken for each chain, but to reduce

autocorrelation every third iteration was kept for later calculations. As a result, a

total of 30,000 iterations (10,000 from each chain) were used to obtain parameter

estimates.

Convergence of parameter estimates was checked according to the ‘‘Checking

convergence’’ section of the WINBUGS 1.4 (Spiegelhalter et al. 2003) manual. The

chains clearly appeared to be overlapping one another, and parameter estimates look

stable. Posterior graphs had the desired bell shape.

The Brooks and Gelman (1998) version of the Gelman–Rubin convergence

statistic (GR) as given in WINBUGS 1.4 was used for iterations 5,001–10,000. Let
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X be the width of the middle 80% of the parameter estimates of all three chains

pooled together, and let Y be the average of the widths of the middle 80% of the

parameter estimates for each of the three chains individually. Then GR = X/Y.

Here, we want GR to converge close to 1 and both X and Y to converge to some

number. Numerical values for X, Y and GR for later iterations are found in Table

C1. The X and Y columns are numerically close to each other and the GR values are

nearly equal to one.

Finally, we calculated parameter estimates for a variety of prior distributions to

determine whether said estimates were sensitive to the choice of the prior. We found

the parameter estimates to be very similar for all our choices.

Appendix D

This discussion of CAR and ICAR follows much of Wakefield et al. (2001, p. 110ff).

We first define the CAR model. Define Nn 0n; r2Rð Þ as an n-dimensional normal

distribution with n · n positive definite (i.e., the matrix has an inverse) correlation

matrix R and parameter r2, and let Q ¼ R�1 have elements Qid; i; d ¼ 1; . . .; n: The

general CAR model can be written as (Besag and Kooperburg 1995)

Uij Ud ¼ ud; d 6¼ ið Þ�N
Xn

d¼1

Midud; r
2
uVii

 !
; ð5Þ

where

• Mid ¼
�Qid=Qii if i 6¼ d

0 if i ¼ d

�
;

• r2
u is a measure of overall variance of the ui’s and

• Vii = 1/Qii.

Table C1 Summary of Gelman–Rubin statistics for convergence

Variable Iteration Middle 80% of estimates GR = P/W

Raw Normalizeda

Pb Wc Pb Wc

Density 9,851 0.00849 0.00844 0.9318 0.9264 1.006

9,901 0.00846 0.00842 0.9291 0.9243 1.005

9,951 0.00845 0.00841 0.9283 0.9233 1.005

10,001 0.00850 0.00844 0.9332 0.9269 1.007

Road accessibility 9,851 0.00785 0.00784 0.9524 0.9510 1.001

9,901 0.00784 0.00782 0.9508 0.9489 1.002

9,951 0.00784 0.00782 0.9510 0.9498 1.001

10,001 0.00784 0.00783 0.9511 0.9502 1.001

a Reset to have maximum value of 1
b Parameter Estimates for all three chains pooled together and width determined from the pooled set
c Widths of the three chains determined separately and the three widths then averaged
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For a complete derivation of the above relationships see Wakefield et al. (2001,

pp. 124–125). Since Q is symmetric MidVdd ¼ MdiVii: In matrix form the correlation

matrix R is:

R ¼ Q�1 ¼ V�1(I�M); ð6Þ

where:

• V is a matrix with elements Vii,i = 1,…,n and 0 otherwise, and

• M is the matrix of spatial weights Mid.

If the matrix Q has an inverse than the matrix U ¼ u1; u2; . . .; un½ �T has

distribution U�Nn 0n; r2
u I�Mð Þ�1

V
	 


:
To obtain the ICAR model (4) from the general CAR model of (5) set Vii = 1/ai

and Mid = wid/ai. Here Q does not have an inverse. Proof: Each row i of the matrix

I–M has a solitary 1 on the diagonal, ai elements with value –1/ai, and the remaining

elements equal to zero. Since the sum of the elements on each row all equal zero the

matrix Q has rank n – 1 \ n, and so is not full rank and is not invertible.

Appendix E

We first define the DIC and then derive the DIC for the model

F1 ¼ lnðlkÞ ¼ lnðekÞ þ ui þ vk: where i and k are defined as in (1). Recall that

after 10,000 ‘‘burn-in’’ iterations obtain convergence we obtained 30,000 more

iterations for the parameter estimates. The Log Likelihood LL is

LL ¼ LL Y; Ŷj-
� �� �

¼
X

Yk log Ŷk � Ŷk � Yk!
� �

; ð7Þ

where Y ¼ fYkg are the observed counts and Ŷ j-
� �

¼ fŶkg is the set of predicted

counts derived from the set of parameter estimates - (Dobson 2002, p. 76). Using

(7), the DIC (Spiegelhalter et al. 2002, 2003) is:

DIC ¼ 2 �2LL Y; Ŷj-
� �� �� �

� �2LL Y; Ŷj-
� �� �� �

; ð8Þ

where:

• �2LL Y; Ŷj-
� �� �

is the mean of the 30,000 individual iterations of

�2LL Y; Ŷj-
� �� �

and

• - is the posterior mean of the parameter estimates from the 30,000 iterations.

To calculate the DIC for model F1, follow these three steps. First, calculate:

�2LL Y; Ŷj-
� �� �

¼ �2
X30000

l¼1

X18822

k¼1

Yk log Ŷ
ðlÞ
k � Ŷ

ðlÞ
k � Yk!

	 
	 

=30000; ð9Þ

where
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• l ¼ iteration number ðl ¼ 1; 2; . . .; 30; 000: taken after the 10,000 iterations for

convergence),

• Ŷ
ðlÞ
k ¼ the expected number of deaths predicted via the lth iteration from

model F1 : Ŷ
ðlÞ
k ¼ ek � expðûðlÞi þ v̂

ðlÞ
k ÞÞ;

• û
ðlÞ
i ¼ the spatial autocorrelation component predicted via the lth iteration,

• v̂
ðlÞ
k ¼ the unstructured variation component predicted via the lth iteration,

• - ¼ û
ðlÞ
i ; v̂

ðlÞ
k

n o
; the set of parameter estimates for iteration k, and

• Ŷj-
� �

¼ the set of individual Ŷ
ðlÞ
k s:

Second, calculate

�2LL Y; Ŷj�-
� �� �

¼ �2
X18822

k¼1

Yk log Ŷ�k � Ŷ�k � Yk!
� �

; ð10Þ

where

• Ŷ�k ¼ the estimated number of deaths using �- : Ŷ�k ¼ ek � expð�̂uþi �̂vkÞ;

• �̂ui ¼ the mean of the û
ðlÞ
i ’s; �̂ui ¼

P30000

l¼1

û
ðlÞ
i

�
30000;

• �̂vk ¼ the mean of the v̂
ðlÞ
k ’s; �̂vk ¼

P30000

l¼1

v̂
ðlÞ
k

�
30000;

• �- ¼ �̂ui; �̂vk

� �
; the set of means of the 30,000 parameter estimates, and

• Ŷj�-
� �

¼ the set of individualŶ�k s:

Finally, substitute the results of Eqs. 9 and 10 into Eq. 8 to find the DIC.

Appendix F

SAR models are similar to the AR(1) model in time series. Note that in our model

(1) we set ek ¼ ui þ vk with structured variation ui independent of unstructured

variation vk. As this is not possible with the SAR model we default to the error term

ek.

For our conditions (1) we can write a SAR model as:

Y�Poisson kð Þ
lnðkÞ ¼ aþ lnðeÞ þ Xbþ e

e ¼ qSeþ g

8><
>: ; ð11Þ

where
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• Y is the matrix of observed mortality counts as per (1),

• k ¼ ½k1. . .k18822�T ; kk ¼ ek � exp aþ xT
k b

� �
for each k with remaining variables

defined as per (1), and a is a constant,

• e ¼ ½e1. . .e18822�T ¼ regression error terms,

• q is a measure of spatial correlation (–1£ q £ 1),

• S is an 18,822 · 18,822 neighborhood (spatial weighting) matrix with zeroes on

the diagonals (not necessarily symmetric), standardized so the row sums add to

one, and

• g ¼ ½g1. . .g18822�T ; gk�Nð0; r2Þ:

It follows from (10) that e ¼ ðI�qSÞ�1
g and so the covariance matrix R for the

SAR model is R ¼ r2ðI� qSÞ�1ðI� qSTÞ�1:
If desired SAR can also use nearest neighbor weighting: Set sid = wid/ai with wid,

ai defined as in (4)

Briefly comparing and contrasting the CAR and SAR models (Arab et al. 2007;

Cressie 1993; Whittle 1954; Bao no date):

• CAR sets specifications for the Yks conditionally, while SAR does so

simultaneously.

• Spatial weighting matrices do not have to be symmetric in the SAR model but

do in the CAR model.

• A SAR model can always be restated as a CAR model, but not vice versa.

• The SAR model and the CAR model are the same if and only if the covariance

matrices are the same.

• The CAR model is more computationally efficient than the SAR model because

the matrix I–M in the CAR model is symmetric while the matrix I� qS in the

SAR model is not.

• In some cases the spatial weights in the SAR model may not be identifiable.

• Parameter estimates for the SAR model are statistically not consistent. That is,

for increasing sample sizes the parameter estimates may not converge with high

probability to the actual parameter.

• CAR gives the best (that is, the minimum mean squared prediction error)

estimates of Yk based on all the other Y 0l s; l 6¼ k:
• If it makes more sense to specify the model conditionally, or if there is a

symmetric structure in the correlation matrix, use a CAR model.
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