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Abstract
Population densities provide valuable spatial information to identify populations at 
risk, quantify mobility, and improve our understanding of future urban settlements. 
Advancements in machine learning algorithms open up new horizons to face these 
challenges. This research proposes a supervised machine learning approach, Ran-
dom Forest, for population density appraisal in a large and dense developing city. 
We studied Bogotá, where functional integration with neighboring municipalities  
exists, although they have different governments and uncoordinated urban develop-
ment plans. As a starting point, we use simulated residential land-use patterns,  
classified according to socioeconomic levels, from a cellular automata-based model. 
We estimate population density with reliable land-use change models and nine sim-
ple representations of the urban structure, such as land values and the distance to 
urban amenities. Therefore, combining a cellular automata model with a classifi-
cation model, considering both continuous and categorical variables, demonstrates 
this methodology’s potential and promises a reliable assessment of population den-
sity. Finally, we present a trip generation model integrated with densities and spa-
tial location. A comprehensive results discussion suggests this study’s importance in 
urban planning and the accuracy of the proposed methodology to support decision-
making processes and policy evaluation.
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Introduction

Population estimations have a long history in the social sciences in supporting 
and informing decision-making (Archila Bustos et al., 2020) and planning for the 
future. Existing methods typically produce population estimations in a large-scale 
way (Gerland et al., 2014) using three major approaches: the cohort component 
method, trend extrapolation methods, and structural models (Smith et al., 2013). 
However, the growing interest in small areas population analysis highlights the 
importance of disaggregated projections (Chi, 2009; Raymer et  al., 2012), par-
ticularly as it relates to transport and urban planning. In addition, several factors 
influence urban population growth and density, generally in unpredictable ways, 
especially in developing cities. The rapid urbanization process makes it impera-
tive to understand the main urban characteristics, such as land development and 
population growth, that play a crucial role in urban sustainability (Bassolas et al., 
2019).

Despite a large body of evidence showing that a compact population causes a 
decrease in the costs of urban public services (Carlino et  al., 2007; Fernández-
Aracil & Ortuño-Padilla, 2016), reduces car use, and encourages the use of active 
transport modes (Boulange et  al., 2017; Lewis, 2018), the benefits of urbaniza-
tion and density are far from a settled issue. The growth of high-population urban 
areas in Latin America and Southeast Asia with an increasing population density 
has increased congestion and air pollution (Güneralp et al., 2020). The increase 
in urban population presents both challenges and opportunities: although density 
improves the efficiency of cities in many ways, it also can encourage crime, con-
gestion and pollution, and more resources end up being used (Bettencourt et al., 
2007). Understanding population growth and changing population densities is 
crucial to supporting territorial decision-making.

Urban population estimation is gaining importance due to its implications for 
transport planning, travel demand forecasts, urban facilities, and public space 
measures, which have become important development and well-being indicators 
of cities. Despite the growing demand for local-scale population projections, few 
disaggregate population projections exist in developing cities. Zonal-level popu-
lation projections are typically only available through the (scarce) official data or 
private companies and frequently only are estimated under particular goals and 
scenarios. The lack of rigorous small-area population projections according to 
urban growth trends and land-use changes has hampered our understanding of 
urban and mobility patterns (Gao & O’Neill, 2020). Therefore, emerging tech-
nologies offer tools to access and process good-quality data that might improve 
our understanding of this urban phenomenon. Joining information from emerging 
data sources with simulation models is crucial to improving the capacity to fore-
cast future scenarios (Guzman et al., 2021).

Consequently, innovative approaches are required to adapt to situations where 
limited information is available. This paper aims to estimate population density 
and travel demand involving spatial and transport infrastructure factors at a resi-
dential block level in Bogotá, Colombia. We are doing so using a Random Forest 
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approach (Breiman, 2001) jointly with a land-use change simulator, a cellular 
automata-based (CA-based) land use-cover change model (Guzman et al., 2020a). 
We use different land-use pattern scenarios simulated from the CA-based model. 
Since this tool is limited to a 2D analysis, meaning that the density was missing 
from its results, as it is in most CA-based models, this constitutes a research gap 
that motivates our study. Therefore, we propose a classification model (Random 
Forest), to estimate population density, using supervised machine learning algo-
rithms with 2D land-use model based on CA, which incorporates residential land 
occupation processes’ spatial and temporal dimensions. This hybrid tool’s devel-
opment will allow the prediction of the influence that a planned urban develop-
ment and new transport infrastructures will have on Bogotá’s residential popula-
tion density and how this redistribution will affect the travel demand.

State of the art

Population density and travel demand are essential issues in urban planning. The 
estimation changes in the concentration of people in cities are relevant to a broad 
range of issues related to the quality of urban life, including economics, infrastruc-
ture, and transport systems. Notably, these topics are crucial in designing public 
transport projects that depend on population growth, land values, and urban struc-
ture. Depending on the context, generally, density is estimated based on census or 
GIS data (Liu et  al., 2008), other studies led to a more general expression based 
on gamma models that considered the relationship between population and land use 
(Batty & Longley, 1994), or use a fractal structure approach to study the complexity 
of population density in cities (Chen, 2010), which has worked well in cities with 
population clusters. Also, recent developments in urban planning require more accu-
rate population forecasts at small scales to deal with population growth, land-use 
changes, and environmental and travel demand effects (Chi, 2009). Well-established 
methods for estimating and forecasting population and population density at those 
scales exist (Chi, 2009; Chi & Voss, 2011; Chi et  al., 2011; Smith et  al., 2013). 
Regarding travel demand, also well-established methods exist according to the con-
text, scale, and data availability (Ortúzar & Willumsen, 2011).

Nevertheless, in several urban areas, the availability of census, GIS, histori-
cal data, or any population data is one of the biggest challenges when estimating 
the density (Onda et al., 2019). This limitation is particularly challenging when the 
study area’s information is unavailable or even when there is uneven availability of 
information in different administrative jurisdictions (Guzman, 2019). To tackle these 
problems, different methods, such as geostatistical (Liu et al., 2008; Wu & Murray, 
2005) or radar images (Kajimoto & Susaki, 2013), are often utilized.

Since these population density formulations are based on empirical analysis 
and statistical data for particular areas, they cannot be entirely replicated among 
different places. Only a handful of studies have tried to do so, where Qiang et al. 
(2020) stand out with their Metropolitan Statistical Areas using travel times to 
city centers. A major impediment to estimating population densities is that 
the methodologies, parameters, and available data used may not account for 
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specific characteristics of developing cities and their specific contexts. Consid-
ering the great challenges in planning faced by the cities in the Latinamerican 
region (Sarmiento et  al., 2021), the potential of the supervised machine learn-
ing approach such as Random Forest models to improve planning is not to be 
understated.

Random Forest (RF) is a robust classification and regression algorithm (Breiman, 
2001). The RF algorithm allows us to predict a Y vector over an X’s matrix of previ-
ously trained features. The RF algorithm creates a series of estimators, also called 
decision trees. Each of these estimators represents a weak decision, and all the 
uncorrelated estimators work together, making the model powerful (H2O.ai, 2021). 
The resulting tree average makes the global prediction of individual decisions made 
by each estimator. The global prediction uses a series of “trees” as estimators, which 
is why the algorithm is called “forest.” The features used to train the model can be 
both categorical and continuous. This characteristic positions the RF regression use-
fulness above Ordinary Least Squares (OLS) and Geographically Weighted Regres-
sion (GWR) when dealing with big data (Jiao et al., 2021). Other authors also reveal 
RF successfully handles high data multicollinearity, being insensitive to overfitting 
in remote sensing (Belgiu & Drăguţ, 2016).

RF usually are used to rank the importance of variables in a classification  
problem naturally. In the last few years, the ability and robustness of the RF models 
have been evaluated in different contexts and with different purposes. In this context, 
Rahmati et  al. (2016) developed an RF model for mapping potential groundwater 
sources in the Mehran Region (Iran), or Khosravi et al. (2018), and their flash flood 
susceptibility mapping model. Recently, research has been published where RF  
was used in urban contexts, such as the classification of urban areas into residential  
regular vs. irregular settlement types (Jochem et al., 2018), the classification of urban  
green spaces (Puissant et al., 2014), or a creation an application of a high-resolution 
population grid from district-level data in India (Onda et al., 2019). Another example 
is the combination of RF and CA in a model to simulate urban growth in Zimbabwe  
highlights the potential of these tools for these tasks (Kamusoko & Gamba, 2015). 
This RF-CA combined model showed that RF improved the CA model’s usefulness 
and potential to improve urban growth modeling.

The use of RF models to estimate gridded population models has grown in the 
last few years. Such is the case of Stevens et al. (2015), who developed an RF model 
for mapping the population in a country-wide pixel-level map, the development of 
a high-resolution population distribution map using ancillary data RF predictions 
(Gaughan et al., 2013), and the modeling and prediction of the population at the grid 
level (Sinha et al., 2019). Consequently, using a unique dataset collected in Bogotá, 
we attempt to investigate the effect and relative importance of the selected urban 
attributes at different scales concerning affecting population density estimation. 
Then, we also estimate the travel demand produced by this population density.

This estimation is crucial in developing cities, where city activities change faster 
than in developed cities (Cervero, 2013). In terms of the urban environment and  
living conditions, periphery and central areas experienced unequal living standards 
for a wide range of population densities. Such is the case in Bogotá, where high- 
density areas present more disadvantageous conditions than low-densities (Guzman 
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& Bocarejo, 2017; Guzman et al., 2017b). Additionally, the availability and accuracy  
of data are not uniform across urban areas and years.

Study area and data

As the most populous city in Colombia and one of the largest and densest on the 
continent, Bogotá has experienced rapid changes in land use and rapid urbanization 
beyond its original geographic jurisdiction boundaries. Over the past few decades, 
migration and population growth rates have encouraged people to occupy unplanned 
and informal urban settlements on the urban periphery characterized by high pop-
ulation densities (Guzman et  al., 2017a). This growth process has segregated the 
population, with the city center and east edge occupied primarily by wealthy people 
(and economic opportunities) and the periphery by the poor. Besides, Bogotá has 
not been able to contain its growth within its existing boundaries, with mainly the 
low-income population spilling over into neighboring municipalities while restrict-
ing land development within its limits. This particular spatial pattern encourages 
uneven urban living conditions, negatively affecting the quality of urban life, and 
lengthens travel distances.

Besides economic land uses, residential areas are traditionally divided into six 
categories according to socioeconomic and urban characteristics. Bogotá is divided 
into homogeneous physical and socioeconomic residential areas, locally known as 
socioeconomic strata (SES). SES 1 corresponds to the neighborhoods of the lower-
income population and poorest urban characteristics, and SES 6 corresponds to 
wealthy neighborhoods. This classification also represents the characteristics of the 
built environment and is considered an acceptable proxy for income (Cantillo-García 

Fig. 1   Population density and residential land-use categories
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et al., 2019). In this case, we used three categories based on SES: low-income resi-
dential areas (SES 1 and 2), medium-income areas (3 and 4), and high-income areas 
(5 and 6), as shown in Fig. 1.

As this research is a step further from the CA model developed by Guzman et al. 
(2020a), we considered the same data sources. This data includes urban attributes at 
different scales. Since population density is highly context-dependent and could be 
influenced by economic, sociodemographic, and regulatory factors, we have focused 
on economic (land price) and physical factors related to urban structure and divided 
them into four categories.

First, we collected data on the cadastral land value, population, and SES for 
Bogotá’s 35,796 residential blocks in 2016 from the Bogotá Urban Planning Office 
(SDP). Hence, we have the residential cadastral land value (COP per square meter), 
the calculated population density for each block, and the SES category for each resi-
dential block (see Fig. 1). Second, there is data about the location of critical facili-
ties such as educational services, health services, public parks, and the CBD from 
the city’s Spatial Data Infrastructure (UAECD, 2019). Third, we have the locations 
of transport infrastructure, such as the main road network, Bus Rapid Transit (BRT) 
stations, and feeding routes, also from UAECD. Fourth, we gathered the resulting 
land-use cover simulations from a CA-based land-use change model developed in 
previous research by Guzman et al. (2020a).

To estimate travel demand, we use the 2019 Household Travel Survey (HTS) to 
gather Bogotá’s travel patterns. The trip generation analysis considered the approxi-
mately 16,099,700 trips generated in Bogotá on a typical day before the pandemic. 
One of this study’s objectives is to predict the home-based travel demand based on 
density estimations, so the model excluded 7,152,100 trips for “returning home.” 
Thus, the trip generation model was calibrated with 8,947,600 trips. To avoid cali-
bration errors, we did not include the trips outside the initial training dataset.

Methodology and procedures

The country-wide pixel approach of the RF models used in previous research aims 
to understand big-scale behavior. However, these approaches lack precision in small-
scale predictions due to the ecological fallacy that pixel-level predictions introduce 
when a country’s census data is not detailed enough. This ecological fallacy is based 
on the assumption that small-scale features behave like big-scale features (Sinha 
et  al., 2019). The fallacy arises when the data inside a feature (e.g., a residential 
block) has a unique value within the block, which is often the case with census data. 
The solution to this fallacy is to use the predictions of the RF model as a weight 
layer to a dasymetric mapping scenario (Stevens et al., 2015). The approach of this 
study is to use geographically referenced data of the built environment for predicting 
the small-scale gridded population density. In this case, the data is accomplished by 
a combination of distances, census, and cadastral data at the residential block level, 
so a dasymetric mapping technique is not needed for the distance calculation.

Thus, we describe the data processing and empirical strategy used. The prediction 
model’s validation should be appropriately performed to obtain sufficient land value 
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and population density prediction accuracy. There are three stages in this proposed 
methodology: the CA land-use scenarios, the RF model specifications (land value 
and population density), their model validation, and the travel demand model. The 
first component is a CA-based land-use model used to estimate different 2D land-use 
pattern scenarios. Then, land values and population densities will be estimated using 
RF models. Finally, the simulated scenarios serve to estimate travel demand.

Data processing

After gathering the data, we established ten urban variables, nine of which are expli-
cative, one of which is a dependent variable. After a Variance Inflation Factor (VIF), 
a Moran Index, and a collinearity analysis, summed with the mix of continuous and 
categorical variables, it was determined that none of these variables have redun-
dancy among them and that neither OLS nor GWR was an option for this study. The 
selected variables and data statistics values are summarized in Table 1, where Land 
Value (LV) is in thousand COP per square meter. The distances are all in meters, and 
the population density is in inhabitants per hectare.

Additional to this, we have another variable: Socioeconomic strata (SES), which 
is a categorical variable with three categories that vary according to household 
income (low, medium, and high). Every pixel in the study area has all the attributes 
mentioned earlier (Table 1).

We also developed an ArcGIS toolbox that calculates the mean nearest distance 
between a single objective layer and a series of grid vector layers. The complete pro-
cess also has some valuable corrections to improve the performance of the toolbox, 
but they are not relevant to this study. The toolbox was designed for use in general 
situations, consisting of a table filled with distance fields. Figure 2 illustrates this 
procedure and summarizes the CA-based model integration that came before this 
research.

Table 1   Variable statistics

Explicative variables Mean Standard deviation Min Max Median

Land value [LV × 1000] 1,156 805.0 6.0 12,000.0 1,096.1
Distance to CBD [CBD] 10,705.8 4903.9 0.0 22,721.4 10,833.9
Distance to BRT feeder lines [FEED 852.1 1,377.5 3.9 8,315.5 237.4
Distance to zonal public 

parks
[PP] 1,321.5 866.6 1.9 4,564.6 1,150.5

Distance to BRT stations [BRT] 1579.3 1143.5 31.8 6,888.8 1,331.9
Distance to the main road 

network
[MRN] 648.0 744.4 4.3 3,730.4 329.4

Distance to health services [HS] 701.5 466.4 19.5 6,589.8 602.8
Distance to educational 

services
[ES] 188.8 133.5 7.7 1,778.6 157.4

Population density (depend-
ent variable)

[PD] 620.9 427.4 0.02 5,701.6 550.8
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Regarding the travel demand model, as trips reported by the HTS are at the 
household level, while the explanatory variables are at the block level, the analy-
sis unit was homogenized. Thus, having each sampled household georeferenced, 
each trip was assigned to a block through a spatial joint using ArcGIS software’s 
spatial analysis tool. This restructuring resulted in a database of 5,523 blocks 
with information on the number of trips generated, SES, population density, and 
the distance to the CBD. This aggregation assumes that the representativeness of 
each block coincides with that of the trips.

Fig. 2   Flowchart for the generation of the definite input table
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CA model description

The Bogotá CA-based land-use model was developed and calibrated using the CA-
based model utilized in Metronamica® (van Delden & Vanhout, 2018). The results 
obtained from this model consist of a 60 × 60 m pixel raster, where for each pixel, 
there is an integer value with a land-use assigned to it. This pixel size was used due 
to the available satellite images’ resolution and the cadastral information available in 
Bogotá to assign the land-use category to each pixel (Guzman et al., 2020a). Each 
pixel’s state change potential is calculated in discrete steps while following a set of 
neighborhood rules that depend on spatial features such as neighborhood potential, 
proximity to transport infrastructure (accessibility), zoning, and suitability (Guzman 
et al., 2020b).

Residential land use has an assigned location based on the change potential 
derived from the transition rules mentioned before. At each moment, residential 
land use is located in places with the most significant potential for development. 
The model was calibrated using historical data, which establishes the model’s suit-
ability to reproduce current land-use dynamics (Zheng et al., 2015). Then, by adjust-
ing the transition rules between accessibility and land-use types, the model attempts 
to reproduce the land-use dynamics of the studied area. Finally, the assessment of 
model accuracy using Kappa indices showed a substantial agreement between simu-
lated and real land-uses, calibrating the model (Guzman et al., 2020a). This tool pro-
vides a dynamic modeling environment that can simulate 2D land-use changes over 
time (van Vliet et al., 2012). In this case, this tool was used to obtain two simulated 
land-use patterns, as explained before.

Since the available data was structured in residential blocks and the resulting 
land-use cover predictions are in a 60 × 60 m raster (pixel) layer, we recomputed the 
available data into squared polygons that are adjusted with the raster layer. This data 
restructuring meant that we had to recalculate every feature for each pixel. The raster 
has information on land use itself, so the SES is easily determined. The residential 
land value feature will change depending on the land-use distribution. We developed 
a second RF model based on the cadastral land value’s importance in the population 
density model to predict the cadastral land value for each pixel. We needed a second 
RF model because the cadastral land value data for projected scenarios will never be 
available.

Random forest model structure

The output RF model resolution was selected based on preliminary developments 
using the CA model described earlier. The supervised classification uses an RF 
approach and relies on multiscale feature indices calculated from the observed 
population density distribution and nine explicative variables (Table  1). RF is a  
non-parametric ensemble-based prediction model, with a robust classification and 
regression algorithm. The RF algorithm creates a series of estimators. Each of these 
estimators represents a weak decision, and all of the uncorrelated estimators work 
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together, making the model powerful. The average represents the global prediction 
of individual decisions made by each estimator.

The features used to train the model can be both categorical and continuous. This 
flexibility allows the use of both types of variables (categorical, such as SES, and 
continuous such as land value). We chose Mean Absolute Error (MAE) and Root of 
Mean Squared Error (RMSE) as validation metrics because both are suited for the 
land value and population density RF models (Stevens et al., 2020). The advantage 
of using MAE and RMSE is that the metric units are the same as the predicted vari-
able. We can compare the metric directly with the basic statistics of the predicted 
variable. We used these statistics to determine the best parameters that make the 
model error acceptable. These metrics are helpful in regression problems because 
the cost associated with an error in the model will be higher when the difference 
between the prediction and the real value is higher. We iterated different proportions 
of validation/training in our database until we found the best proportion for training 
the model. The data split was chosen due to the number of hyper-parameters that RF 
models require.

Another essential factor that needs to be modified in the RF model is the cat-
egorical variable encoding. The encoding is how the model converts string values 
to numeric values. The loss functions (metrics) will always work with numbers, so 
a string will result in an error that will stop the training process. There are several 
ways to transform from categorical strings to numbers. We applied the method most 
commonly used in machine learning: One Hot Encoding. It enumerates the different 
strings in a dataset and then converts each enumeration class into a new Boolean 
variable. The SES variable was converted into three different dummy variables in 
this specific case because SES can only take three different exclusive values (high, 
medium, or low).

Once the models are trained, they can perform predictions on any dataset using 
population density or land value. However, it is essential to validate the results using 
the validation dataset. The objective is to compare the observed dataset to the pre-
dicted one. The validation of the models is made by comparing descriptive statistics. 
As the number of trees increases, the error metrics will decrease for the training 
dataset. We can further create a model with the highest number of trees, resulting 
in a minimal error on the training dataset. This process could lead to overfitting in 
the model, and the algorithm will not recognize trends. To avoid overfitting in the 
model, we stopped the training processes when we found convergence in the valida-
tion dataset. When the validation dataset is used, the error will not decrease signifi-
cantly. This procedure was used for both the land value and the population density 
RF models.

The cadastral land value is available in the training dataset, and we used it to  
train the population density RF model. However, in simulated scenarios "Proposed sce-
narios", the land value comes from a second RF model. Thus, this model’s explica-
tive variables were the same as described earlier. Having the georeferenced blocks,  
we calculated the distance to the closest explicative variable for each of them.
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Travel demand model structure

The travel demand estimation associated with the densities and their locations is 
calculated based on an OLS model. We adjusted the OLS estimators calculated 
per pixel to be consistent with the units of analysis, to perform the trip estimation 
based on each 60 × 60  m pixel of the population density RF model raster. This 
adjustment is based on dividing each estimated parameter by the number of pixels 
within Bogotá corresponding to a residential block. This methodology for res-
caling estimators is valid because the model standardizes the dimensions of the 
analysis units by including the density as an explanatory variable. The number of 
trips in each pixel is predicted according to its characteristics with the rescaled 
parameters.

We tested several model specifications to obtain the best fit for expected signs, 
magnitude, and statistical significance. The proposed model analyzes the relation-
ship between the trip rate generation per pixel and its density by SES and the 
corresponding distance to the CDB. This specification is a quadratic model that 
considers the interaction between density by SES and how it is controlled by the 
distance of each pixel to the CBD. The following equation describes the model:

where Ti is the trip produced in each residential pixel i, PopDi is the population den-
sity per pixel i, CBDi is the distance of each pixel i to the CBD (Fig. 1), hSESi and 
mSESi are dummy variables that correspond to each residential land-use category 
(high and low, respectively), with lSESi (low) as the base category. For instance, the 
density effect on high-SES trips is β3 + β1.

Proposed scenarios

Two simulated scenarios are studied and processed as input data for the RF mod-
els. These scenarios represent the projected land-use demands in the study area, 
and for this case, we consider only the residential land-use distribution results for 
the year 2050. The two scenarios considered in this research and their character-
istics are summarized below:

•	 Scenario 1: Bogotá keeps its growth delimitation. Full restrictions to prevent 
residential use on agricultural land are applied. There are neither significant 
road infrastructure changes nor new developments in the public transport 
infrastructure under this scenario.

•	 Scenario 2: Bogotá (especially in the north) allows residential developments, 
enabling suburban land expansion. Restrictions on the occupation of agricul-
tural capacity are eliminated. New BRT lines, the first metro line, and two 
regional train corridors are created, improving the regional road network.

(1)
Ti = β

0
+ β

1

(

hSESi ∗ PopDi

)

+ β
2

(

mSESi ∗ PopDi

)

+ β
3
PopDi + β

4
CBD + β

5
CBD2
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Results and analysis

The results presented in this section summarise the main outputs obtained from the 
proposed methodology. The model parameters had to be adjusted to find the best 
combination to tackle the population density and land value problem. Based on the 
data, we evaluated several RF parameters to determine the best training/validation 
ratio. We found that a ratio of 80% training and 20% validation gives the best RMSE 
value. Then, the integration between the former and the CA-based models is pre-
sented, including the study of two scenario results. We used the same parameters for 
the land value RF model.

We determined a reasonable number of trees for which the computational cost 
would not be too high without directly affecting the outputs and avoiding overfitting. 
Once the best parameters were determined, we trained both RF models with their 
corresponding observed datasets. The parameters for the model were:

•	 Number of trees: 2000
•	 Depth (range): [1, 20]
•	 Random variables: Random for each tree, minimum 1, maximum 9
•	 Minimum rows: 1

Due to the randomness of the algorithm, the random value for the random seed 
was set to 503,080. This number was set to a fixed value to be able to compare dif-
ferent models. After determining the best parameters for both RF models, we exe-
cuted the Land Value RF model so that its output could be an input for the Popula-
tion Density RF model, as described before.

Population density estimation

The models were trained with a sample of our datasets. We found that the best pro-
portion for training the model is 20/80. Using the Land Value RF model results and 
the explicative variables described earlier, we trained the Population Density model 
and then, proceeded with the validations. This process was made by comparing the 
observed population density of each pixel against the predicted density. We found 
that the population density model is especially sensitive to the number of trees, so 
we decided to iterate over the number of trees until we found convergence.

Figure  3a shows the accuracy of the Population Density model. As seen, 
the model can predict with high accuracy; however, the regression slope in the 
graph shows that in most cases, the model is sub-estimating the population den-
sity. There, some outer points do not follow the regression correctly. In cities 
like Bogotá, where a significant part of the peripheral urban development had 
an informal origin (Guzman et al., 2017a), implying a lack of planning and con-
trol, density estimation can be tricky. This unusual behavior can be explained as 
a limitation of the models’ extrapolation capabilities (Chi et al., 2011), followed 
by the larger-than-Bogotá area created by considering the adjacent municipalities, 
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which we are doing. Once the trained model was validated, we checked each of 
the explicative variables’ weights, as shown in Fig.  3b. The variables’ weight 
allowed us to better comprehend their impact on population density estimation. 
This variable importance led to a variable analysis, avoiding redundancy.

The validation for the Population Density RF model resulted in an MAE 
(155.70), RMSE (244.27), and R2 (0.673), which shows the accuracy of the 
trained model (Fig. 3a). RMSE is only 0.91 standard deviations from the average 
value of all pixels in the resulting model. This acceptable performance is under-
mined by the extrapolation errors caused by the surrounding municipalities. When 
the Land Value RF model was validated, we obtained an MAE (119,713.55) and 
RMSE (232,947.32), giving us insight into the predictive model’s accuracy. Other 
descriptive statistics, such as the R2 value of 0.916, confirm this. The median of 
the land value in the validation dataset is only 1.05 standard deviations from the 
RMSE.

From the observed population density of each of Bogotá’s 35,796 residential 
blocks from the Bogotá Urban Planning Office (SDP), we calculated a population 
of 5.8 million inhabitants, which was the starting data point. Since the projections 
were made for the year 2050, there are no official estimates at the aggregation 

Fig. 3   Validation of the population density and land value RF models and variable importance. Variable 
acronyms as described in Table 1
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level of this study. At the aggregate level, official projections made in 2018 by the 
Bogotá’s SDP estimate a population of approximately 11 million inhabitants by 
the year 2050 (SDP, 2018). The SDP projections are compatible with this study’s 
estimates of 11.4 million inhabitants for Scenario 1 and 12.9 million inhabitants 
for Scenario 2.

When the model tries to extrapolate over the training dataset, the return value will 
be the value of the last node split. This value is determined in the algorithm imple-
mentation. The more variables the model has, the smaller the impact of extrapola-
tion. For instance, in a model with ten variables where only one variable is extrapo-
lating, the results will be influenced by the variability of the other nine variables.

Travel demand estimation

The final result was set from interactions of the categorical variables of SES with 
the population density, using the low-SES variable as a base, as shown in Eq. (1). 
We added each SES coefficient to the base coefficient to identify the total effect 
of density on medium-SES and high-SES trips. Table  2 presents the aggregate 
effect of density in each SES and the result of the joint significance tests, showing 
all the coefficients are statistically different from zero at the 1% level of statistical 
confidence.

This model indicates a positive relationship between population density and the 
number of trips generated in each pixel, i.e., the density and number of trips are 
more strongly correlated as SES increases. The effect of the distance to the CBD is 
positive but decreases as the distance increases because of the negative coefficient 
of the CBD variable in its quadratic form. The results show that the greater the dis-
tance to the CBD, the more trips are produced. However, after 13 km, the effect of 

Table 2   Travel demand model 
results

Standard errors in parentheses
***  p < 0.01; ** p < 0.05; * p<0.1

Variables Model

β0 (constant) 350.0***
(115,4)

β1 (density in low-SES pixel) 0.484***
(0.0764)

β2 (density in medium-SES pixel) 0.712***
(0.0966)

β3 (density in high-SES pixel) 2.049***
(0.407)

β4 (distance to CBD) 0.176***
(0.0244)

β5 (distance to CBD-squared) –6.77e-06***
(1.17e-06)

Observations 5523
R-squared 0.032
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distance on trip generation is zero. This implies that although a person who lives in 
a high-SES zone makes more trips on average, the lower-SES zones, located in the 
city periphery, have more significant trip generation due to the higher number of 
people living there.

Table 3 shows the observed trip generation values by SES (from HTS), the model 
results, and the ratio between them, complementing the observed trip production by 
SES with the fitted modeled values in the base year. As expected from the proposed 
model, the aggregate modeled values tend toward the observed values, given the 
normal distribution of the error term, with its mean equal to zero. The travel demand 
estimation process results were compared by SES level for the study area.

The results show that the travel demand model correlates well on an aggregate 
basis with observed data from the household survey and the data observed.

Table 3   Total trips (model-
observed comparison)

SES Observed 2019 Model 2019 M/O ratio

High 479,528 413,953 0.86
Medium 4,062,324 4,307,825 1.06
Low 4,405,762 4,225,835 0.96
Total 8,947,614 8,947,614 1.00

Fig. 4   Residential land-use test scenarios for the population density prediction model 2050
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Scenario evaluation

The distribution of the projected residential land by SES level for both scenarios is 
displayed in Fig. 4. It is crucial to highlight a limitation of this model. Even though 
the CA model studies Bogotá and its surrounding municipalities, both the popula-
tion density model and the trip generation model were trained and validated only for 
Bogotá due to data availability.

From these distributions of residential land use and transport infrastructure, we 
will apply the RF model to estimate land values and then, estimate population den-
sities and travel demand. Figure 5 displays the population density assigned to each 
pixel for both of the proposed scenarios from Fig. 4. Both maps clearly show a redis-
tribution of density in the city’s periphery. In Scenario 2, the population density is 
distributed differently in the northern part of the city and discourages new urbaniza-
tion in the extreme south.

We observe that the average population density in the high-SES areas increases 
for Scenario 1 and increases even more in Scenario 2. However, in Scenario 1, 
the population density is concentrated in a much smaller area, caused by land-use 
restrictions. In Scenario 2, we can see a steady incremental increase in the high-SES 
in both areas and average population density, which is accurate considering the new 
residential developments planned in the northern part of Bogotá under this scenario 
(see Fig. 6).

Fig. 5   Resulting population density by scenario 2050
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According to the CA model results, we must note the number of resulting pixels 
for both scenarios for each SES inside Bogotá. We can see that Scenario 2, which 
allows intervention in specific large areas in the northern part of the city, spreads 
into a larger area than Scenario 1. The basis of the second scenario, urban expansion 
in the north, is that the city just ended the Land-Use Master Plan and currently was 
issued without discussion. One possibility consists of modifying the current regula-
tion that restricts the development of that area of Bogotá. This is currently a 1,396-
ha zone with high-income low-density residential dwellings and sparse agricultural, 
entertainment, and educational uses (Guzman et  al., 2020a). Then, the population 
density was estimated according to the RF results. It is essential to highlight that 
neither scenario grows into a very similar area. However, even though the areas are 
similar in size, the mean population density is higher in Scenario 1 for low-SES.

The population density distribution for the urban expansion scenario is shown in 
Fig. 6 left). These results show a pronounced development of residential land-use in 
a compact configuration in the north, with high densities around major roads in the 
west. Medium- and low-SES occupation tends to be located in the corridor that con-
nects Bogotá with neighboring municipalities to the west. These uses are allocated 
as a cluster in proximity to the current urban area of Bogotá, where medium- and 
low-income areas predominate. These results suggest a series of new low-density 
high-SES neighborhoods in the urban expansion scenario and a reduction of low- 
and medium-SES urban spread in the southern part of the city.

The new urban expansion in the northern part of the city, simulated in Sce-
nario 2, presents new possibilities and new challenges for the local administra-
tion, mainly because it is currently used primarily for agriculture use and is a 
protected area. When we consider that, by our calculations, around 720,000 
inhabitants will settle in this area by 2050, public utility availability and critical 
infrastructure accessibility could become an issue for the local administration and 
the new settlers. The population density predictions are summarized in Table 4. 
These results are presented in a pixel-level prediction (60mx60m) in inhabitants 

Fig. 6   Population density and SES distribution results for Scenario 2
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per hectare. This population density model can help estimate the infrastructure 
and utility needs for this type of development.

We built an interactive data visualization webpage where the original and pre-
dicted data in both proposed scenarios are placed. The page uses ArcGIS web 
map services hosted in the Universidad de Los Andes servers and the free hosting 
provided by GitHub. You can visit the page at this link: https://​zibra​max.​github.​
io/​RF-​DENSP​OB/.

The trips produced by each pixel were also estimated with the parameters and 
the projected variables resulting from the population density model. Table 5 pre-
sents the results of the travel demand estimated under each scenario by SES. In 
Scenario 2, there is an increase of 4% in travel demand compared to the base year. 
For Scenario 1, this increase is about 1.6%. Analyzing the trip growth disaggre-
gated by SES, Table 5 also shows a sharp increase for the high SES, particularly 
in Scenario 2. Conversely, the low SES contraction of about 17% for Scenario 1 
and 12% for Scenario 2.

The increases in travel demand are consistent with the explanatory variables’ 
predictions from the RF model, the relationship between these variables, and the 
travel demand model. The low-SES gains participation in the urban area, but its 
average density falls in both scenarios. On the other hand, the medium- and high-
SES lose participation in the study area. However, they become denser on aver-
age in Scenario 2, and only the high-SES lose average density under Scenario 1. 
As for the mean distance to the CBD, it increases in both scenarios due to urban 
footprint growth.

Table 4   Population density 
results for both scenarios in 
2050

Population density results

SES Statistic Scenario 1 Scenario 2

High Mean 334.3 359.1
Sum 8,670,663.7 7,532,279.1
Std Dev 123.3 131.9

Medium Mean 587.3 574.3
Sum 38,379,985.4 34,470,426.4
Std Dev 184.6 156.7

Low Mean 540.2 596.4
Sum 311,654,000.8 32,786,044.4
Std Dev 219.2 240.1

Table 5   Total projected trips 
for present and both future 
scenarios 2050

SES Scenario 1 Scenario 2

High 738,939 1,018,854
Medium 4,689,094 4,425,358
Low 3,666,203 3,860,977
Total 9,094,235 9,305,189
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Because the future is intimately linked to the past, the population and travel pro-
jections provide reasonably accurate predictions of how the city will change in the 
future. Although predicting the future is impossible, our imperfect estimations could 
be extremely useful tools for planning and analysis if they are constructed and inter-
preted properly.

Discussion and conclusions

Population density is one of the most critical indicators, creating consistent and 
objective population density maps for large, and growing urban areas remains chal-
lenging. Usually, the population is not distributed uniformly across the urban terri-
tory, causing a divergence between planning, high densities, and quality of life. For 
example, residents may be a small proportion of the population density in a mixed-
use zone. This is why working with a small-scale land-use change model is essen-
tial. Studying and quantifying population growth and change at the disaggregated 
level has become more important for urban planning.

The rapid expansion of the urban footprint and changes in transport infrastruc-
ture has an unknown and differential influence on new settlements. Population den-
sity estimations can serve broader needs; they can be inputs into models to estimate 
population distribution, public utility provision, and travel demand estimation. In a 
particular social context, knowing the size and spatial distribution of the population 
is essential for planning and public policies. With few exceptions, previous work 
on CA-based land-use modeling has used 2D representations of land-use types. In 
our case, we previously developed a 2D model that lacked the third dimension for 
population density. We complemented it using the RF model. This research has 
demonstrated the potential of measuring one of the characteristic population features 
with simple explicative variables and using those features to obtain urban planning 
implications.

Creative analyses can effectively use existing resources in cities where informa-
tion is scarce. They can add value to the land-use models commonly used to analyze 
and simulate urban growth by reproducing complex dynamics and adding valuable 
indicators such as population density. The Random Forest algorithm allowed us to 
simultaneously work with both continuous and categorical variables. We tested nine 
explicative variables of population density calculated from two simulated scenarios 
with different land regulations and transport infrastructure implementations across 
the study area. Furthermore, when these variables have a geographical component, it 
boosts the algorithm’s capabilities. The RF algorithm in urban planning is a suitable 
way to show that many of the past analyses that we deemed incomplete or undoable 
can be easily complimented. Also, our approach can be replicated anywhere that can 
build a land-use model and has small-scale population density information.

This research uses a methodology that can complement land-use models with 
a population density estimation using an RF-based classification and regression, 
a machine learning method used in classification and prediction. This is the same 
approach that other models such as WorldPop use (Stevens et al., 2015). The abil-
ity of RF models to include both continuous and categorical variables allows the 
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introduction of relationships within variables where OLS and GWR fall short. A 
similar situation happens with the low randomness of the geographic data distribu-
tion where neither OLS nor GWR models work correctly.

This approach allows us to use a widely available dataset, expanding predictive 
modeling by allowing it to become accessible for planners and decision-makers. 
Population density is an essential issue in terms of economic efficiency and public 
infrastructure provisions for essential utilities. We also developed a travel demand 
model to estimate the produced trips regarding population densities and socio-
economic levels. This analysis could be a good push for the local administrations 
towards better planning and design of transport systems.

Finally, we are exploring ways to improve this model by acquiring more data or 
using more advanced algorithms like deep learning or neural networks that may not 
present the same limitations as the RF model. Besides extrapolating to the adjacent 
municipalities, we believe that using an advanced algorithm would also allow us 
to include demographic data like gender or age distribution into the model. This is 
important for understanding how residential densities can influence travel demand 
based on location and socioeconomic level, expanding interdisciplinary research on 
links between population, mobility, and the urban structure.
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