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Abstract
Linking people and places is essential for population-health-environment research. 
Yet, this data integration requires geographic coding such that information reflecting 
individuals or households can appropriately be connected with characteristics of 
their proximate environments. However, offering access to such geocoding greatly 
increases the risk of respondent identification and, therefore, holds the potential to 
breach confidentiality. In response, a variety of “geographic masking” techniques 
have been developed to introduce error into geographic coding and thereby reduce 
the likelihood of identification. We report findings from analyses of the error 
introduced by several masking techniques applied to data from the Agincourt 
Health and Socio-Demographic Surveillance System in rural South Africa. Using a 
vegetation index (Normalized Difference Vegetation Index (NDVI)) at the household 
scale, comparisons are made between the “true” NDVI values and those calculated 
after masking. We also examine the tradeoffs between accuracy and protecting 
respondent privacy. The exploration suggests that in this study setting and for NDVI, 
geomasking approaches that use buffers and account for population density produce 
the most accurate results. However, the exploration also clearly demonstrates the 
tradeoff between accuracy and privacy, with more accuracy resulting in a higher 
level of potential respondent identification. It is important to note that these analyses 
illustrate a process that should characterize spatially informed research but within 
which particular decisions must be shaped by the research setting and objectives. 
In the long run, we aim to provide insight into masking’s potential and perils to 
facilitate population-environment-health research.
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Introduction

Vulnerability to environmental change and its implications for human and ecological 
well-being remain critical challenges within global development. Research on the 
myriad dimensions of vulnerability has grown rapidly over the past decade, and 
while vulnerability as a concept has been usefully theorized, understanding the 
patterns and implications of differential vulnerability also requires accessible data. 
However, a critical challenge in vulnerability scholarship is that research linking 
people and place requires knowledge of individuals’ or households’ geographic 
location. Such knowledge can compromise confidentiality.

This paper begins a methodological exploration to facilitate the availability 
of detailed socio-ecological data to advance understandings of population-
environment-health connections. Our goal is ultimately to fuel research to inform 
policy designed to safeguard human and ecological well-being. The methodological 
exploration presented here involves innovative processing and analyses of data from 
a low-income setting in rural South Africa, a region from which social surveillance 
data are underutilized for the purposes of research on population-environment-health 
interactions. Several techniques of data anonymization are tested that are designed 
to mask true household locations in order to protect confidentiality. The primary 
contribution of this study is the identification of anonymization techniques—for this 
particular context and contextual measure—that yield more accurate estimations 
of environmental measures from anonymized household locations relative to 
the measures from the “true” household locations while sufficiently preserving 
confidentiality. Importantly, however, the process presented here is illustrative 
in that a wide variety of methodological decisions must be made that should be 
context-specific as well as driven by a project’s particular research objectives.

Background

Understanding associations between human populations and their environments is 
becoming increasingly important as evidence of climate change continues to mount. 
Such understandings are particularly essential to inform programs and policies in 
settings of high climate vulnerability including many rural areas of the Global South 
(Byers et al., 2018). In many such regions, livelihoods remain intimately intertwined 
with proximate natural resources (e.g., Wisley et  al., 2018), resources which may 
become increasingly scarce in areas anticipating shifts in rainfall and heat extremes 
(e.g., Olsson et al., 2014).

To increase the sustainability of rural livelihoods, research at the individual- or 
household-scale is of particular importance since livelihood decision-making is 
focused within these realms (e.g., Sumner et  al.,  2017). A wide variety of useful 
secondary social science datasets are available for such examinations. These often 
include confidential information from human subjects including age, gender, 
race, ethnicity, income, livelihood strategies, and, in some cases, particular health 
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outcomes. Collection of such data typically comes with important assurances as to 
confidentiality and protection of individual right to privacy.

Yet, examination of the environmental dimensions of well-being requires linking 
this individual- or household-scale data with information reflecting local environments. 
As two examples, locational data allow linking households to information on proximate 
rainfall and temperature conditions, thereby facilitating environmental health 
research. Locational data also allow for disease mapping to identify spatial clusters of 
incidences or outbreaks for programmatic targeting. Linking the necessary social and 
environment data for these questions requires geocodes—the geographic locations of 
survey or census respondents. Yet, making available such geographically specific data 
would typically violate ethical and legal requirements regarding the confidentiality of 
microdata in that respondents’ identities may be revealed. This tradeoff as related to 
protecting privacy while maintaining sufficient accuracy is the central issue addressed 
within this paper.

There are several approaches to address data confidentiality concerns with 
the most restrictive being complete non-disclosure such as the destruction of 
all location information after data collection has ceased. Partial disclosure can 
be implemented along a continuum, with any particular approach having its own 
drawbacks. There are no broadly representative comparative studies that examine 
the relative strengths of the many approaches nor that offer guidance on method 
choice. This paper’s contribution is examination of the tradeoffs between anonymity 
and analytical precision within one such method—geographic masking—thereby 
offering important insight related to this commonly used approach. The analyses 
presented make use of an environmental variable measuring vegetation cover and 
are undertaken in a rural South African study site. The work is illustrative of the 
process, and the implications, of different geo-masking approaches and is intended 
as guidance for population-environment researchers interested in linking micro and 
contextual data while maximizing privacy.

Of the variety of methods to protect anonymity, restricted data enclaves offer 
access to the highly specific geographic information. An example is the US Census 
Bureau’s network of Federal Statistical Research Data Centers (FSRDC) through 
which precise geographic information may be made available with highly structured 
confidentiality agreements and a requirement of travel to highly secured data centers 
for access. Such agreements also typically require high levels of oversight as to 
public presentation of results.

Offering more accessibility but substantially less spatial precision, geographic 
information is occasionally available within secondary data sets. In many cases, 
readily available spatial units are quite coarse (e.g., municipality in the Mexican 
Migration Survey). Yet, many organizations offer the possibility of more spatial 
precision through confidentiality agreements with individual researchers for specific 
projects. The Panel Study of Income Dynamics, for example, provides the option 
through a security agreement to access US Census linkages to tracts, block groups, 
or blocks which offer far more precision than positioning respondents in their larger-
scale counties. Other methods to protect respondent identity include aggregation 
whereby data are transformed to characterize geographic units (e.g., county-scale 
age, gender, racial composition). Aggregation units can sometimes be quite small 
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although the ecological fallacy remains a risk. This occurs when inferences are 
made about individuals or other subunits based on aggregated characteristics. Also, 
given the loss of microdata, aggregation yields less analytically useful data for 
the purposes of understanding micro-scale social and economic processes. Other 
approaches include spatial smoothing where data represent weighted averages 
of individual-level data averaged spatially by nearest neighbors (Zhou & Louis, 
2010) and multiple imputation which simulates datasets that capture dependencies 
among variables in the original data (Wang & Reiter, 2012). Linear programming 
approaches add noise to individual locations based on mathematical probabilities to 
minimize risk of individual disclosures based on the desired level of privacy. Data 
swapping entails switching values between various records, while synthetic data 
entails the creation of a dataset which has similar properties to original data where 
individuals cannot be identified. The critical importance of the privacy/accuracy 
tradeoff is illustrated by the debate surrounding differential privacy methods 
proposed for US Census data. Broadly, differential privacy entails the addition of a 
precise amount of statistical noise—i.e., synthetic records—into the released dataset 
such that a user cannot identify individual data (Abowd & Schmutte, 1999). Ruggles 
et al. (2019) argue that proposed methods have the potential to reduce the utility of 
microdata and smaller-area estimates and may disproportionally impact racial/ethnic 
minorities and underrepresented individuals.

Another approach to respondent protection is illustrated by the Demographic 
Health Survey (DHS) which provides geocodes representing the center of a 
geographic cluster or small settlement. Each location is “geo-scrambled” to 
randomly add position error, the distance influenced the local population density. 
Within this approach, the sociodemographic and economic characteristics of the 
households, themselves, are unchanged but instead the location is altered. As such, 
the contextual variables generated for households will reflect the displaced, as 
opposed to original location. Several studies have cautioned researchers to carefully 
consider the spatial error introduced within analyses using the DHS (e.g., Elkies 
et  al.,  2015) and innovative alternatives to the DHS clusters has been proposed 
such as using characteristics of nearby communities as proxies for environmental 
conditions (Grace et al., 2019).

Related, and the focus of this paper, geographic masking—also known  
as “geomasking” or “jittering”—entails displacement of the individual or  
household location using predefined parameters typically related to direction and 
distance from the true location. Proposed as early as 1999 (Armstrong, Rushton, 
and Zimmerman), geomasking has received far more attention in public health and 
epidemiological research as compared to population science although potentially of 
substantial use to demographers.

Approaches to geographic masking

Masking techniques typically include some form of spatial dislocation to reduce the 
potential for identification of study households. A variety of techniques have been 
developed that structure displacement of the original locations through different 
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approaches to randomization of distance and direction. After displacement, the 
original locations are removed from the dataset that is made publicly available or 
available through a data sharing agreement.

One of the most straightforward approaches is presented in Fig.  1 where a 
household is simply randomly offset within a buffer of predetermined size (in this 
case, 300 m). In the case of Fig. 1, the displacement is constrained by the village 
boundaries so that a household is not displaced outside the village.

The use of randomization has become more common in context-centered 
research (Armstrong et  al., 1999; Cassa et  al., 2008; Lu et  al., 2012). However, 
there is little consensus as to the amount of displacement necessary to preserve 
confidentiality. One approach to quantitatively measuring privacy risk is the spatial 
k-anonymity factor, where k is represents the number of people (or households) 
needed within a buffer to preserve confidentiality (Sweeney, 2002). This is an 
extension of the concept of k-anonymity where data are released only if there 
is a minimum of k-1 individuals with the same combinations of characteristics 
(Zandbergen, 2014). In its spatial version, k-anonymity approaches consider the 
displacement distance necessary to protect privacy given a particular population 

Fig. 1   Example of a simple random offset for a households with available displacement area constrained 
by village boundary
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density. Dense urban settings require less distance in displacements than sparsely 
populated rural areas (Cassa et al., 2008).

To better understand the implications of the various approaches to balancing 
research and confidentiality, we explore the differences that displacement brings for 
a particular contextual measure reflecting proximate vegetation, described below. We 
do so within a longstanding study site, the MRC/Wits-Agincourt Unit in rural South 
Africa.

Research setting

The Agincourt Health and Socio-Demographic Surveillance System (AHDSS)—
situated in the far northeast of South Africa—is operated by the Medical Research 
Council (MRC) and University of the Witwatersrand (Wits) Rural Public Health 
and Health Transitions Research Unit (MRC/Wits-Agincourt Unit). The study area 
of 450 km2 study includes 31 villages which are home to ~  110,000 residents in 
~  22,700 households. Since 1992, the Agincourt Unit has conducted an annual 
census including the entire Agincourt HDSS population (Collinson, 2010).

A “homeland” area where black South Africans were forcibly resettled during 
the era of Apartheid, the study site is characterized by relatively high population 
densities (~  170 persons per sq. km), high poverty, and a longstanding lack of 
development and access to state services (Collinson, 2010). The Agincourt study 
site’s settlement pattern is fairly typical of rural communities across South Africa, 
and socioeconomically, it is characterized by a high reliance on remittances from 
the large proportion of adults who are migrant laborers on commercial farms and in 
towns and cities across the country. A substantial portion of households also depend 
heavily on the state pensions of elderly members (Collinson, 2010).

The region is generally dry (annual rainfall 550–700 mm), although an east–west 
rainfall gradient results in local variation in natural resource availability. Homestead 
plots are typically too small to fully support subsistence agriculture and some 
households farm assigned plots in the surrounding communal lands. Residents are 
highly dependent on the natural environment for a range of uses. These include 
grazing livestock and collecting fuelwood, wild foods, thatching grass, construction 
timber, and other domestic products both for household consumption and for 
generating income (Paumgarten & Shackleton, 2011).

The centrality of natural resources to livelihoods in rural South Africa is key 
to the illustrative research presented here. Case studies in two rural villages found 
that 70% of households made use of non-timber forest products, such as fuelwood, 
wild fruit, and edible herbs during times of shortage and crisis (Paumgarten & 
Shackleton, 2011). Even in rural South African villages with readily available 
electricity, over 90% of households use fuelwood as a primary energy source due 
to the cost of electricity and appliances (Matsika et al., 2013). This trend has been 
observed in and near the Agincourt study site where natural resources also act as 
buffers against household shocks such as a breadwinner’s death (Hunter et al., 2007).

There is vast potential for linking population, environment and health data within 
Health and Demographic Surveillance Systems (HDSS). The INDEPTH network 
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includes 48 such sites in low-income settings across sub-Saharan Africa, Asia, and 
Oceania. These study settings undertake continuous monitoring of all individuals 
within a defined study setting and, combined, the INDEPTH network data provides 
longitudinal health and demographic insight on nearly 4 million individuals in 
18 countries, providing critically important opportunities for policy-relevant 
scholarship (INDEPTH, 2017).

The application of “geographic masking” to facilitate contextual research is, 
however, nascent within the HDSS community. A recent study with professionals 
possessing a working knowledge of surveillance systems found that most 
respondents (83.5%) were not aware of any written rule, policy, or regulation 
governing research with HDSS data although nearly 86% agreed that there was a 
need for such guidelines. The risk of personal or family data being compromised 
was of great concern, and 74% supported anonymizing data before release to 
researchers (Anane-Sarpong et  al., 2016). Per special agreements with particular 
HDSS’ (e.g., Africa Centre Demographic Information System), temporary access 
to locational information can sometimes be obtained by individual researchers 
(e.g., Tlou et  al. 2017). But a key motivation of the present project is to explore 
the potential for geographic masking approaches to facilitate greater data sharing 
for the purposes of population-environment-health research especially as related to 
current and future climate vulnerability.

Data and methods

We anonymize data from the AHDSS using nine different approaches (described 
below) and evaluate the impact of the geomasking through comparison of measures 
of proximate natural resources. The AHDSS provided data on specific physical 
locations of households but without any additional individual or household 
information, and in total the locations represent 31 separate villages with 22,708 
households (Fig. 2).

Given our focus on facilitating population-environment-health research, we 
examine the implications of geomasking for a vegetation measure reflective of 
proximate natural resources which are fundamental to most livelihoods in the 
Agincourt study site and predominantly collected from communal lands surrounding 
villages. Specifically, we use the normalized difference vegetation index (NDVI) 
which is well-correlated with vegetation amount and quality (Roerink et al., 2003; 
Wessels et  al., 2004). It is important to acknowledge that NDVI is used here to 
illustrate the process involved in geomasking and to allow for exploration of the 
tradeoff between privacy and accuracy. This example demonstrates the important 
questions to be asked within the context of spatially-informed scholarship although 
the choice of specific data reflecting the proximate environment must be driven by 
research objectives.

NDVI values are derived from data from the Landsat 5, 7, and 8 missions and 
the index’s calculation exploits vegetation’s reflectance of near-infrared light and the 
absorption of red light (Tucker, 1979). The data used to calculate NDVI is consistent 
across the Landsat missions due to Collection 1 data processing completed by the 
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USGS Earth Resources Observation and Science (EROS) Center. Values range 
from − 1 to + 1 with vegetation biomass and productivity positively correlated with 
NDVI (Foody et al., 2001; Mutanga & Skidmore, 2004; Wang & Rich, 2008). Low 
values (≤ 0.1) indicate barren land, rock, sand, or water, moderately positive values 
(0.2–0.3) may correspond to shrublands or grasslands, while high values (0.6–0.8) 
correspond to temperate or tropical rainforests (NASA, 2000).

The Landsat data includes NDVI estimates for a given location at least every 
16 days, and every 8 days when considering Landsat 7 and Landsat 8 overpass, at a 
resolution of 30 m (~ 100 ft). Two corresponding files were obtained for each date; 
a NDVI image file containing processed NDVI values and the associated pixel QA 
file. The pixel QA file is a raster image with the same pixels as the remotely sensed 
image, but each pixel is given a number identifying its usability, reporting image 
quality issues for each associated pixel of the NDVI data.1

This project incorporates data from March 1997 to December 2017 to capture 
temporal changes in NDVI. Additional processing included filtering NDVI values 
based on typical quality control criteria. For instance, data reporting “Cloud 

Fig. 2   Villages within the MRC/Wits-Agincourt Unit

1  The NDVI Values and Quality Assessment (QA) files were obtained from the Land Satellites Data 
System (LSDS) Science Research and Development (LSRD) repository provided by the US Geological 
Survey (USGS) Earth Resources Observation and Science (EROS) center (LSRD, 2018).
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Shadow,” “Cloud,” or “Water” in each corresponding QA file were excluded from 
the analysis. Undertaking the data integration at the pixel scale allows for better 
coverage since areas with clouded coverage can be deleted from consideration 
without the need to discount the entire Landsat image from consideration. Areas 
within village boundaries were also eliminated from consideration since they do 
not represent the communal areas where resource collection takes place. We also 
excluded neighboring game reserves and parkland (see Fig. 2) since village residents 
typically do not have access to these spaces.

We use 2000 m (2 km) buffer zones within which the NDVI associated with a 
household point location is calculated—the choice was informed by research on 
typical travel distances for natural resource access (Giannecchini et al., 2007).2 The 
determination of appropriate buffer size must be informed by cultural context and 
existing knowledge of population-environment linkages within that socio-ecological 
space. Median NDVI values within each individual buffer zone are estimated as a 
measure of the central tendency of NDVI values available to each household from 
March 1997 to December 2017. We also use a measure of household resource 
availability that is the sum of the NDVI values divided by the number of households 
in each individual household buffer zone. This metric serves as a proxy of relative 
resource availability accounting for both distance of access and the number of 
households that may share proximate resources. Households located further from 
village boundaries or in high-density areas have lower natural resource availability 
than households near village boundaries or in less-dense areas (e.g., see Leyk et al., 
2012).

For this project, NDVI values are not aggregated over long periods of time (e.g., 
mean annual value) since such calculations necessarily diminish information on 
seasonality and other within-year changes. Instead, we incorporate 200 estimates of 
vegetation availability for each of the 22,708 households for an average of 10 months 
per year, 1997 to 2017 reflecting one measurement per month selected as close as 
possible to the middle of the month where available.

In the current study, we employ nine geomasking techniques; four of these 
use the “donut” approach such that no points are offset within a minimum radius. 
Approaches that use donut masking include (1) random displacement, (2) offsets 
that represent Gaussian distributions of displacement, and both (3) random 
displacement and (4) Gaussian displacement with a “distance/density factor” 
(explained below). For these four approaches, we consider a maximum radius 
of 300 m with a 150 m exclusion zone (i.e., residence locations displaced 150 to 
300 m). This distance represents on average, the largest distance between any two 
households located within the same village. Larger distances were tested but could 
not be used due to smaller footprints of several villages. We also limit displacement 
to a household’s village extent (see Fig. 1). The influence of the village boundary 
constraint varies by village spatial size; as would be anticipated, larger villages have 
greater displacement potential. Village shape matters, too. For instance, Ireagh B is 

2  Calculations were also made with 1 km buffers with no substantial differences in overarching conclu-
sions.
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long and narrow and has smaller potential areas of displacement than villages of a 
similar size (Dumphries B) for all methods of displacement.

As mentioned, the “distance/density factor” is also considered in several of 
our illustrative masking approaches. The factor is calculated by relating the local 
population density (e.g., village) to total population densities (e.g., study region) 
(Cassa et al., 2008). Basically, within such weighted displacement approaches, the 
baseline displacement distance within buffers (300  m) is adjusted to compensate 
for proximity of households to one another within a particular village. More dense 
villages require less displacement for privacy protection.

We also examine a method that allows for adjustment of displacement distance that 
adds consideration of k-anonymity to the density adjustment (Allshouse et al., 2010). 
With this approach, the minimum (Rai) and maximum (Rbi) displacement distance is 
defined by the density of households and user-defined levels of k-anonymity:

Ni represents the number of households in each village and Ai is the area. Here, 
ka is the minimum displacement threshold and kb equals the maximum displacement 
threshold. For example, specifying ka = 5 assumes that at least five households will 
be in closer proximity to the true household location than the displaced household 
location. For this study, we specify ka = 5 and 20 with kb = 10 × ka. The decision 
to use a multiplier of 10 follows work by Allshouse et al. (2010) and this particular 
measure is central to our exploration of the tradeoff between privacy vs. accuracy. 
These approaches are also displayed in Fig. 3 as (5) with ka = 5 and kb = 50, and (6) 
with ka = 20 and kb = 200.

Our final three illustrative approaches involve random displacement of 
households within a geographic area defined differently than a circular buffer. These 
three approaches focus on within-village geographic clusters pre-defined by spatial 
attributes that likely shape livelihood strategies such as proximity to a major road 
or distance to communal lands. These involve random assignment and are also 
presented in Fig.  3, numbered within (7) the entire village; (8) sub-village areas 
defined by physical boundaries such as roads, rivers, or railroads; and (9) sub-village 
areas defined by distance from edge of village boundary in 100 m buffer zones.

Village descriptive profiles

There is substantial variation in overall population size across the AHDSS villages 
(Table 1); the village of Lillydale A is home to over 1600 residents while one sub-
section of Somerset, Somerset B, has only 71 residents. This wide variation plays into 

Total density multiplier =
Average total household density

Village household density

Rai =
((

Ai∕�
)

×
(

ka∕Ni

))1∕2

Rbi =
((

Ai∕�
)

×
(

kb∕Ni

))1∕2
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the differentials in density, with the highest density in Somerset C (1180 households/
km2) and lowest density in MP Stream (117 households/km2), a tenfold distinction. 
These variations speak to the need for randomization methods that account for 
substantial differences in size and density in that offsetting households a large 
distance may not be practical in the village of Somerset C with its small geographic 

Fig. 3   The nine illustrative geographic masking techniques examined. Black circle represents the original 
location; gray dots represent simulated possible locations using each masking method with a radius of 
300 m and exclusion zones of 150 m for masking approaches 1 and 2. For approaches 3 and 4, the radius 
and exclusion zones are adjusted from 300 and 150 m using a total density multiplier (Dm). Dm = average 
total household density/village household density. For approaches 5 and 6, possible locations are placed 
within a radius Rbi and exclusion zone Rai. Approaches 7, 8, and 9 represent possible locations of dis-
placed households within a village or sub-village boundaries
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footprint. However, for Somerset C, consideration must also be given to its low 
overall population which poses important challenges to privacy.

As to the environment, Fig. 4 presents estimated NDVI values for households 
during the summer of 2010 and reveals a substantial west–east greenness gradient. 
The study area’s western side is indeed characterized by slightly higher elevations, 
greater variation in topography, and more precipitation. It is also clear that 
villages in the eastern portion confront substantial resource constrains given both 
low NDVI values and boundaries with fenced reserves.

Understanding implications of geomasking

Ultimately, this study’s objective is to demonstrate a process whereby researchers 
might better understand the implications of geomasking. Here, we aim to examine 
the significance of the differences in NDVI values for each masking approach as 
compared to the NDVI calculated based on the true household location. As such, 
the focus is on differences between geomasking methods as opposed to differences 
between households. The reference category represents the NDVI estimates derived 
from true household locations.

To generate a quantitative understanding of the distinctions in NDVI values, 
we determined differences between the two NDVI estimates calculated for the true 

Fig. 4   NDVI values (Jan 2010) for true household locations, 2 km buffers, MRC/Wits-Agincourt Unit

459Population and Environment (2021) 42:445–476



1 3

household locations relative to those displaced. To quantify distinctions, however, 
our evaluation considers only growing-season months (September to April); Table 1 
also presents this village-scale descriptive information across the entire study 
period, sorted by the average of the monthly median NDVI. The results reveal wide 
variation in the range of median NDVI values between and within villages. For 
instance, median NDVI values in Xanthia varied by 0.79, a relatively large amount 
given that NDVI values generally range between 0.0 and 0.8 in the study area. The 
villages of Cunningmore A, Makaringe, and Agincourt also show a high degree of 
variation in median household NDVI values. This pattern is also observed in the 
range of NDVI values estimated as the sum of NDVI divided by the number of 
households; the highest levels of variation are in the villages of Xanthia, Makaringe, 
and Agincourt. Although there is not a particularly strong correlation between 
density and NDVI, the villages in the study area’s western portion do tend to be 
larger in size and relatively less dense than villages with lower levels of variation of 
NDVI values which tend to be in the eastern portion of the study area (e.g., Somerset 
B, Lilydale A, and Rholane). Even so, the village with highest density, Xanthia, 
actually has especially high NDVI likely due to the area’s rolling topography and 
proximity to surface water sources.

These descriptive glimpses into variation are intriguing, but we also aim for a 
more thorough sense of the significance of these differences. To this end, and given 
the study’s longitudinal nature, we use multilevel models where repeated measures 
of NDVI (level 1) are nested within households (level 2) with both the intercept 
and slope for households varying across time. Since NDVI is a continuous measure, 
we use linear mixed regression models with fixed effects representing the different 
methods of randomization—the effect of the method used to estimate natural 
resource availability is reflected by the fixed effect’s estimated coefficient. For 
example, a statistically significant coefficient for the fixed effect using randomization 
approach 2 (i.e., Gaussian displacement with donut masking) would suggest 
important differences between the NDVI values calculated via this method and those 
reflecting NDVI surrounding households’ true locations while also accounting for 
temporal differences in NDVI. Analyses were conducted for each village to estimate 
variation of randomization methods at the village scale. This approach allows us to 
examine potential sources of deviation in given approaches that may be associated 
with regions of high or low NDVI values, or areas within the study site that have a 
high degree of variation in resource availability.

Results for median and sum NDVI are presented in Appendix Tables  3 and 
4, respectively. Two particularly intriguing findings emerge. First, methods 
of displacement that account for housing density (random, Gaussian, and 
k-anonymity) provide results most similar to the median NDVI estimates of the 
true household locations as demonstrated by a consistent lack of statistically 
significant differences, especially for median NDVI estimates. While there are a 
greater number of statistically significant differences for the sum NDVI estimates, 
these differences are substantively small (less than 4%) for three specific methods 
(random density, Gaussian density and ka = 5 kb = 50). The greater number of 
significant differences is likely a result of the introduction of larger variation 
in NDVI estimates for masked household locations. For instance, sum NDVI 
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estimates are more sensitive to the position of the household relative to the village 
boundary, where a house located in the interior portion of a village will have a 
smaller sum NDVI estimate than a house located near the boundary of a village 
and closer to the surrounding vegetation.3

Fig. 5   Spatial distribution of difference in sum of NDVI values/number of households, true vs. geo-
masked locations, MRC/Wits-Agincourt Unit (1) Random, donut, (2) Gaussian, donut, (3) Random 
(density), donut, (4) Gaussian (density), donut (5)  ka=5 kb=50, donut, (6)  ka=20 kb=200, donut, 
(7) Random within village, (8) Random within sub-village by infrastructure (roads), (9) Random within 
sub-village by distance to boundary

3  We also examined the impact of removing boundary constraints which increases the distance of dis-
placement for households by an average of 14%. However, the displacement distances varied substan-
tially across villages. For example, villages with lower household density did not see large gains in 
displacement as compared to when with masking methods that account for household density. Also, 
household displacement distances were on average, lower when using k-anonymity methods. In all, this 
suggests that the household density is more limiting in terms of constraining displacement distances than 
the village boundary.
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Second, there are a few villages within which almost all of the geomasking 
approaches simply miss the mark, most notably Rholane, Somerset B, and Lilydale 
B. To spatially represent these patterns of error, Fig.  5 presents the differences 
between true locations for the sum NDVI estimates for each of the nine masking 
methods. As shown in Fig. 5, there is a high degree of variation in NDVI estimates 
depending on the method used. However, villages in the central and eastern 
portions of the study area consistently show a large difference between true and 
randomized NDVI values.

To explore potential explanations for the variation in accuracy, we examined the 
underlying distributions of NDVI, population, and density, as well as examining 
other potentially influential factors such as village proximity to other villages 
and the study region’s edge. Regardless of the method of masking, villages that 
are smaller and more densely populated tend to have lower variation between true 
and displaced NDVI values (e.g., Somerset C). This is because smaller and more-
dense villages tend to have relatively low displacement distances—especially 
when using density-dependent approaches—which then results in less difference 
between true and displaced NDVI values. In the case of both random and Gaussian 
approaches of geomasking (panel 5a and 5b), villages with less difference between 
true and randomized NDVI values are located in the northern part of the study 
area (Makaringe, MP Stream, Dumphries A, Dumphries B, Dumphries C, Rolle C, 
and Kumani). These villages generally exhibit higher levels of NDVI compared to 
the middle part of the study area where differences between true and randomized 
NDVI values are greater. Two southern villages—Belfast and Somerset C—also 
show better agreement. This is due to a combination of factors: the villages are 
relatively small and have small ranges of NDVI values. Belfast’s location at the 
edge of the study site further reduces variability between true and displaced 
NDVI values. In all, the spatial variation in error is due to the influence of NDVI 
variability, population, and/or population density, as well as other factors such as 
household proximity to village edges, other households, as well as village proximity 
to other villages and protected areas. In a particular research project, it would 
be useful to consider how variation in these factors combine with your variable 
of interest to influence the accuracy of displaced values across the study region. 
Such understanding may ultimately influence the decision as to which geomasking 
method is most appropriate for a particular research project.

Tradeoffs between anonymity and accuracy

In addition to measurement error, it is important to understand potential implications 
for anonymity within each geomasking approach. In essence, this illustrates the 
balancing act that represents a key contribution of this paper but, as a reminder, these 
analyses illustrate a process which should be undertaken within spatially-explicit 
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scholarship where anonymity is a concern. Recall that there are research-specific 
choices to be made regarding relevant environmental variables, buffer sizes, required 
anonymity threshold, and the like.

To illustrate tradeoffs, we calculated average displacement between true household 
locations and masked locations and the estimated k-anonymity for each location 
averaged within the villages (defined as the number of households that are closer to 
the true location than masked). The village-specific results are presented in Appendix 
Table  5, while they are summarized within Fig.  6a. On average, and as would be 
expected, masking methods that tend to be closer to the true location tend to have 
lower k-anonymity. In particular, random displacement and Gaussian approaches 

Fig. 6   Evaluation of accuracy and privacy for true vs. geomasked locations, MRC/Wits-Agincourt Unit. 
a Displacement distance versus k-anonymity. b k-Anonymity versus absolute difference in NDVI
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adjusted for density (approaches 1–4) provide smaller displacement distances and 
lower levels of actual k-anonymity (yellow oval, Fig.  6a). As shown in Appendix 
Table  5, for instance, in the least populated village, Somerset C, density-informed, 
random geomasking result in an average of eight households being closer to the true 
location than the masked household. The density-informed Gaussian displacement 
lowered this to six.

Conversely, geomasking approaches that incorporate medium levels of both 
household density and k-anonymity (approaches 5 and 6) provide relatively higher 
levels of displacement and anonymity (green oval, Fig.  6a). On the other extreme, 
relatively high levels of anonymity and displacement characterize geomasking within 
village boundaries (approaches 7–9), as opposed to those based on buffers (orange 
oval, Fig.  6a). In particular, approach 9 that uses sub-village areas as defined by 
distance to village boundary reached as high as 833 in the densely populated village 
of Agincourt, the study site’s namesake.

To evaluate implications of anonymity and accuracy, for each geomasking 
method we next plot the average k-anonymity versus the average difference in the 
sum of NDVI between true and masked household locations (Fig. 6b). We find that 
methods that have lower levels of k-anonymity (for example, random and Gaussian 
displacement) also tend to have smaller differences in NDVI measures (yellow oval, 
Fig. 6b). Conversely, methods with higher levels of k-anonymity tend to have larger 
differences in NDVI measures (for example, random village displacement). While 
methods that randomize locations within a village or sub-village boundary indicate 
higher levels of k-anonymity, these methods have relatively large differences in NDVI 
measures. Of particular interest, methods that incorporate both household density and 
k-anonymity as highlighted by the green oval in panel b (ka = 20 kb = 200) exhibit 
high levels of k-anonymity and relatively small differences in vegetation measures, 
suggesting perhaps the most effective approach for NDVI in this study setting.

These findings on tradeoffs are logical since larger displacements will yield 
greater anonymity although also being further from the true location and, therefore, 
more likely to yield a larger difference in true vs. displaced measures. Again, it 
is not our goal to firmly decide which of the nine approaches is “best,” rather we 
aim to illustrate the process by which researchers might explore the implications of 
geomasking in a particular study context with particular research objectives.

The average level of anonymity provides insight into the utility of each method 
and the tradeoff between accuracy of NDVI measures and relative displacement. 
However, given that methods of anonymization assume homogeneous distribution 
of households, we extend the analyses further by establishing a minimum 
acceptable threshold of k-anonymity for this particular illustration of the process 
of geomasking. For example, a threshold of five is not met if there are less than 
five households located closer to the true location than the masked location. In this 
study, we find that at most, 1.2% of households do not meet the privacy standard of 
five households regardless of the method of anonymization. For a threshold of 10 
households, only one method—Ka = 20 Kb = 200—provides a relatively high level of 
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anonymization with 99.8% of households meeting this privacy standard, while each 
method has at least one household that may be exposed to these privacy standards 
(Table  5). We recognize the disclosure of just one household is problematic 
as illustrated in Table  5, where all methods disclose at least one household. Yet, 
this analysis highlights that although masking methods may provide an average 
acceptable high level of protection (for example, approaches 7–9) it is important to 
consider how well a single household is protected. One response to this challenge 
is the removal of households that fail desired levels of anonymity from the dataset, 
of course with careful documentation. Another approach is to swap a specified 
number of households prior to displacement—or values within households—thereby 
adding additional uncertainty to lessen the likelihood of identification. While 
these approaches may not be acceptable in some cases, the study’s investigators 
must balance the project’s needs as related to the level of detail required—
more detailed data requires a larger k-anonymity to minimize the likelihood of 
identification. (Table 2)

Discussion and conclusions

Substantial advancements in geographic information science have expanded 
the possibilities of scholarship linking the social and ecological worlds. Such 
scholarship is essential during this contemporary era of climate change in order to 
understand the processes shaping vulnerabilities.

The preliminary analysis presented here has been motivated by concern with 
facilitating socio-ecological research while preserving the confidentiality of social 

Table 2   Percentage of Households That Do Not Meet Privacy Thresholds

Kact calculated as the number of households located closer to the true location than masked household 
location (averaged for each village)

Geographic masking methods Number of 
Households 
kact = 1

% kact = 1 % kact < 5 % kact < 10

1. Random distribution 5 0.02% 0.3% 2.1%
2. Gaussian distribution 10 0.04% 0.5% 3.4%
3. Random density 10 0.04% 0.4% 2.7%
4. Gaussian density 11 0.05% 0.7% 4.6%
5. Ka = 5 Kb = 50 6 0.03% 0.4% 2.8%
6. Ka = 20 Kb = 200 1 0.00% 0.0% 0.2%
7. Within village 29 0.13% 0.4% 1.0%
8. Sub-village by infrastructure (roads) 89 0.39% 1.2% 2.7%
9. Sub-village by distance to village boundary 77 0.34% 1.0% 2.1%
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science survey respondents. Several studies have emerged over the past several years 
examining the potential error introduced by geomasking techniques, but most such 
research has examined error with regard to the creation of distance-based measures 
such as distance to health clinic (e.g., Warren et al., 2016). Results suggest that the 
creation of these distance-based covariates can yield consequential measurement 
error. But as opposed to distance-based measures, here we begin examination of 
the error introduced by geomasking for contextual measures reflecting proximate 
environmental conditions. We do so within the context of a health and demographic 
surveillance site, the Agincourt Health and Socio-Demographic Surveillance 
System in rural South Africa. The exploration suggests that in this study setting 
and for NDVI, geomasking approaches that use buffers and account for population 
density produce the most accurate results. However, the exploration also clearly 
demonstrates the tradeoff between accuracy and privacy, with more accuracy 
resulting in a higher level of potential respondent identification. In this way, the 
analysis demonstrates the critical tradeoff between geographic accuracy and 
confidentiality—a tradeoff that must be made carefully considered by study site 
administrators and research teams. It is important to remind readers that there are 
a variety of analytical choices that must be informed by specific study contexts, 
research questions, and the level of detail desired within the data.

While we focus on the Agincourt HDSS site, this is but one of nearly 50 such 
surveillance sites throughout sub-Saharan Africa, Asia, and Oceania. HDSS support 
research on the world’s most pressing development questions, and they do so in 
regions where reliable and comprehensive data would typically not otherwise be 
available. Within these social surveillance systems, health, mortality, fertility, and 
migration are often focal topics. Socio-demographic characteristics such as age, 
gender, and employment status are also recorded. Combined across individuals, 
households and years, these data provide extraordinary opportunities to improve 
understanding of social and ecological processes and their connection with health 
including infant mortality, child health, and disease outbreaks. As such, the 
approaches tested here have the potential for far broader impact in understanding 
connections between human well-being and environmental change over longer time 
periods and in different settings.

In the long run, we aim to contribute to methodologies balancing research and 
privacy needs. As noted by Zandbergen (2014:9), “the lack of comparative analysis 
of masking techniques provides a clear indication for desirable future directions.” 
Important next steps include examination of the error introduced within substantive 
analyses when using the NDVI estimates from anonymized household locations. 
Yet, the present manuscript offers an important first step in exploring anonymization 
prospects for health and demographic surveillance systems that are designed to 
facilitate essential population-health-environment in this contemporary era of global 
environmental change.
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