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Abstract Privacy concerns regarding the sharing of spatially referenced house-

hold data have induced researchers and survey agencies to ‘‘scramble’’ geographic

information by adding random spatial errors to true location coordinates. In this

paper, we prove mathematically that the addition of random noise leads to a sys-

tematic overestimation of distances between households and access points of

interest. We illustrate this average distance bias as well as the attenuation bias

generated by random spatial errors using data on household and health facility

location from a Health and Demographic Surveillance Site in rural South Africa.

Given the large overall biases observed, we argue that the use of scrambled spatial

data for policy making or empirical work is generally not advisable, and that

alternative methods of protecting data confidentiality should be used to ensure the

usability of spatial data for quantitative analysis.
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Introduction

The rapid growth in the availability of household data containing Geographical

Information System (GIS) coordinates has opened new venues to researchers

interested in the complex interactions between space, human behavior, and

outcomes (Arcury et al. 2005; Cooke et al. 2010; Seiber and Bertrand 2002; Tanser

et al. 2009). The availability of geo-referenced household data allows researchers to

study the density and spatial distribution of specific features of populations; it also

allows researchers to assess the extent to which specific behaviors, such as school

attendance or health care seeking, depend on spatial location and distance to public

infrastructure like schools or hospitals (Kaplan and Hegarty 2006; Kyei et al. 2012;

Lohela et al. 2012).

One of the most critical challenges faced by researchers working with geo-

referenced household data is confidentiality and privacy protection (Kamel Boulos

et al. 2009; O’Brien and Yasnoff 1999; Onsrud et al. 1994). Given that Global

Positioning System (GPS) coordinates generally lie within a 10-m radius of the true

location (Schwieger 2003), households and household members could be identified

if their GPS coordinates were publicly available. Even in densely populated urban

areas, relatively few households are within a 10-m radius of a given coordinate and

even fewer may match all the other household characteristics included in the data

set, including income, family size, or occupation. Identification of households is of

particular concern if GPS coordinates are linked to sensitive data on household

members, such as household members’ HIV status and sexual behavior. Allowing

the identification of survey respondents constitutes a clear violation of the

confidentiality that researchers typically guarantee as part of the consent process

preceding a subject’s enrollment in a research study. If individuals with stigmatized

traits or particular vulnerabilities can be identified, a range of harms and undesirable

consequences may result, such as harassment, social exclusion, or crime (Hyman

2000).

Several approaches have been developed to address these data confidentiality

concerns. Complete non-disclosure, restricted disclosure, and coordinate scrambling

are the most common approaches (Golden et al. 2005). Other possible approaches

include aggregating high-resolution spatial data to larger administrative units, as

well as the use of software agents that allow researchers to analyze fully identified

data without being able to physically access the underlying identifiable information

(Kamel Boulos et al. 2006).

Complete non-disclosure essentially implies destroying the original household

location information upon completion of the study. The approach is easy and highly

effective for ensuring data confidentiality, but also implies the systematic

destruction of potentially valuable information. Partial disclosure is the approach

currently taken by some of the larger European and US household surveys, such as

the Health, Ageing and Retirement (SHARE) surveys (Borsch-Supan et al. 2013;

Linardakis et al. 2013) or the National Longitudinal Study of Youth (Center for

Human Resource Research 1997). In these surveys, GPS or address data are

collected, but are not part of the data sets that are made publicly available. Upon

request, GPS data are selectively made available to researchers with appropriate
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scientific reasons for using this data. To minimize the risk of data leakage,

researchers generally need to sign strict data confidentiality agreements and may

also be required to come to specific data centers to physically access the data. Partial

disclosure has two main disadvantages: First, setting up confidentiality agreements

with a potentially large number of researchers and research institutions often

requires substantial human and legal resources; second, traveling to a data center

may be impossible for many researchers because of financial and time constraints.

To avoid these challenges, large data collection operations, such as the

Demographic and Health Surveys (DHS) and many Health and Demographic

Surveillance Systems (HDSS), use a third approach, which is loosely referred to as

‘‘coordinate scrambling’’ (ICF International 2012). Similar to the ‘‘selective

availability’’ program run by the US military until 2000 (National Archives and

Records Administration 1996), a random noise vector is added to each coordinate to

‘‘mask’’ its true location, and the resulting ‘‘scrambled’’ coordinate is then made

available to the public. In the case of the DHS, the scrambled coordinate falls within

a 2-km radius of the original coordinate in urban areas and within a 5-km radius in

rural areas.1 Both scrambling radii were chosen with the objective to make

identifying households sufficiently difficult, which essentially means making sure

that sufficiently large number of households fall within the chosen radius. This

could in theory be achieved by choosing the scrambling radius as a function of local

population density. In practice, local population density data are not always

available; as a result, large survey operations like the DHS simply use a smaller

radius for the typically more densely populated urban areas and a larger radius for

rural areas.

Conceptually, the idea of scrambling seems attractive, since scrambling implies

protecting data confidentiality, while allowing researchers to work with collected

geographical data. In practice, however, neither the theoretical nor the empirical

implications of scrambling are well understood. To address this knowledge gap, we

formally introduce the concept of scrambling in this paper and mathematically

assess implications of scrambling for estimates of average distance as well as

estimates of the relationships between distance and other variables of interest. We

prove mathematically that scrambling systematically biases the distance estimates

between one point whose true coordinates are known to the analyst (e.g., a

healthcare clinic) and another point whose true location has been disguised through

scrambling (e.g., a household). To illustrate the resulting biases empirically, we

scramble true GPS data from a demographic surveillance site (DSS) in rural South

Africa and then show the resulting distance and regressions biases in a range of

study settings.

The effect of scrambling on average observed distances and distance variation

Let us define a point X as a reference or access point of interest and d as the distance

of interest between X and some given household location h. One may think of X as

1 See http://www.measuredhs.com/What-We-Do/GPS-Data-Collection.cfm for details.
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the nearest fast food location, shop selling cigarettes, or healthcare clinic. For

simplicity, but without loss of generality, we assume that the access point X is

located at the origin, so that the vector from X to each household h is just h itself and

has distance |h|.

To derive the bias in the average distances computed based on scrambled data,

we assume that the true location of h is perturbed by adding a random noise vector

v drawn from some centrally symmetric distribution as illustrated in Fig. 1.

‘‘Centrally symmetric’’ requires that for any region R the probability that v 2 R is

the same as the probability that -v 2 R. If the random noise vector v is drawn from

such a centrally symmetric distribution, the expected value of the noise vector is

zero. This means that there is no systematic bias in either direction, so that the

perturbed vector h ? v has the same expected position as the corresponding vector

h.

Under this rather general assumption, we demonstrate that the following

proposition is true:

Proposition 1 For any vector h and a randomly added scrambling vector v the

following must always be true:

(i) The expected value of the scrambled distance from the point of interest,

h|h ? v|i, always exceeds the true distance |h| as long as v is not limited to

the line segment between -h and ?h.

(ii) Adding a noise vector v always increases the expected square distance

h|h ? v|2i, and the difference h|h ? v|2i - |h|2 equals the mean square

h|v|2i of v.
(iii) The expected bias between the true and the observed distance is bounded

by h|v|2i/(2|h|); thus, as long as |v| B c for some radius c, then, as long as

the distribution of v is symmetric under v, we have hþ vj j2
D E

� hj j2 � c2

2 hj j.

Part (i) of Proposition 1 states that the average (expected) scrambled distance is

strictly larger than the true distance for any two-dimensional error. The magnitude

of this bias increases with the maximum scrambling radius and decreases with the

true distance as shown in Part (iii) of the proposition. Intuitively, adding two-

dimensional noise terms biases the average distance due to the nonlinear relation

defined in Pythagoras’ Theorem; the (linear) average of the scrambled distances

turns out to be systematically larger than the actual true distance. Part (ii) of the

proposition is more straightforward; given that the two vectors of interest are by

assumption independent, the total variation in scrambled distance can be directly

decomposed in the true variation in distance and the average variation generated by

the scrambling error.

The full mathematical proof of Proposition 1 is available in ‘‘Appendix’’.
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Empirical implications

Proposition 1 has two main implications for empirical analysis. First, and most

importantly, any population-based estimate of average distance based on scrambled

data will display a systematic upward bias. This overestimation of true distances

may have undesirable consequences if estimated distances are used for policy.

Assume, for instance, that the government wants to know the average distance

children travel to school or the fraction of individuals living outside a given distance

to a health facility. Further, assume that the coordinate of the school or health

facility is precisely known, but that all coordinates of households have been

scrambled. If the government uses these scrambled coordinates to calculate

distances, the average observed distance will be strictly larger than the average true

distance, so that the fraction of individuals living beyond a given distance of interest

will generally be overestimated.

The second major issue when working with scrambled data directly links to the

statistical literature on measurement error in variables starting with the seminal

work by Spearman (1904). As shown in part (ii) of Proposition 1, the addition of

random spatial noise essentially implies adding measurement error to the variable of

interest. Since the measurement error is orthogonal to the true distance by

construction, the classical-errors-in-variables (CEV) case will arise. In a standard

ordinary least squares regression (OLS) framework, the probability limit of the

coefficient estimated for the distance variable of interest is given by

p lim b̂OLS

� �
¼ b

r2
h

r2
h þ r2

v

;

where b is the true coefficient of interest and rh
2, rv

2 correspond to the variance in the

true distance and the scrambling error, respectively (Wooldridge 2002, 2003). The

greater the variance in the random noise term, the closer the estimated slope moves

toward zero; this effect is generally referred to as ‘‘regression dilution,’’ ‘‘attenua-

tion,’’ or ‘‘attenuation bias’’ following the original work by Spearman.

To illustrate the importance of scrambling biases in practical application, we use

data from the Wellcome Trust Africa Centre for Health and Population Studies (Africa

Centre) in rural South Africa. As described in further detail in Tanser et al. (2008), the

Africa Centre surveillance was launched in 2000 and longitudinally tracks

h X|h|

Radius γ

h+v
|h+v|

v

Fig. 1 Model setup
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demographic and health outcomes for all individuals who reside in a geographically

contiguous demographic surveillance area covering a total of 438 km2. The area is

mostly rural and densely populated with about 25 households per square kilometer. As

of June 2013, the site covers about 90,000 individuals. Figure 2 shows the spatial

distribution of households and primary healthcare clinics in the area.

To illustrate the effects of scrambling on estimation, we assume a simple

population model, where the outcome of interest y for an individual i (such as school

attendance, antenatal clinic attendance, HIV antiretroviral treatment uptake) is a

linear function of distance and random error term, such that

yi ¼ aþ bDisti þ e;

where Dist is distance in kilometers and e is a randomly distributed error term.

We start our simulations with the basic scenario outlined in the theoretical model

and illustrated in Fig. 1, with one specific reference point and a given scrambling

radius. In the DSS data, the true coordinates of both the households and the

reference points are known. We can thus compare actual distances to the ones

observed in a setting where the household coordinates have been scrambled. To

evaluate the impact of scrambling on regression analysis, we assume a simple data

generating process, where some generic outcome variable y is a linear function of

the true distance with a stochastic error terms as described above.

We simulate three different scenarios: a scenario with a very close reference point

(inside the demographic surveillance area), a scenario with a mid-range reference

point (20 km), and a scenario with a more distant reference point (50 km). For each

scenario, we take the true coordinates of all 16,309 households shown in Fig. 2,

generate a dependent variable as a linear function of the true distance, and then run

1,000 simulations with scrambled data. Each iteration of the simulation proceeds in

three steps: In the first step, we add a random (scrambling) error between 0 and the

chosen radius to each of the original household coordinates; in the second step, we

compute the Euclidean distance between the scrambled household coordinates and

the reference point of interest, and in the last step, we run a regression using the

scrambled rather than actual distance as explanatory variables. We store the average

distances and regression coefficients obtained in each iteration of the simulation and

then compare them to the true values of both variables.

Figure 3 summarizes the results from these simulation models and illustrates the

general relation between scrambling noise, observed distances, and expected

regression point estimates. More scrambling noise unambiguously increases the

expected average distance (bias) as well as the attenuation bias in regressions, while

more distant reference points reduce the biases observed. Assuming an average

distance from the household to the nearest school or clinic of\10 km (scenario 1),

and a scrambling radius of 5 km recommended for rural areas, the average distance

is overestimated by 0.51 km, which corresponds to an upward bias of about 5 %.

The bias is much larger in regression models, where the average estimated distance

coefficients is 36 % smaller than then true effect.

The situation is further complicated when subjects have a more complex choice

set (such as multiple schools or clinics) to choose from. Often researchers may wish
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to investigate the importance of specific factors pertinent to the nearest facility, such

as teacher quality or health staff availability. It is easy to see that scrambling will

make this exercise rather difficult. As shown in Fig. 2, there are six health facilities

that are located directly in the demographic surveillance area, and 15 health

facilities that are located in the larger district. If household coordinates are

scrambled and households are linked to the nearest health facility locations

according to the scrambled household-facility distance estimate, a rather large

fraction of households will be linked to an incorrect location and the correlation

between the true and the actual distance will fall. This is illustrated in Table 1. With

a recommended scrambling radius of 5 km, about one-third of households are linked

Fig. 2 Households and primary healthcare clinics. Notes The demographic surveillance area shown here
is located in the Hlabisa sub-district in rural KwaZulu-Natal, South Africa. The area is situated in the
south-east portion of the uMkhanyakude district of KwaZulu-Natal province near the town of Mtubatuba.
It is bounded on the west by the Umfolozi-Hluhluwe nature reserve, on the south by the Umfolozi river,
on the east by the N2 highway (except form portions where the Kwamsane township straddles the
highway) and in the north by the Inyalazi river for portions of the boundary. The physical homes of local
residents, locally referred to as ‘‘homesteads’’
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to the incorrect nearest facility, and the correlation between the true and the

scrambled distance is\0.5.

While it is hard to generalize these biases due to their dependence on the local

distribution of reference points, the added complexity of multiple reference point

will in most cases substantially increase the biases generated by scrambling.

Similarly, complex challenges arise if researchers want to use existing network

Fig. 3 Scrambling results
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information to measure actual (rather than Euclidean) distances traveled on roads or

public transport to reach specific access points. In the case of network analysis,

scrambling home locations will bias average distances and will also lead to

miscoding of transport entry points, with resulting error in travel time as well as

environmental risk exposure.

Summary and conclusion

In this paper, we have proved mathematically and demonstrated empirically that

scrambling of GPS locations leads to a systematic overestimation of the average

distance between households and other points of interest at the population level for

descriptive purposes. For bi- or multivariate regression analysis, the use of

scrambled GPS coordinates will lead to systematic underestimation of the true

causal effects of distance. Both effects are problematic from a scientific and a policy

perspective. The systematic underestimation of the true causal effect of proximity

will likely undermine the perceived importance of spatial distance. This may

discourage public investment that ensures geographical accessibility to essential

services, such as education, health care, or transport; it may also reduce support for

projects aimed at ensuring sufficient distance to nearby hazards, such as waste sites,

nuclear reactors, or sources of noise pollution.

This paper is, to our knowledge, the first to fully quantify the biases resulting

from scrambling. The main results presented strongly support the recommendation

made in the 2007 Committee on the Human Dimensions of Global Change special

report Putting People on the Map (2007, p. 62), which states that ‘‘[a]ltering data to

mask the exact spatial locations impedes the ability of researchers to calculate

accurate spatial relationships, such as distances.’’

Table 1 Nearest primary healthcare clinics with scrambled household coordinates

Scrambling radius (km) Correlation between true and

scrambled distance

Percentage of household

matched to correct facility (%)

0 1.000 100.0

1 0.965 92.1

2 0.874 85.1

3 0.748 78.5

4 0.610 72.0

5 0.476 65.5

6 0.360 59.2

7 0.264 53.3

8 0.187 48.0

9 0.124 43.3

10 0.074 39.2

5-km radius is in italics as currently recommended radius for rural areas in DHS surveys
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While scrambling is currently common practice in major population-based

surveys, such as DHS, and longitudinal surveillance systems, such as HDSS, it is

only one of many approaches to mask geo-spatial data that have been proposed and

used. Rather than randomly moving coordinates, one may also displace co-ordinates

deterministically to a new set of locations, through displacement, scaling, or

rotation. Each of these deterministic geo-masking approaches fails to preserve some

important geographical information. The random perturbations generated by

scrambling have previously been thought to approximately preserve all important

aspects of geographical information. Unlike deterministic geo-masking, scrambling

has thus been judged to be ‘‘satisfactory from a comprehensive information-

preservation standpoint’’ (Armstrong et al. 1999). We show in this paper that

scrambling does not preserve distance information. For many analytical purposes,

scrambling does not appear the superior geo-masking approach it has previously

been considered to be, and its routine use to mask geographical information in major

population-based surveys deserves re-consideration.

Given that geo-referenced data are as important for science as they are for

policymaking, and given that the protection of data confidentiality is an important

dimension of ethical research, alternative approaches to handling geo-referenced

data appear preferable. One commonly practiced alternative to data scrambling,

which appears strongly preferable to scrambling, is the ‘‘restricted release’’ of data

suggested by the Committee on the Human Dimensions of Global Change (2007) as

well as National Research Council (2005). Such data access restrictions require an

application and review process, as well as specific access rules and locations, which

are comparatively costly and may limit the use of this approach to resource-rich

settings.

A less costly alternative to scrambling is to provide distance calculations on

request. Rather than providing researchers with geographical coordinates, distances

between two points (e.g., a household and a health care facility) could be calculated

by data owners and the resulting distance measures could be shared with researchers

instead of the coordinates. While this would ensure privacy protection from an

individual point of view, it would also provide researchers with the key variables

needed for empirical analysis. For instance, to assess the effect of distance on access

to antiretroviral treatment in developing countries (see e.g., Bärnighausen et al.

2014), variables such as ‘‘distance to the nearest primary healthcare clinic’’ or

‘‘distance to the nearest road’’ could be computed. Given that researchers would

neither know the reference point location nor the direction from the reference point,

identifying households based on these distance measures would be impossible.

An alternative promising approach is the use of software agents, which could

allow researchers to analyze fully identified data without being able to physically

access the underlying identifiable information (Kamel Boulos et al. 2006).

Developing such system may require substantial upfront investment in order to

ensure that they are user-friendly and provide sufficient data protection, but they

may be the most efficient solution in the long run. In the absence of software agents,

restricted release of true coordinates or true distances appears strongly preferable to

the scrambling approach.
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Appendix: Proof of proposition 1

It is easy to show that in the degenerate case h = 0 the average distance h|h ? v|i
must exceed |h|. We shall show that this behavior h|h ? v|i[ |h| is typical even

when |h| is comparable with, or considerably greater than, the typical size |v| of the

noise vector.

The result h|h ? v|i[ |h| is a direct consequence of the triangle inequality (TI).

Recall that the TI asserts that for any vectors x, y, we have

xj j þ yj j � xþ yj j;

because the right-hand side is the distance from the origin to x ? y along a straight

line, and the left-hand side is the distance from the origin to x ? y via x. Hence,

equality |x| ? |y| = |x ? y| occurs if and only if x is contained in the closed line

segment joining the origin to x ? y, that is, if and only if one of x and y is a non-

negative multiple of the other.

To prove that h|h ? v|i[ |h|, first note that h|h ? v|i = h|h - v|i because v and

-v have the same distribution. But then,

2 hþ vj jh i ¼ hþ vj jh i þ h� vj jh i
¼ hþ vj j þ h� vj jh i
� hþ vð Þ þ h� vð Þj jh i
¼ 2hj jh i
¼ 2hj j
¼ 2 hj j;

using TI with x = h ? v and y = h - v in the second step and the fact that |2h| is

constant in the next-to-last step. Dividing both sides of the resulting inequality by 2,

we deduce h|h ? v|i C |h| as claimed. Moreover, we can only have h|h ? v|i = |h|

when h ? v and h - v satisfy the equality condition in the TI for every v, which is

to say when every v is on the closed line segment joining 0 to h. To evaluate

h|h ? v|2i, we begin in the same way

2 hþ vj j2
D E

¼ hþ vj j2
D E

þ h� vj j2
D E

¼ hþ vj j2þ h� vj j2
D E

;

and now apply the parallelogram identity

xþ yj j2þ x� yj j2¼ 2 xj j2þ2 yj j2

(which can be obtained by writing each of the terms |x ± y|2 on the left-hand side as

an inner product (x ± y, x ± y) = (x, x) ± 2(x, y) ? (y, y) and noting that the

cross-terms ±2(x, y) sum to zero). Taking x = h and y = v, we then obtain

2 hþ vj j2
D E

¼ 2 hj j2þ2 vj j2
D E

¼ 2 hj j2
D E

þ 2 vj j2
D E

¼ 2 hj j2þ2 vj j2
D E

:
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Dividing both sides by 2, we recover the identity h|h ? v|2i = |h|2 ? h|v|2i claimed

earlier.

Now recall that any real-valued random variable X satisfies hX2i C hXi2 (the

difference is the variance h(X - hXi)2i, which is clearly non-negative). Applying

this to X = |h ? v|, we find

hþ vj jh i2 � hþ vj j2
D E

¼ hj j2þ vj j2
D E

� hj j þ
vj j2

D E

2 hj j

0
@

1
A

2

;

with strict inequality unless h|v|2i = 0. Hence, h|h ? v|i B |h| ? h|v|2i/(2|h|) as

claimed.

So far, our analysis did not depend on the choice of distribution v or even on the

dimension of the space. In practice, h and v are drawn from a two-dimensional

space, though one may also consider one-dimensional problems as a simplified

model (such as a community limited to a street or a long and narrow valley). We

consider three possibilities:

1. A one-dimensional space with v drawn uniformly from the interval [-c, ?c] for

some c[ 0, so h is replaced by a random number drawn uniformly from the

interval [h - c, h ? c] of length 2c centered at h.

2. A two-dimensional space with v drawn uniformly from the radius-c circle

|v| = c about the origin, so h is replaced by a random point at distance exactly c
from h (a random point on the circle of radius c about h). Even if this

distribution is not used in practice, it is needed for the analysis of the next case.

3. A two-dimensional space with v drawn uniformly from the radius-c disk |v| B c
about the origin, so h is replaced by a random point at distance at most c from

h (a random point in the disk of radius c about h). In this case, our analysis

requires that c B |h|, but this assumption will usually be satisfied in practice.

In the one-dimensional case, the variance h|v|2i is given by the elementary integral

1

2c

Z þc

�c
v2dv ¼ 1

2c
v3

3

� �c
v¼�c

¼ c2

3
;

so the added noise increases h|h|2i by c2=3. The expected distance h|h ? v|i remains

|h| as long as c\ |h|, since then |h ? v| ? |h - v| = 2h always. Once c exceeds |h|,

we distinguish two possibilities. In the first, |h| still exceeds the noise magnitude |v|.

This happens with probability |h|/c, and then the average value of |h ? v| in this case

is still h. The other possibility is that |v| C |h|, and then averaging |h ? v| with |h -

v| yields |v|. Since here |v| ranges uniformly from |h| to c, its average value is

(c ? |h|)/2. Combining the |v|\ |h| and |v| C |h| averages, weighted by their

respective probabilities, we obtain

hj j
c

hj j þ 1 � hj j
c

� �
cþ hj j

2
¼ c2 þ hj j2

2c
¼ hþ ðc� hj jÞ2

ð2cÞ :
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Thus, replacing h by h ? v increases the expected distance by
ðc� hj jÞ2

ð2cÞ .

In the second scenario, |v| = c always, so h|v|2i = c2 and h|h ? v|2i = |h|2 ? c2.

To compute h|h ? v|i, let h 2 [0, 2p) be the oriented angle from h to v. Then, h is

uniformly distributed in [0, 2p) and hþ vj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj j2þ2c hj j cos hþ c2

q
by the Law

of Cosines [or by expanding the inner product of |h ? v|2 = (h ? v, h ? v) =

(h, h) ? 2(h, v) ? (v, v)]. Thus,

hþ vj jh i ¼ 1

2p

Z2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj j2þ2c hj j cos hþ c2

q
dh:

This integral is no longer elementary, except in the special case where c = 0, h = 0,

or c = |h|. [If c = 0 or h = 0 then h|h ? v|i = |h| or c, respectively; if c = |h|,

then the identity 2 ? 2 cos h = 4 cos2(h/2) simplifies the integral to

R2p
0

2 hj j cos h=2ð Þj jdh ¼ 8 hj j, whence h|h ? v|i = (4/p)|h|]. Assume, then, that 0, c,

and |h| are distinct. Then, we may assume c\ |h| because our formula for h|h ? v|i
does not change if we switch c with |h|. Then, our integral can be evaluated in terms

of a complete elliptical integral of the second kind2:

Z2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj j2þ2c hj j cos hþ c2

q
dh ¼ 4 hj j þ cð ÞE0 hj j � c

hj j þ c

� �
:

It would take substantial work to recover the behavior of h|h ? v|i from this rather

exotic formula. We thus work directly with the integral, expanding it as a power

series in c that converges in the interval |c|\ |h|.

It will be convenient to regard h and v as complex numbers in the usual way.

Then, hþ v ¼ hð1 þ reihÞ, where r = c/h\ 1. We then have

hþ vj j ¼ hj j 1 þ reih
		 		 ¼ hj j 1 þ reih


 �
1 þ reihð Þ

� �1
2

;

and since the complex conjugate of 1 ? reih is 1 ? re-ih, this gives

hþ vj j ¼ hj j 1 þ reih

 �

1 þ re�ih

 �
 �1

2¼ hj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ reih

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ re�ih

p
:

We expand each of the factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ re�ih

p
using the binomial series

ffiffiffiffiffiffiffiffiffiffiffi
1 þ z

p
¼ 1 þ zð Þ

1
2¼ a0 þ a1zþ a2z

2 þ a3z
3 þ a4z

4 þ . . .;

valid and absolutely convergent for all complex z such that |z| B 1, where

2 See for instance formulas 8.111#3 and 8.112#2 of: I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals,

Series, and Products (tr. and ed. Alan Jeffrey), New York: Academic Press 1980. The power series in c
that we obtain is probably known too, but easier to derive than to locate in the literature.
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a0 ¼ 1; a1 ¼ 1

2
; a2 �

1

8
; a3 ¼ 1

16
; a4 ¼ � 5

128
; a5 ¼ 7

256
;

and in general the coefficient am is 1
2


 �
� 1

2


 �
� 3

2


 �
� 5

2


 �
. . . �mþ 3

2


 ��
m!. Thus,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ reih
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ re�ih
p

is the sum of the terms amanr
m?nei(m–n)h over all pairs (m, n) of

whole numbers. The integral of such a term over 0 B h B 2p is 2paman if m = n

and zero otherwise. Summing over m, n, we find that 4 hj j þ cð ÞE0 h�cj j
hþc

� �
is the sum

of the terms 2p|h|an
2r2n over n = 0, 1, 2, 3,…, and thus that

hþ vj jh i ¼ hj j a2
0 þ a2

1r
2 þ a2

2r
4 þ a2

3r
6 þ � � �


 �

¼ hj j þ 1

4

c2

hj j þ
1

64

c4

hj j3
þ 1

256

c6

hj j5
þ 25

16384

c8

hj j7
þ � � �

We note in passing that the special case c = |h| (that is, r = 1) yields the amusing

formula

4

p
¼
X1
n¼0

a2
n ¼ 1 þ 1

2

� �2

þ 1

8

� �2

þ 1

16

� �2

þ 5

128

� �2

þ 7

256

� �2

� � �

In the more general and final scenario 3, v is drawn uniformly from the radius-c
disk |v| B c about the origin. We integrate over this circle using polar coordinates,

again using for h the oriented angle from h to v. We then find

vj j2
D E

¼ 1

pc2

Z c

q¼0

q
Z 2p

h¼0

q2dhdq ¼ 2p
pc2

Z c

q¼0

q3dq ¼ 2

c2

q4

4

� �c
q¼0

¼ c2

2
;

and thus hþ vj j2
D E

¼ hj j2þ 1
2
c2. For the average distance, we write

hþ vj jh i ¼ 1

pc2

Z c

q¼0

q
Z 2p

h¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj j2þ2c hj j cos hþ c2

q
dh dq:

Again the integral is not elementary. As long as c\ |h|, we have q B |h| for all q in

[0, c], so we can use our power series for the integral over h and integrate each term

2p|h|an
2(q/h)2n (with n = 0, 1, 2, 3,…), obtaining

1

pc2
2p hj j1�2n

a2
n

Z c

q¼0

q2nþ1dq ¼ 2 hj j1�2n
a2
n

c2

q2nþ2

2nþ 2

� �c
q¼0

¼ hj j a2
n

nþ 1
r2n;

where r = c/|h| as before. Therefore, in this case, we obtain the power series

expansion

hþ vj jh i ¼ hj j a2
0 þ

a2
1

2
r2 þ a2

1

3
r4 þ a2

1

4
r6 þ � � �

� �
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¼ hj j þ 1

8

c2

hj j þ
1

192

c4

hj j3
þ 1

1024

c6

hj j5
þ 5

16384

c8

hj j7
þ � � �

 !
:
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