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THERMOHYDRODYNAMICS OF THE OCEAN

GENERATION OF SEICHES BY MOVING BARIC FRONTS IN BOUNDED BASINS

S. F. Dotsenko  and  N. A. Miklashevskaya UDC 551.466

We consider a plane problem of barotropic seiches generated by a front of atmospheric pressure
moving over a bounded basin.  A system of nonlinear equations of long waves is solved by the
finite-difference method with regard for the bottom friction and Earth’s rotation.  The numerical
analyses are performed for two basins with distributions of depths typical of the Black Sea.  It is
shown that the passage of a baric front over the basin leads to the generation of lower seiches.
The oscillations of level and the corresponding currents are especially intense in the shallow-wa-
ter zones of the basins.  The seiches become more intense as the velocity of transfer of the atmo-
spheric front increases and the width of the front decreases.  Earth’s rotation leads to the genera-
tion of longshore currents and promotes the process of weakening of residual oscillations of the
fluid following the passage of the front.  The influence of nonlinearity on seiches is small for the
analyzed basins. 

Introduction

The process of interaction with the atmosphere is one of the causes of the space variability of hydrophysical
fields in the World Ocean [1].  On the synoptic scales of motion, the predominant contribution to the energy
transfer from the atmosphere into the ocean is made by the wind stresses [2].  The relative contribution of the
variations of atmospheric pressure to the oscillations of the sea level depends on the scales of the process.  The
analyses of the in-situ data and the results of numerical simulations reveal the predominant role of the baric
field in the generation of nontidal oscillations of sea level with periods from ten hours to ten days on space scales
of 200–1000 km [3, 4].  For this reason, the investigation of the response of marine media to the variations of
atmospheric pressure is necessary to understand the dynamics of the World Ocean. 

During a year, about  104  cyclones and anticyclones participate in cyclogenesis over the World Ocean [3].
The passage of intense meteorological formations can be accompanied by displacements of the sea level 3–4
times larger than the equilibrium values [3].  As follows both from the data of in-situ observations [5–9] and
from the results of numerical simulations for the Black Sea and Sea of Azov [10, 11] the process of motion of
baric formations over closed basins can lead to the generation of seiches.  At the same time, the general physical
regularities of the process of generation of seiches in closed basins of variable depth by moving baric fronts are
now studied insufficiently well. 

In what follows, we study the plane problem of generation of barotropic seiches by a front of atmospheric
pressure moving over a bounded basin.  We analyze the dependence of the efficiency of generation of nonlinear
seiches on the velocity of motion and width of the front.  Unlike our previous work [12], the analysis of the dy-
namics of water in the basin is performed for a moving front with regard for Earth’s rotation. 
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Fig. 1.  Schematic diagram of the problem.

The numerical analyses of the oscillations of fluid are carried out for two basins with distributions of depths
typical of the Black Sea. 

Mathematical Statement of the Problem

Consider a channel of constant width  l  unbounded in the direction of the (horizontal)  y-axis.  Thus, the

channel occupies the region  0  ≤  x  ≤  l,  – ∞  <  y  <  + ∞,  – H ( x )  <  z  <  0  (Fig. 1), where  x  is the horizontal coor-
dinate across the channel,  z  is the coordinate measured vertically upward from the unperturbed position of the

free surface of fluid  z  =  0,  and  H  =  H ( x )  >  0  is the distribution of depth in the channel for the nonperturbed
state.  At the initial time  t = 0,  the fluid is immobile and its free surface is horizontal. 

Within the framework of the nonlinear theory of long surface waves and with regard for the square law of
bottom friction and Earth’s rotation, we study the motion of the fluid in a basin caused by the passage of a baric
front over the basin in the positive direction of the  x-axis with a constant velocity  C > 0.  The distribution of
perturbations of the atmospheric pressure in the front is specified as follows: 

p  =  a0 ρ g F ( ξ ) ,      ξ  =  x  –  Ct, (1)

where  a0  is the amplitude of perturbations of the atmospheric pressure (in meters of the water column),  ρ  is

the density of the fluid,  g  is the gravitational acceleration, and  F ( ξ )  is a dimensionless function such that

F ( ξ ) → 0  as  ξ  →  + ∞  and   F ( ξ )  →  1  as  ξ  →  – ∞.  The characteristic width of the zone of significant varia-
tions of the atmospheric pressure is equal to  W  (Fig. 1) and plays the role of the width of the baric front.  The
hydrostatic displacement of the free surface of the fluid in the field of atmospheric pressure is given by the for-
mula (in the inverted-barometer approximation [3])

z  =  –
p
gρ

  =  – a0 F ( ξ ) . (2)
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Fig. 2. Sections I (in the south–north direction) and II (in the west–east direction) made in the Black Sea (a) and the corresponding

distributions of depths (b) used for the numerical simulation of the process of generation of seiches by moving fronts. 

Under the above-mentioned assumptions, the motion of the fluid in the basin is two-dimensional  (∂ / ∂y ≡ 0)
and is described [in the cross section of the channel (vertical plane  Oxz)]  by the following system of equations: 
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with the initial conditions 

u  =  v  =  ζ  =  0      (t = 0), (6)
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where  u ( x, t )  and  v ( x, t )  are the projections of the horizontal velocity of motion averaged over the depth onto

the x-  and  y-axes, respectively,  ζ ( x, t )  is a displacement of the free surface from the horizontal position,  D  =

H ( x ) + ζ ( x, t )  is the total depth of the basin,  ζ̃   =  a0 F,  k  =  2.6 ⋅ 10–3  is the coefficient of bottom friction, and  f
is the Coriolis parameter regarded as constant. 

On the lateral boundaries of the basin  x = 0  and  x = l  regarded as vertical solid walls, we specify the con-
ditions of impermeability of the fluid: 

u ( 0, t )  =  0      and      u ( l, t )  =  0. (7)

The total energy of the fluid in the basin is given by the formula

ET ( t )  =  EK ( t )  +  EP ( t ) , (8)

where 

EK ( t )  =  e dxk

l

0
∫       and      EP ( t )  =  e dxp

l

0
∫

are, respectively, the kinetic and potential energies, 

ek  =  
  

1
2

2 2ρD x t u x t x t( , ) ( , ) ( , )+[ ]v ,      and      ep  =  1
2

2ρ ζg x t( , ). (9)

In what follows, we study the motion of the fluid for two basins with typical distributions of depths
(Fig. 2b) corresponding to sections I and II made in the Black Sea along  31.00°E  and  42.66°N,  respectively
(Fig. 2a). 

Linear Seiches

Assume that waves are linear and free.  We set  k = 0  and  ζ̃  = 0.  As a result of linearization of Eqs. (3)–
(5), we arrive at the following boundary-value problem: 
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  =  0,      u ( 0, t )  =  0,      u ( l, t )  =  0. (10)

We now consider harmonic (in time) oscillations of the fluid with frequency  σ :

u  =  A1 ( x ) cos σ t,      v  =  A2 ( x ) sin σ t,      ζ  =  B ( x ) sin σ t    (σ > 0), (11)

where  A1  =  U ( x ) / H ( x ) ,  and  U ( x )  is the total horizontal flow of the fluid in the section of the basin.  Substi-
tuting expressions (11) in (10), we get the Sturm–Liouville boundary-value problem for the frequencies of

seiches  σ  and the corresponding distributions  U ( x ) : 
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Table 1.  Periods  Ts  of the Five Lowest Seiches in Basins I and II With and Without Regard 
for Earth’s Rotation

Basin f, sec–1 T1, h T2, h T3, h T4, h T5, h

10.07 ⋅ 10–5 8.792 4.235 2.718 2.054 1.675
I

0 10.202 4.367 2.752 2.068 1.683

9.856 ⋅ 10–5 3.973 2.801 1.768 1.386 1.144
II

0 4.078 2.837 1.777 1.391 1.146

d U

dx

f
gH x

U
2

2

2 2

+ −σ
( )

  =  0,       U ( 0 )  =  U ( l )  =  0. (12)

By using the properties of the spectrum of the Sturm–Liouville problem [13], we can conclude that all ei-

genfrequencies of oscillations of the fluid are real and form a countable set, i.e.,  σ  =  σs (s  =  1, 2, …),  and  f  <

σ1  <  σ2  < … .  The horizontal distribution of the total flow of fluid  U  =  Us  ( x )  for the  s th seiche has exactly

s – 1  zeros in the interval  0  <  x  <  l. 
If the functions  Us  are known, then it is possible find the distributions over  x  of the projections of hori-

zontal velocity  us  and  vs  and the displacements of the free surface  ζ s  for the  s th seiche:

us  =  A1s  ( x ) cos σs t ,      vs  =  A2s  ( x ) sin σs t ,      ζ s  =  Bs ( x ) sin σs t , (13)

A1s  =  
U x
H x

s( )
( )

,      A2s  =  − f
A x

s
sσ 1 ( ),      Bs  =  − 1

σs

sdU x
dx

( )
. (14)

In order to find the frequencies of free oscillations of the fluid, problem (12) on a grid  x  =  xi  =  δi  (i  =

0, … , N )  with steps  δ = l / N  is replaced by its finite–difference analog 

U0  =  0,      U1  =  γδ,      Ui  + 1  =  2 1−⎡
⎣⎢

⎤
⎦⎥

− −
μ

gH
U U

i
i i     (i = 1, … , N – 1),    UN  =  0, (15)

where  Ui  =  U ( xi ) ,  Hi  =  H ( xi ) ,  μ  =  ( σ2 – f 2 ) δ2
 ,  and  γ  =  dU ( 0 ) / dx  is a constant.  The difference boundary-

value problem (15) is reduced to finding the roots of the equation  UN  ( μ ) = 0  and solved by the method of

shooting with respect to the parameter  μ > 0  starting from  μ = 0. 
The outlined algorithm of numerical analysis of linear seiches is used to find the lowest five seiches in two

basins with distributions of depths presented in Fig. 2b.  The periods of seiches  Ts  =  2π  / σs  (s = 1, … , 5)  are
given in Table 1 and vary within the range  1–10 h.  The periods of seiches in basin I are much larger than the
periods of the corresponding seiches in basin II. 
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Fig. 3. Displacements of the free surface  ζ  (a) and the projections of the flow velocity across  u  (b) and along  v  (c) the channel for

the five lowest modes in basin I.

The data presented in Table 1 also show that, for basin I, the distorting influence of Earth’s rotation on the
period of the single-node seiche constitutes  13.82%  but does not exceed  3.02%  for all other seiches.  For basin
II, the indicated influence on the periods of free oscillations is smaller than  2.6%. 

For the five lowest seiches in basin I, the variations of  u,  v,  and  ζ  along the  x-axis are found by using re-

lations (14) and depicted in Fig. 3.  The displacements of the level are normalized so that  B s  ( l )  =   1 m.  The

number of nodes in the distribution of  ζ s  for a seiche is equal to its number  s .  The structure of seiches is cor-
related with the bottom topography.  Indeed, the amplitude of displacements of the sea level is maximum in the
shallow-water part of the basin corresponding to the extended northwest part of the Black Sea.  In basin II, the
smallest depths are located in its west part and, therefore, the extreme values of displacements of the free surface
and projections of the flow velocity are observed in the left-hand part of the basin. 
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Algorithm of the Numerical Analysis of Forced Motions of the Fluid

For the numerical solution of the initial-boundary-value problem (3)–(7) in the segment  0 ≤ x ≤ l  for  t ≥ 0,
we use an explicit-implicit finite-difference scheme [14].  The field of the velocity  u  transverse to the channel at
times  t = tn  (n = 0, 1, … )  is found at the nodes of a uniform grid  x = xi  (i = 0, … , N),  whereas the projection

of the flow velocity along the channel  v  and the displacements of the free surface of the fluid are determined at

the middle points of the cells:  x  =  xi – δ / 2  (i = 0, … , N – 1). 
We introduce the notation

xi  =  iδ,    i = 0, … , N ,      tn  =  nτ,

u n
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where  τ  is the time step.  The depth of the basin  H  is specified at the nodes of the grid  Hi  =  H ( xi )  and linear-
ly interpolated between the nodes. 

In the explicit form, we get the following difference analog of Eq. (3): 
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The difference analog of the equation of continuity (5) takes the form 
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On the right-hand side of Eq. (18), we use the values of the velocity  u  for the time step  n + 1  and the val-
ues of displacements of the free surface of the fluid for the previous time step.  According to (5), the initial con-
ditions for the system of difference equations (16)–(18) take the form 
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Fig. 4. Oscillations of the free surface of the fluid caused by the passage of a front of atmospheric pressure over basin I with various

velocities ( a0  = 0.3 m,  W = 100 km):  (a) C = 6 m/sec,  (b) C = 8 m/sec,  (c) C = 10 m/sec.  The curves correspond to the follow-

ing points of the basin:  (1) x = 0,  (2) x = l / 4,  (3) x = l / 2,  (4) x = 3l / 4,  (5) x = l . 

ui
0  =  ζi

0  =  0,    i = 0, … , N . (19)

The energy characteristics of the fluid in the basin at time  tn  are given by the formulas 
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following from relations (8) and (9), where 
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Numerical Results 

The analysis of the response of the fluid in basins I and II to the motion of a baric front was performed by
using relations (16)–(20) for various values of the velocity  C,  width  W,  and the intensity  a0  of atmospheric

perturbations.  The function  F ( ξ )  used to describe the horizontal behavior of perturbations of the atmospheric
pressure (1) across the front was specified by the formula 

F  =  sin2

2
πξ
W

     (– W  <  ξ  <  0) ,     F  =  1    ( ξ  ≤  – W) ,     F  =  0     ( ξ  ≥  0 ) .

In Fig. 4, we present the oscillations of the free surface at five equidistant points of basin I caused by the
passage of a front of atmospheric pressure over the basin with various velocities  C.  As the front moves from the
left lateral boundary of the basin to its right boundary, we observe the formation of a displacement of the sea le-
vel nonuniform over the water area and moving together with the atmospheric perturbation.  This is, in fact, a
transformed hydrostatic displacement of the water surface (2) well visible for all velocities of motion of the at-
mospheric perturbation.  The difference from the hydrostatic deflection is significant and caused by the boun-
dedness of the basin (this circumstance prevents the emission of waves), variations of depth, and motion of the
baric front. 

As soon as the meteorological front leaves the area of the basin (for  t  ≥  (l + W) / C ),  we observe the forma-

tion of oscillations of the level in the basin with period  T ≈ 8.5 h.  The oscillations of the level on the left (curves
1) and right (curves 2) boundaries of the basin run in the opposite phases, which means that the single-node ba-
rotropic seiche is predominant.  The amplitude of residual oscillations of the level observed after the passage of
the front in the shallow-water part of the basin increases with the velocity of motion of the baric front and can be
1.5 times higher than the hydrostatic response of the sea surface to the spatially nonuniform external pressure
(Fig. 4c).  This conclusion completely agrees with the simple solution of the linear problem presented in [15]. 

The width of basin II is much larger than the width of basin I.  Moreover, the zone of small depths in basin
II is located near its left boundary.  As the front moves over basin II, the maximum nonequilibrium displace-
ments of the level are detected near the right coast of the channel (Fig. 5), which is, most likely, explained by the
phenomenon of squeezing of the fluid into the region ahead of the moving front.  The indicated displacements of
the level and the hydrostatic deflection of the free surface have the opposite signs (curves 5).  As the front moves
beyond the boundaries of the basin, the oscillations of the level with the maximum amplitude are formed near the
left boundary of the basin for all velocities (curves 1).  The depths observed in the left part of basin II signifi-
cantly exceed the depths typical of the shallow-water northwest part of the Black Sea (i.e., of the right part of
basin I).  Therefore, the amplitudes of seiches generated in basin II are lower for the same velocities of the front
(Fig. 5).  According to the results of numerical experiments, the nonlinearity of waves and bottom friction weak-
ly affect the oscillations of level in basin II. 

In Fig. 6, we illustrate the dependence of the wave motion in basin I on the width of the front.  The oscilla-
tions of level observed after the passage of the front are determined by the single-node seiche.  As earlier, the
seiches are especially intense in the shallow-water part of the basin (Fig. 6c).  Note that narrow fronts (curves 1)
generate seiches more efficiently.  These conclusions are also true for basin II. 

Consider the energy characteristics of motion of the fluid induced by the passage of the baric front [see re-
lations (20)].  The time variations of the integral values of the potential, kinetic, and total energies in basins I and
II are presented in Figs. 7 and 8. 
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Fig. 5.  The same as in Fig. 4 but for basin II.

The most significant perturbations of the free surface of the fluid and the most intense flows in the basins
correspond to the location of the frontal zone directly over the basin.  In all cases, the integral potential energy is
much higher than the kinetic energy and determines the variations of the total energy of the fluid in the basin.
The potential energy of the fluid is caused by the dynamic displacements of the level in the zone of action of the
baric front.  The total energy of residual motions observed in the basin after the passage of the front slowly de-
creases due to the energy losses for bottom friction (Fig. 7c).  After the passage of the front, when the waves can
be regarded as free, the potential energy transforms into the kinetic energy, and vice versa.  The intensity of resi-
dual perturbations of the fluid is maximum for basin I and increases with the velocity of motion of the front. 
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Fig. 6. Oscillations of the free surface of basin I caused by the passage of baric fronts with a velocity  C = 6 m/sec  and different

widths at the following points:  (a) x = 0,  (b) x = l / 2,  (c) x = l  (for curves 1–3, the width of the front  W = 50, 100, and 200 km,

respectively;  a0 = 0.3 m). 

As follows from Figs. 7 and 8, the variations of the total and potential energies contain an oscillatory com-
ponent, which is especially well visible in Fig. 8.  These oscillations are induced by the distortions of the cup of
deflection of the fluid surface (perturbations of the potential energy) caused by the generation of seiches.  The
faster the motion of the atmospheric front, the smaller the number of oscillations of the hydrophysical fields ob-
served for the time of motion of the baric front directly over the basin. 
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Fig. 7. Kinetic (curves 1), potential (curves 2), and total (curves 3) energies of oscillations of the fluid in basin I caused by the motion

of an atmospheric front with  a0 = 0.3 m  and   W = 100 km:  (a) C = 6 m/sec,  (b) C = 8 m/sec,  (c) C = 10 m/sec. 

The general characteristic of the dependence of the intensity of residual oscillations observed in basin I
when the baric front moves outside the limits of the water area on the parameters of the front is given in Fig. 9,
where, in the plane of the parameters  W  and  C,  we present the isolines of the amplitudes of oscillations of the
sea surface in the shallow-water part of the basin.  Both the increase in the velocity of motion of the front and the
decrease in its width lead to the increase in the efficiency of generation of seiches.  For the analyzed ranges of
the parameters  W  and  C,  the influence of Earth’s rotation in the long-wave model (3)–(7) weakens the residual
oscillations of the fluid in the basin. 
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Fig. 8.  The same as in Fig. 7 but for basin II.

CONCLUSIONS

Within the framework of the nonlinear theory of long waves, we study the plane problem of generation of
barotropic seiches by a front of atmospheric pressure (bounded region of monotonic increase or decrease in the
atmospheric pressure) over a bounded basin.  We take into account both the square law of bottom friction and
Earth’s rotation.  The problem is solved numerically by the finite-difference method.  The numerical analyses are
carried out for two basins of variable depth corresponding to certain meridional and zonal sections of the Black
Sea.  The periods and horizontal structure of the five lowest seiches are determined in the linear approximation. 



76 S. F. DOTSENKO  AND  N. A. MIKLASHEVSKAYA

Fig. 9. Dependences of the amplitude of residual oscillations of the level at the point  x = l  of basin I on the width of the atmospheric

front  W   and the velocity of its motion  C  with (solid lines) and without (dashed lines) regard for Earth’s rotation for  a0  =

0.3 m. 

It is shown that the baric front moving over the basin generates the lowest barotropic seiches.  The oscilla-
tions of the sea level and wave velocity of the flow are especially intense in the shallow-water zones of the bas-
ins and determined by the single-node (lowest) barotropic seiche.  The amplitude of residual oscillations in-
creases with the velocity of motion of the atmospheric front.  The oscillations in the basin slowly decay in time
due to the energy losses for bottom friction.  The effect of Earth’s rotation promotes the generation of longshore
currents and a certain weakening of residual oscillations of the fluid in the basin. 

The analysis of the integral energy characteristics of oscillations of the fluid in the basins shows that the
most significant perturbations of the free surface of the fluid and the most intense currents correspond to the case
where the moving frontal zone is located directly over the basin.  In all cases, the integral potential energy is
much higher than the kinetic energy and, therefore, determines the variations of the total energy of the fluid in
the basin.  The potential energy of the fluid is determined by the dynamic displacements of the free surface in the
zone of the baric front.  The intensity of residual oscillations of the fluid increases with the velocity of motion of
the atmospheric perturbation. 

The influence of nonlinearity and Earth’s rotation on the seiches is especially pronounced in the shallow-
water regions.  According to the numerical results, the contribution of these factors to the dynamics and energy
of oscillations of the fluid is small for the analyzed basins. 
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