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Abstract
The content-addressable memory is an especial memory cell that can search in its entire contents in one clock cycle. The 
Quantum-dot Cellular Automata (QCA) technology is also the promising nanotechnology for digital circuits implementation. 
This study presents and evaluates a new architecture for two-input XOR gate in the QCA technology. Then, the unique gate 
is developed using the developed XOR gate. The novel and efficient content-addressable memory is also developed using the 
developed unique gate. The QCADesigner tool is utilized to evaluate the functionally of these architectures. The implemen-
tation results prove that the developed content-addressable memory has 0.03 µ m2 area, 0.5 clock cycles, and 37 cells. The 
developed architectures provide advantages in comparison with other architectures in terms of area, latency, and cell count.

Keywords  Nanotechnology · Nanoelectronics · Content-addressable memory · 2-input XOR gate · Quantum-dot cellular 
automata

1  Introduction

Nowadays, the traditional technologies such as CMOS tech-
nology have several drawbacks at Nano-scale. So, several 
kinds of nanotechnologies such as the CNTFET and the 
Quantum-dot Cellular Automata (QCA) are suggested for 
replacing these technologies [1–3]. The QCA technology is 
a new type of nanotechnology, which is used for digital cir-
cuits design [4–9]. There are several reported digital circuits 
implementation such as multiplexer circuits [10–14], counter 
circuits [15], full adder circuits [4, 16–21], shift register cir-
cuits [7, 22, 23], comparator circuits [24, 25], and memory 

circuits [5, 9, 26–29] in this technology. These implementa-
tion results demonstrate that digital circuits implementation 
in the QCA technology offer high-dense and high-speed cir-
cuits at Nano-scale [4–8]. So, this technology can be a prom-
ising technology for circuit design in non-transistor-based 
technology [16]. This new technology uses the QCA cell, 
which is constructed of 2 free electrons in 4 dots in square 
shape. Based on the columbic repulsion, 2 stable states are 
achieved in the cell [4–6, 8, 10, 15, 18–21, 30]. These 2 sta-
ble states can be utilized to determine the logic “0” and logic 
“1” in the digital circuits design [4–6, 11, 13, 18, 20, 21, 31].

On the other hand, the memory cell has an important role 
in digital circuits [29]. The Content-Addressable Memory 
(CAM) is an important kinds of memory cells for high-speed 
searching applications [32–35]. So, the QCA CAM circuit 
design is in the focal point of interesting research topics in 
the digital circuits design especially in digital computer cir-
cuits. There are several attempts to improve the performance 
of the QCA memory circuits design [5, 9, 26–29].

Walus et al. [28] had designed a 1-bit RAM that has 
0.16 µ m2 area, 158 cells, and 2 clock cycles. Hashemi 
and Navi [26] had designed a 1-bit QCA D-flip flop and 
memory circuits that has 0.13 µ m2 area, 109 cells, and 
1.75 clock cycles. Angizi et al. [5] had designed a 1-bit 
Majority Gate (MG)-based RAM that has 0.08 µ m2 area, 
88 cells, and 1.5 clock cycles. Rasouli Heikalabad et al. 
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[27] had offered a 1-bit content-addressable memory that 
has 0.14 µ m2 area, 100 cells, and 2 clock cycles. Sadoghi-
far and Rasouli Heikalabad [9] had suggested a 1-bit CAM 
that has 0.04 µ m2 area, 46 cells, and 0.5 clock cycles.

This study presents and evaluates a novel 2-input XOR 
gate in QCA technology. Then, a novel circuit is presented 
for unique gate in this technology. The novel and efficient 
1-bit CAM are also developed using this novel circuit 
as building block. The QCADesigner tool version 2.0.3 
is utilized for implementation of the designed circuits. 
These results confirm that the developed 2-input XOR gate 
requires 0.008 µ m2 , 0.25 clock cycles, and 10 cells. The 
designed unique gate requires 0.01 µ m2 area, 0.5 clock 
cycles, and14 cells, and the developed CAM has 0.03 
µ m2 area, 0.5 clock cycles, and 37 cells. The compara-
tion results prove that the developed CAM has advantages 
compared with other CAMs.

This study outlines as follows: Section 2 introduces the 
background of the proposal circuits. Section 3 presents the 
developed QCA circuits. Section 4 presents the simulation 
results and comparation. Finally, the paper is concluded 
in Sect. 5.

2 � Background

2.1 � The QCA cell

The QCA cell is a building block in this technology, in 
which there are 4 dots and 2 free electrons in square shape 
cell. Fig. 1 displays a QCA cell [11, 30].

Based on the columbic reputation, two stable states are 
available in each cell. These states are utilized to show the 
logic “0” and logic “1” in digital circuits [7, 36].

2.2 � The QCA gates

The QCA gates are building blocks for constricting the QCA 
circuits. There are three basic gates in this technology [6]: 
1) Inverter Gate (IG), 2) MG, and 3) XOR gate [30]. Fig. 2 
displays these basic gates [4, 30].

The MG output is indicated as M(A, B,C), where 
M(A,B,C) = CA + BA + CB. On the other hand, the 
inverter gate output shows the inverse value of the input, 

i.e., IG(A) = A ̅, where A denotes the input and the IG(A) 
denotes the output. The XOR output is XOR(A, B,C), where 
XOR(A,B,C)  = A⊕B⊕C.

2.3 � The CAM circuit

The CAM is an especial kind of the memory cells that can 
search in its entire contents in one clock cycle. In this kind 
of memory, the stored data are accessed by searching for the 
content [33]. This kind of memory is suitable for high-speed 
purpose. As a result, several attempts [5, 9, 26–28] have 
been done to improve the circuits of memory especially this 
kind of memory.

Walus et al. [28] had described a 1-bit QCA Random 
Access Memory (RAM). Fig. 3 shows the described RAM 
in [28].

This memory has 158 cells, 0.16 µ m2 area, and 2 clock 
cycles.

Hashemi and Navi [26] had developed a 1-bit memory 
circuit that utilizes D-flip flops, and a multiplexer. This 
memory, which is shown in Fig. 4, has set/reset ability.

This memory has 0.13 µ m2 area, 109 cells, and 1.75 clock 
cycles.

Angizi et al. [5] had developed a 5-input MG. They had 
also suggested a 1-bit memory using this MG that is shown 
in Fig. 5.

This memory has 0.08 µ m2 area, 88 cells, and 1.5 clock 
cycles.

Rasouli Heikalabad et al. [27] had suggested a 1-bit CAM 
using a new 5-input minority gate that is displayed in Fig. 6.

Sadoghifar and Rasouli Heikalabad [9] had designed the 
1-bit CAM that is shows in Fig. 7.

This CAM has 0.04 µ m2 area, 46 cells, and 0.5 clock 
cycles.

3 � The designed architectures

3.1 � The developed two‑input XOR gate

Figure 8 displays the developed two-input XOR gate.
The developed circuit has 11 cells, 0.5 clock cycles, and 

0.009 µ m2 area.

3.2 � The proposed unique gate

To design the efficient content-addressable memory circuit, 
we utilize a unique gate that is defined based on the Eq. (1):

Table 1 shows the desired operation of this unique gate.

(1)Q = (A ⊙ M) + S

Fig. 1   The QCA cell structure [11]
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If S is “0” in Eq. (1), the output is equivalent to AʘM. 
Otherwise, the output is equivalent to “1”. The proposed 
circuit for implementation of this equation is displayed 
in Fig. 9.

Based on Eq. (1), and Fig. 9, the proposed circuit for 
implementation of this equation contains the developed 
XNOR gate as building block, and one majority gate. This 
architecture has 0.01 µ m2 area, and 14 cells. This circuit is 
utilized for implementation of content-addressable memory 
as building block as described later.

3.3 � The developed CAM

Figure 10 shows the developed CAM.
The proposed circuit for content-addressable memory 

required 0.03 µ m2 area, and 37 cells. The proposed cir-
cuit contains 2 components: the designed unique gate and 
memory unit. A control signal denoted by W/R controls the 
read and write operations in the memory unit. The devel-
oped unique gate's input, M, is shown as the output in this 
unit. Moreover, A and S are inputs in the suggested unique 
gate. The output of the developed content-addressable 
memory, which is also the unique gate output, is shown 
by Q. The output of the memory unit of the developed 
content-addressable memory is "1" when the control signal 
of the memory unit is "0". When the control signal of the 
memory unit is set to "1" the memory unit's output is "0" 
that means the read operation is performed. Furthermore, 
the output Q is "1" when the input S is "1" and the output 
Q is computed using the inputs M and A when the input 
S is "0".

4 � The results and discussion

The accuracy of the suggested circuits is checked using 
QCADesigner tool version 2.0.3.

4.1 � The developed two‑input XOR gate

Figure  11 displays the implementation results of the 
designed two-input XOR gate. For implementation, the 
Bistable approximation engine is utilized.

The implementation results of the designed XOR gate 
in comparison with other XOR gates are summarized in 
Table 2.

Fig. 2   The QCA gates: a Three-
input MG, b IG, and c XOR 
gate [30]

Fig. 3   The designed 1-bit QCA random access memory circuit in 
[28].
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Based on our results, the designed QCA XOR gate has 
advantages compared with other XOR gates in [31, 37–40] 
regarding area, cell count, and cost. For example, the 
designed 2-input QCA XOR gate provides improvements 
by about 25%, 21%, and 25% in comparison with that gates 
presented in [40] with regard to area, cell count, and cost, 
respectively.

4.2 � The developed unique gate

Figure 12 illustrates the implementation results of the devel-
oped unique gate.

The simulation results prove that the functionally of 
the proposal unique gate is valid. In addition, these results 
show that the designed unique gate circuit requires 0.5 

Fig. 5   The suggested 1-bit 
memory in [5]

Fig. 4   The suggested QCA memory in [26]
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Fig. 6   The developed 1-bit CAM in [27]

Fig. 7   The suggested 1-bit 
CAM in [9]

Fig. 8   The developed two-input XOR gate

Table 1   The operation table for 
the suggested unique gate

S M A Q

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 X X 1
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clock cycles. The implementation results of the unique 
gates are summarized in Table 3.

Based on these results, the suggested unique gate has 
benefits regarding area, cell count, and cost compared to 
that design in [9]. The developed unique gate has 67%, 
33%, and 67% improvements regarding area, cell count, 
and cost, respectively, in comparison whit that design in 
[9].

4.3 � The suggested content‑addressable memory

Figure 13 displays the implementation results of the sug-
gested content-addressable memory.

The implementation results demonstrate that the functional-
ity of the developed CAM is valid. Furthermore, the developed 
content-addressable memory requires 0.5 clock cycles. Table 4 
summarizes the implementation results of the CAM circuits.

Fig. 9   The developed unique 
gate a logic diagram, b QCA 
layout

AM
S

Q

(a) (b)

Fig. 10   The suggested content-
addressable memory a logic 
diagram b QCA layout

A

M

S

Q = (A ʘ M) + S

I

W/R
M

(a)

(b)
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Fig. 11   The implementation results of the suggested XOR gate

Table 2   The comparative table 
for two-input XOR gates

Ref Cell count Latency (Clock 
Cycle)

Area (µm2) Cost = Area*Latency 
(clock cycle)

[37] 60 1.5 0.09 0.135
[31] 54 1.5 0.08 0.12
[38] 67 1.25 0.06 0.075
[39] 29 0.75 0.03 0.0225
[40] 14 0.5 0.012 0.006
This paper 11 0.5 0.009 0.0045

Fig. 12   The implementation results of the designed unique gate
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Based on these results, the designed content-addressable 
memory has benefits regarding area, cell count, and cost in 
comparison with [5, 9, 26–28]. The proposed content-address-
able memory has 25%, 20%, and 25% improvements compared 

to that design in [9] regarding area, cell count, and cost, 
respectively. It should be noted that although the QCA technol-
ogy overcomes the drawbacks of the traditional technologies 
such as CMOS technology, this technology also introduces 

Table 3   The implementation 
results of the unique gates

Ref Cell count Area (µm2) Latency (Clock 
Cycle)

Cost = Area*Latency 
(clock cycle)

[9] 21 0.03 0.5 0.015
This paper 14 0.01 0.5 0.005

Fig. 13   The implementation results of the suggested CAM

Table 4   The implementation 
results of the CAM circuits

Reference Cell count Latency (Clock 
Cycle)

Area (µm2) Cost = Area*Latency 
(clock cycle)

[28] (RAM) 158 2 0.16 0.32
[26] (RAM) 109 1.75 0.13 0.227
[5] (RAM) 88 1.5 0.08 0.12
[27] (CAM) 100 2 0.14 0.28
[9] (CAM) 46 0.5 0.04 0.02
This paper (CAM) 37 0.5 0.03 0.015
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new ones. Based on the research [41], a QCA cell's intrinsic 
switching time is on the order of terahertz. The real speed may 
be significantly lower, in the order of gigahertz and megahertz 
for molecular QCA and solid state QCA, respectively.

5 � Conclusion

The QCA technology is the promising type of nanotech-
nology for the digital circuits’ implementation. The CAM 
is also an especial type of memory cells that is suitable 
for high-speed searching applications. As a result, the 
implementation of efficient CAM circuit is interesting 
for researchers. This study investigated, presented and 
evaluated the novel QCA CAM circuit based on the novel 
unique gate and novel XOR gate that were developed in 
this study. The suggested QCA circuits were evaluated in 
the QCADesigner tool version 2.0.3. The implementa-
tion results proved that the suggested QCA CAM has 37 
cells, 0.03 µm2 area, and 0.5 clock cycles. The comparison 
results demonstrated that the developed QCA circuits pro-
vided benefits compared to other QCA circuits with regard 
to area, cell count, and cost.
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