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EFFECTIVE PLASTIC PROPERTIES OF POROUS MATERIALS  
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The paper presents a theoretical evaluation of the mechanical properties of porous materials with an 
inverse opal structure, which is important for their application in various technological fields. The 
study focuses on a porous nickel-based material produced by a sequential multistep process that 
includes the self-assembly of polystyrene spheres, sintering, electrolytic deposition, and subsequent 
removal of polystyrene to achieve the desired structure. The study covers the process of transition 
from elastic to irreversible deformation. The objective of this study is to apply the finite element 
method to model the transition process to reveal the relationship between the structural characteristics 
of materials, such as porosity and coating thickness, and their mechanical properties. The yield surface 
was constructed by computational modeling on a representative cell with a number of points in the (p, ) 
plane for two cases of opal structure: a highly porous uncoated structure and a structure with an 
additional solid phase layer. One of the results included approximation of the yield surface with a 
phenomenological Deshpande–Fleck crushable foam model available in finite element modeling 
packages. The conclusions show that the effective plastic properties of materials with an inverse opal 
structure significantly depend on their porosity level and the presence of additional coatings. The 
yield curve plotted for a porosity of 0.9 is close to the associated plastic flow law, allowing the 
material’s behavior under loading to be assessed from the uniaxial stress state. However, for a 
structure with medium porosity and an additional coating layer, the surface becomes significantly 
unassociated, with a discrepancy of almost 30%. The application of the Deshpande–Fleck model for 
crushable foam in the approximation of the numerical data from the study demonstrates its 
relevance in describing the plastic behavior of this structure only at high porosity values. 
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INTRODUCTION 

With the advancement of precision materials science technology, nanostructured composites with an 
ordered periodic structure have recently been recognized as a distinct class. These structures, which exhibit 
characteristics of both composites and nanostructures, are called metamaterials. Unconventional physical properties, 
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leading to unique functionalities, can be achieved by carefully designing the structure of these materials. 
Metamaterials can possess unusual electromagnetic and optical properties, such as negative refractive index [1, 2], 
unconventional auxetic elastic response with negative Poisson’s ratio, high adsorptive [3], capillary [4], catalytic 
and photocatalytic [5], and other characteristics. Examples of such metamaterials are porous materials featuring an 
inverse opal structure.  

The production of porous nickel material with an inverse opal structure encompasses several stages [6]. 
Initially, polystyrene spheres are self-assembled onto a designated substrate to form an opal structure through the 
slow evaporation of a colloidal solution containing these spheres. Then the spheres are incompletely sintered to 
create bridges between them. In the third stage, nickel is electrodeposited to fill the interstitial spaces between the 
spheres. Finally, in the fourth stage, the polystyrene is etched away to reveal the inverse opal structure. In some 
cases, an additional layer of the same or a different material is applied to the structure. The periodic cell of the 
inverse opal is shown in Fig. 1.  

Inverse opal structures, notable for their unique geometry, have garnered attention in recent years for their 
versatile applications. One application is wound treatment. Inverse opal hydrogel layers incorporated into hydrogel 
patches made from medicinal herbs have demonstrated improved mechanical properties [3]. However, the path 
toward fully implementing the potential of inverse opal structures is fraught with challenges. Research into a 
camouflage coating produced from biomaterials [7] highlighted limitations in the mechanical properties and 
environmental resistance of materials with inverse opal structures. In the area of anticounterfeiting, the development 
of photonic paper using inversion opal structures [8] illustrates how these materials blend optical and mechanical 
properties. This innovation not only underscores the long life and versatility of these structures but also expands the 
possibilities for their optical anticounterfeiting applications. Studies of ZnO–Al2O3 inversion opal structures for 

photocatalysis, reinforced with an atomic layer of amorphous Al2O3, emphasize the importance of strength 

characteristics and other mechanical properties [5] to promote the self-assembly phenomenon at the tips of optical 
fibers. In the area of energy storage, inverse opal structures show promise in enhancing the performance of 
macroporous SnO2 anodes for lithium–ion and sodium–ion batteries. The papers [9, 10] highlight the role of the 

mechanical properties of porous materials with an inverse opal structure in improving the performance, structural 
integrity, and capacity of batteries, making a significant advancement in battery technology. 

Therefore, the study of inverse opal structures across a wide range of applications—from medical 
techniques and anticounterfeiting measures to environmental remediation and advanced battery manufacturing 
processes—emphasizes the need to understand and improve their mechanical properties. The boundary transition 
from elastic to irreversible plastic deformation is among the most important mechanical characteristics of porous 
metal materials. 

 
a b 

Fig. 1. Uncoated (a) and coated (b) periodic cell of inverse opal 
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Our objective is to model the transition from elastic to irreversible deformation for materials with an 
inverse opal structure using the finite element method and determine their effective plastic properties.  

Although the pore space structure in inverse opals is rather complex, it can be characterized with just two 
parameters according to the material production process: the bridge between spherical pores and the thickness of a 
coating applied to a metal skeleton. In our study, we characterized the structure using the porosity and the thickness 
of an additionally deposited nickel layer. Nickel serves as the material for both the skeleton and the additional layer 
in this porous composite [6]. 

APPROACHES TO DESCRIBING THE RIGID–PLASTIC BEHAVIOR  
OF POROUS MATERIALS 

Approaches to determining the loading surface of porous materials can be categorized into two classes: 
experimental (relying on triaxial load tests) [11, 12] and theoretical (relying on the mechanics of composite 
materials) [13–15]. Contrastingly to full-scale experiments, the theoretical approach allows for a broad variability in 
loading patterns studied. The micromechanical approach provides a more explicit relationship between the structure 
and properties of heterogeneous materials, although it involves some idealization of the composite structure. In 
experimental studies, unique efforts are required for determining and describing the actual structure of a 
heterogeneous material. In the micromechanical approach, the starting point is typically to set a boundary-value 
problem for the homogeneous loading of a representative volume that embodies the properties of the entire material 
and is a plastic matrix with a central round pore. This enables at least a qualitative consideration of the internal 
parameters that characterize the state and structure of a porous material and a description of its behavior in the 
transition to irreversible plastic flow, similar to the efforts of Green [13], Gurson [15], et al. Hence, Gurson’ porous 
plasticity model [15] was developed separately for cylindrical and spherical pores within a repeating elementary 
volume, where the final results can be presented as the boundary values of the first two invariants of the stress 
tensor as a function of porosity. However, this model is only accurate for low porosities as it neglects the interaction 
between pores.  

In [16], Tvergaard supplemented Gurson’s model with three additional purely phenomenological 
parameters. These parameters are not directly related to the structure of a porous material or the rheology of the 
solid phase but are associated with the effects of pore interaction. This improved version of Gurson’s model, now 
widely adopted, is referred to in the literature as the Gurson–Tvergaard–Needleman (GTN) model. Further 
development of the GTN model by various authors is detailed in [17]. An analytical model of porous material flow 
based on micromechanical averaging was also successfully developed in a series of other studies [13, 18, 19].  

In our study, to simplify the analysis of computational modeling results, we adopted an isotropic Mises 
(two-invariant) model of a material with an arbitrary yield surface in the (p, ) plane of stress tensor invariants, 
where 
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These stress tensor invariants are commonly referred to as the mean pressure and tangential stress intensity, 
respectively [19]. 

To construct this yield surface, the yield stresses of the inverse opal under various zero single-beam loading 
paths were found by computational modeling on a representative cell. Each of these boundary stresses provides a 
point for the yield curve in the (p, ) plane. Approximation of these points with a curve provides the desired yield 
surface. However, employing this micromechanically rigid yield surface in an approximated numerical form may be 
too challenging as it requires introducing the porous inverse opal plasticity model into finite element modeling 
packages. Therefore, it was decided to approximate the yield curve derived numerically with a simplified material 
model that is available in finite element modeling packages. Given the specific nature of the metal inverse opal, it 
was decided, as previously done in [6], to use the Deshpande–Fleck crushed foam model, particularly incorporated 
in the ABAQUS package. 
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The Deshpande–Fleck model is purely phenomenological and postulates only the general form of the flow 

curve   2 2 2 23 2 α( , )  F p p B      and the flow potential   2 2 23 2 β G p    through three arbitrary 

phenomenological constants: , , and B. This model differs from the closed analytical models of porous plasticity 
by Gurson [15], Shima–Oyane [12], and Stern [19], where the constants are not arbitrary but are determined by 
porosity.  

MICROMECHANICAL AVERAGING OF THE STRESS–STRAIN  
STATE IN INVERSE OPAL  

Inverse opal is a microheterogeneous material with a regular periodic structure. For composites of this type, 
there are well-developed approaches to determining their effective properties [20]. For materials with a periodic 
structure, micromechanical averaging within a periodic cell—encompassing the scale of inhomogeneity that is 
smaller than the scale of the averaging length—is sufficient [21]. On the scale of the averaging length, the boundary 
of a representative cell undergoes distortion close to a linear transformation [22], although this is not the case for an 
elementary periodic cell [23].  

Because of symmetry, when there are no shear components of macroscopic ‘effective’ strains in the XYZ 
coordinate system shown in Fig. 1, the periodic cell (Fig. 2) of the inverse opal retains a rectangular shape when 
deformed. 

On the other hand, since the effective properties are postulated to be isotropic, the coordinate axes can be 

aligned with the principal axes of stress and strain tensors. The macroscopic component of the strain tensor 0
xx  

corresponds to the boundary condition of the fixed normal component of displacements 
0

0 0 ;     
x

x x x xxx x h
u u h 

  
 

(2) 

on the faces perpendicular to the X axis, where xh  is the length of the cell along the X axis. In this instance, the 

tangential components of displacements are not fixed, enabling the face points to slide freely along the face plane  

resulting in zero tangential stresses. Additionally, for given macroscopic stresses 0
xx , we have some condition for 

the equality of the normal components of displacements along the corresponding faces 

0 0 ˆ ;     
x

x x xx x h
u u u 

   (3) 

 
a        b 

Fig. 2. Finite element modeling within a periodic cell: a) finite element grid; b) distribution of 
tangential stress intensity  
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along with zero tangential stresses and the condition that the equivalent normal force Px  on the faces perpendicular 

to the X axis is as follows:  
0 0

0P  ;   P
x

x xx x x xx xx x h
S S      (4) 

(from which we can find ˆxu ), where x y zS h h  is the area of the faces perpendicular to the X axis. Similarly, we set 

boundary conditions for 0
yy , 0

zz , 0
yy , and 0

zz  by replacing the X axis with Y or Z. These boundary conditions for 

macroscopic stresses and strains are equivalent to the conditional contact of the cell material with some absolutely 
rigid plate allowing free sliding (zero friction forces) and preventing delamination (even when the plate does not 
press but pulls the material). Symmetry enabled modeling a quarter of the periodic cell (Fig. 2). It should be noted 
that the ABAQUS finite element modeling package we used links a specific displacement component for all points 
in a plane to the displacement of a fixed point. If the magnitude of this displacement is not defined, it will be 
adjusted to a value that results in zero equivalent force on this plane. This feature is convenient for establishing 
boundary conditions (3) and (4), corresponding to zero macroscopic stresses.  

EFFECTIVE PLASTIC PROPERTIES FOR SOME CASES  
OF INVERSE OPAL STRUCTURE 

We will illustrate the process of determining the yield stress of a porous composite with an inverse opal 

structure under macroscopic uniaxial compressive loading along the X axis (where 0
xx  is the only nonzero 

component in the tensor of macroscopic ‘effective’ stresses). First, we initiate the movement of the ˆxu  face from 

Eq. (3) in one direction (loading) and then in the opposite direction to the moment 0 0xx   from condition (4), 

resulting in 0Px   (unloading). If the skeletal material undergoes irreversible plastic deformation during loading, 

the macroscopic strains are 0 0res
xx xx     at the moment of complete unloading when 0 0xx  . This nonzero res

xx  

represents the residual macroscopic strains. Following the common engineering criterion of plasticity, we select 
0 002.ˆ ˆx xu u   such that 0 002 0 2res . . %xx   , while 0 0 002.

xx xx    corresponding to 0 002.ˆxu  is the desired yield stress for 

uniaxial compression. Note that the residual plastic strain res res
yy zz    in the direction transverse to the uniaxial load 

was also calculated in this modeling process, enabling the calculation of the plastic analog of Poisson’s ratio 
res res

p yy xx    .  

 Similarly, the yield stresses were determined according to the criterion of 0.2% residual strain for 

maximum, by modulus, macroscopic strains  0 0 0 0 002max   ,   ,    .xx yy zz     and for other single-parameter 

loading patterns different from uniaxial ones. Knowing the yield stresses, we calculate the boundary values of 
invariants (p, ) using Eq. (1) for constructing the yield curve for the inverse opal. The mechanical behavior of 
nickel, which is the solid phase in the porous composite, was assumed to be elastoplastic with plasticity according 
to the Mises model, possessing Young’s modulus of 171 GPa, Poisson’s ratio of 0.31, and yield stress under 
uniaxial loading of 1.98 GPa.  

The above method was employed to find a series of yield points in the (p, ) plane for two cases of opal 
structure: a highly porous (0.9 porosity) uncoated structure and a structure with 0.57 porosity and an additional 
coating with relative thickness h/D = 0.065, where D  is the diameter of the spherical pores (removed polymer 
particles). We also analyzed the lateral plastic strain coefficient under uniaxial loading p , serving as the plastic 

analog of Poisson’s ratio. In the case of 0.57 porosity, five points for different loading patterns in the (p, ) plane 
were found to be sufficient for a suitably smooth approximation of the yield curve (Fig. 3), which are summarized 
and illustrated in Table 1. For 0.57 porosity, plastic Poisson’s ratio is 0 32.p  . 

In the case of 0.9 porosity, the construction of a suitably smooth yield curve (Fig. 4) required two more 
points in the (p, ) plane (along with loading patterns), in addition to those provided in Table 1. All analyzed 
loading patterns for 0.9 porosity are summarized in Table 2. For 0.9 porosity, plastic Poisson’s ratio is 0 416.p  . 
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TABLE 1. Yield Stress for 0.57 Porosity  

 

TABLE 2. Yield Stress for 0.9 Porosity 

Deformation pattern Macroscopic stress and strain tensors p, Pa , Pa 

Pure shear 0 0 0 0 ;    ;  xx yy zza a        0 1.52  107 

Uniaxial stress 0 0 00 0 ;    ;  xx yy zza       5.91  106 1.45  107 

Radial compression without axial strain limitation 0 0 0 0 ;    ;  xx yy zza a       9.17  106 1.38  107 

Uniaxial strain (compression in a die) 

0 0 0 ;    ;  xx yy zza a a        2.02  107 9.78  106 

0 0 00 0 ;    ;  xx yy zza       2.52  107 5.98  106 

Radial compression with axial strain limitation 0 0 0 0 ;    ;  xx yy zza a       2.74  107 2.99  106 

Hydrostatic stress 0 0 0 ;    ;  xx yy zza a a       2.85  107 0 

 
Regarding the verification of the phenomenological parameters of the Deshpande–Fleck model, the 

elliptical Deshpande–Fleck flow surface  

  2 2 2 23 2( , )  F p p B       

was believed to pass through the points corresponding to the yield stress under pure shear and bulk compression. 

Accordingly, the only phenomenological parameter of the flow potential   2 2 23 2  G p    , as evident, can be 

 

                

Fig. 3. Yield curves and potential for 0.57 porosity Fig. 4. Yield curves and potential for 0.9 porosity 

Deformation pattern Macroscopic stress and strain tensors p, Pa , Pa 

Pure shear 0 0 0 0 ;    ;  xx yy zza a        0 3.07  108 

Uniaxial stress 0 0 00 0 ;    ;  xx yy zza       1.20  108 2.93  108 

Uniaxial strain (compression in a die) 0 0 00 0;    ;    xx yy zza       2.98  108 2.07  108 

Radial compression with axial strain limitation 0 0 0 0 ;    ;  xx yy zza a       4.05  108 1.15  108 

Hydrostatic stress 0 0 0 ;    ;  xx yy zza a a       4.70  108 0 
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TABLE 3. Deshpande–Fleck Model Constants 

Porosity   Relative coating thickness, h/D   B, MPa 

0.9 0 0.6532 0.7307 18.32 
0.57 0.065 0.8000 1.1078 372.6 

 

expressed directly through plastic Poisson’s ratio by equation 
1 23
12

p

p

 
 

 
. The parameters of the Deshpande–

Fleck model for both porosity values are summarized in Table 3. The yield surface (dashed line) and the yield 
potential line (bold line) of the Deshpande–Fleck model are illustrated in Figs. 3 and 4. 

Table 3 shows that parameters  and  for 0.9 porosity differ insignificantly (10%), while the discrepancy 
between  and  is quite noticeable, nearly 40%, for 0.57 porosity. This discrepancy suggests an unassociated 
effective plastic flow of the denser inverse opal in the structure with an additional coating, indicating a significant 
deviation of the deformation direction (as indicated by the e   ratio for the invariants of the strain rate tensor [19]) 

from the normal to the yield curve. To describe the unassociated plastic flow in the Deshpande–Fleck model, a 
different flow potential is introduced in addition to the yield curve. However, for highly porous inverse opal 
structures with thin bridges in the solid phase, we can consider the associated effective plastic flow. Therefore, our 
assumption concerning the associated nature of the Deshpande–Fleck model (i.e.,  = ) made in [6] applies only to 
highly porous inverse opal structures and may not be entirely correct otherwise. The absolute value of the yield 
stress for 0.57 porosity is more than an order of magnitude higher than that for 0.9 porosity, as evident from the 
comparison of the parameter B or the scale in Figs. 3 and 4. 

CONCLUSIONS 

The effective plastic behavior of a porous material with a periodic inverse opal structure under various 
loading patterns was meticulously modeled using computational micromechanics. These results provided a suitably 
smooth numerical approximation of the yield curve. To facilitate the use of the plasticity model in finite element 
modeling packages for optimizing structures with inverse opal elements, the numerical data were approximated 
with the phenomenological Deshpande–Fleck model.  

This approximation proved to be quite accurate, with the shape of the yield curve in the (p, ) plane closely 
resembling an ellipse. The effective plastic flow of the inverse opal was found to deviate slightly from the 
associated plastic flow law in the case of a highly porous inverse opal structure and became significantly 
unassociated in the case of a structure with medium porosity and an additional coating layer. Despite the near-
elliptical shape of the yield curve, the identification of the plastic behavior of inverse opal of unknown structure 
using a simple uniaxial loading experiment seems to be accurate only at high porosities. In the case of medium 
porosity, the yield stress under bulk compression predicted upon uniaxial loading experiment differs by almost 30% 
as shown in Fig. 3. 
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