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NANOSTRUCTURED MATERIALS 

HARDENING IN THE TRANSITION TO NANOCRYSTALLINE  
STATE IN PURE METALS AND SOLID SOLUTIONS  
(ULTIMATE HARDENING) 

S. A. Firstov,1 T. G. Rogul,1,2 and O. A. Shut1 
UDC 539.4.01 

The state of the grain boundaries and the solid solution is analyzed for influence on the yield stress 
over a wide range of grain sizes for pure metals, low-doped alloys, and multicomponent solid 
solutions, including high-entropy alloys. A generalized equation is derived using the averaging 
integrals to describe the yield stress and hardness normalized to Young’s modulus versus the grain 
size. The potential to reach the maximum hardening for nanostructured materials through the use of 
grain-boundary engineering is considered. The concept of ‘useful’ impurities intended to bring the 
strength of such materials to the level comparable with the maximum (theoretically) possible one 
(E/2–E/30) is proposed. 
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INTRODUCTION 

The development of processes for producing nanostructured polycrystalline materials has significantly 
increased interest in analyzing the sensitivity of the yield stress to the size of structural elements (grain diameter, 
microlayer thickness, etc.). Several features in the variation of mechanical properties in transfer from micro- to 
nanostructured state can be pointed out: 

1) inverse Hall–Petch relation in the nanosized range resulting from sharp increase in the total surface area 
of interfaces and, thus, in the volume content of the ‘poor’ material associated with them [1–6, etc.];   

2) transition, with decreasing grain size d, from hardening described by the Hall–Petch relation where 
  d–1/2 to hardening where   d–1 even before transfer to nanostructured state [7–11]; 

3) potential for improving the quality of boundaries applying approaches proposed within interface 
engineering and, hence, producing extremely hardened state in the nanosized range (in fact, at the level of 
theoretical strength) [12, 13].  

The objective of this paper is to consistently address the development of the above notions to obtain a 
generalized equation describing the yield stress versus gran sizes over a wide range (considering the state of grain 
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boundaries and solid solution). The study individually focused on the hardening mechanisms for pure metals, low-
doped alloys, and multicomponent (Me–X) alloys, including high-entropy ones (HEAs). Additional options were 
analyzed for improving the properties of nanostructured materials through grain-boundary engineering 
(concentration of ‘useful’ impurities), which allows the strength to be brought to the level comparable with the 
maximum (theoretically) possible one (E/2–E/30, where E is Young’s modulus). 

RESULTS AND DISCUSSION 

VARIATION IN YIELD STRESS IN TRANSITION FROM MICRO- TO NANOSTRUCTURED  
STATE IN PURE METALS AND LOW-DOPED ALLOYS   

Pure Metals. As indicated in the introduction, two grain-size ranges in which the effect of boundaries on 
strength can be described by different dependencies are usually distinguished. In the range of relatively large grains, 
the well-known Hall–Petch relation is obeyed [14, 15]: 

y = 0 +kyd–1/2, (1) 

whose first term 0 characterizes the averaged resistance to the slip of dislocations along the grains, and coefficient 

ky characterizes the resistance to the slip transfer through the grain boundary. 

According to [16], the coefficient  

rk sy 
 (2)

accounts for the start stress s of the dislocation source located at a certain distance r from the top of a flat 

dislocation pile-up in the neighboring grain. 
At grain sizes smaller than some critical value (~10 nm), there is a substantial deviation from Eq. (1), and 

the inverse Hall–Petch relation (Fig. 1) is often observed in the nanosized range when experimental data are plotted. 
To describe the inverse relation, a number of models have been proposed in which certain deformation mechanisms 
are predominant: grain-boundary plasticity (grain-boundary slip, diffusion plasticity at grain boundaries), twinning, 
and conventional slip of lattice dislocations [17–29, etc.].  Some of the models (for example, those provided in [25]) 
consider the competition of different deformation mechanisms since several mechanisms act simultaneously, as a 
rule, in actual materials. A potential change in the grain-size dependence of the yield stress (for example, in the 
transition from intracrystalline strain to intercrystalline strain) is shown in Fig. 2 [29]. 

It should be noted that dislocation models assuming the presence of plastic flow carriers both as lattice and 
grain-boundary dislocations and as boundary intersection disclinations appear to be rather challenging. With such 
small grain sizes, stresses on the order of theoretical shear strength are required to activate dislocation sources; 
direct electron microscopy analyses indicate that there are no dislocations in the nanograins (see, for example, Fig. 
3a). For this reason, models that are based on the representation of a nanocrystalline material as a two-phase 
composite consisting of intra- and intercrystalline phases (Fig. 3b) seem to be natural. The strength of such a 
composite can be calculated with the mixture rule [7, 19, 21, etc.]. 

 

                                

Fig. 1. Grain-size dependence of copper yield 
stress [6] 

Fig. 2. Schematic transition from intracrystalline slip 
to intercrystalline slip with grain refinement [29] 
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a b 

Fig. 3. High-resolution electron-microscopy image of chromium deposited with magnetron sputtering 
[30] (a); composite nanomaterial structure (part of nanocrystals along the shear line) [21] (b) 

 

 
           a b 

Fig. 4. Grain-size dependence of the yield stress for titanium [34] (a) and dependence replotted by the 
authors according to Eqs. (1) and (3) (b) 

At the same time, it was noted in our papers [10, 11] that three rather than two grain-size ranges separated 
by two critical sizes (CS), dcr1 and dcr2, should be distinguished in analyzing the grain-size effect on the yield stress. 

In particular, the variation in the grain-boundary hardening mechanism should be considered in the submicron 
grain-size range before transfer to the nanosized range, which was noted in many studies [7–9, 33]. Hence, even 
Kocks noted in [7] that the following equation holds better than the Hall–Petch relation over a wide grain-size 
range:  

1
10y

 dk . (3)

Figure 4a shows very representative data obtained by Nokhrin et al. [34] for titanium grain refinement. An 
almost fivefold increase in ky was observed and the 0 values were negative for the sharply ascending region of the 

(d) dependence, which seems to be incorrect. Figure 4b demonstrates the (d) dependence that we replotted 
according to Eqs. (1) and (3) for the experimental data provided in Fig. 4a. For convenient comparison with Fig. 4a, 
the dependence was plotted in the coordinates of Eq. (1). As is seen from Fig. 4b, the (d) dependence in the fine-
grain range (d  2.8 µm) plotted according to Eq. (3) agrees better with the experimental points. 

The change in the Hall–Petch parameter from d–1/2 to d–1 (i.e., compliance with Eq. (3)) is illustrated well 
by other numerous results: for example, for deformation-origin grains (deformation cells) [34]; for chromium 
coatings deposited by magnetron sputtering (0.1 µm  d  5 µm grains) [30, 31]; and for the grain-size dependence 
of the fatigue limit determined by test [32]. 

In the above regard, besides the known critical grain size, dcr2, that was introduced previously and below 

which the Hall–Petch relation is inverse, we proposed [10, 11] critical grain size dcr1 for transition from Eq. (1) to 
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Eq. (3). This transition is analyzed in detail in [11]. It is shown that critical grain size dcr1 can be determined by 

equating the right-hand sides of Eqs. (1) and (3): 

 2y1cr1 / kkd  . (4) 

This transition can be reached formally if we assume that the ky value is not a constant, but depends on the 

grain size according to the law 
21

1
/

y /  dkk .
 (5)

Combining Eqs. (5) and (1), we can actually obtain Eq. (3). 
In turn, Eq. (5) can be justified as follows. If ky is a constant in the Hall–Petch relation range (d  dcr1), 

then it is obvious that the stress needed to activate the Frank–Reed source proportional to Gb/l (where G is the shear 
modulus, b is the Burgers vector, and l is the source length) becomes significantly dependent on the grain size at 
dcr1  d  dcr1 since l cannot be larger than d. As r in Eq. (2) cannot exceed d either, Eq. (2) transforms to Eq. (5) 

with a fully logical assumption that l and r are proportional to d at d   dcr1. Note that the grain-size dependence of 

ky is actually observed in the submicron grain-size range in accordance with Eq. (5) [32]. 

Therefore, there are at least three grain-size ranges separated by dcr1 and dcr2 in pure metals (single-

component materials), each range being characterized by its own (d) dependence. When the grains refine to dcr1, 

the 1(d) dependence of the yield stress is described by the Hall–Petch relation (Eq. (1)); for the grain sizes varying 

from dcr1 to dcr2, the 2(d) dependence is obeyed (Eq. (3)) (ky is not a constant here but depends on the grain size); 

and for the grain sizes smaller than dcr2, the yield stress (hardness) noticeably decreases, the inverse Hall–Petch 

relation described by the 3(d) dependence being valid (Fig. 5). 

To determine the 3(d) dependence, we proposed the following equation in [10]: 
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where t is the grain-boundary thickness, b is the grain-boundary strength, and CS is the theoretical grain strength. 

In deriving Eq. (6), we used the approach based on the mixture rule and considered that the volume content 

of the crystalline material was 
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Since the strength of dislocation-free nanograins tends to the maximum possible (theoretical) value for a 
given material, it can be assumed that CS corresponds to the theoretical strength, whose value ranges from E/2 to 

E/30 according to our paper [35]. It is reported in [18, 36, etc.] that the crystallite has some critical size at which 
conventional dislocation ductility and hardening mechanisms do not act and the grains acquire ideal strength. This 
grain critical size evaluated in [36] applying different approaches is smaller than 50 nm. 

Equation (6) shows that the yield stress in the refinement of grains depends on the strength of their 
boundaries; in other words, the yield stress reduces with decreasing boundary strength, which is due to increase in 
the volume content of imperfect (so-called ‘poor’) material at grain boundaries and ternary intersections for single-
component materials. 

 
Fig. 5. Three grain-size ranges divided by dcr1 and dcr2, each obeying its own (d) dependence 
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In the paper [11], we combined Eqs. (1), (3), and (6) into one using the averaging integrals and obtained a 
generalized grain-size dependence of the yield stress accounting for change in the hardening mechanism in different 
grain-size ranges as follows: 
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where f(V) is the grain volume distribution function; 3
cr11 dV   and 3

cr22 dV   [33]. In doing so, we assumed that the 

f(V) function describing the grain volume distribution obeyed the lognormal law for polycrystalline materials. 
Hence, according to [25], the grain-size distribution function becomes  
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(8)

where const1A and 2 ,1s is the distribution dispersion for the first and second transitions. At 3
cr11 dV   and 

3
cr22 dV  , we have the grain volume distribution function, f(V). 

According to Eq. (7), Hall–Petch relation (1) is obeyed if all grains that fit into this distribution are larger than 
dcr1, Eq. (3) holds for grain sizes ranging from dcr1 to dcr2, and Eq. (6) is met for grain sizes smaller than dcr2. 

Note that the grain-size dependence of normalized hardness—hardness divided by Young’s modulus—
should be obtained to analyze the level of hardening. This dependence is extremely convenient since the automated 
indentation (nanoindentation) technique allows hardness and Young’s modulus to be measured simultaneously at 
each experimental point. For transition from the H/E(d) dependence to the /E(d) dependence, the Marsh equation 
relating hardness HV to yield stress  [37] can be used: 







 4

3
ln6.028.0ln6.0

EHV
,
 

(9)

where E is Young’s modulus and  is Poisson’s ratio. 
The graphical H/E(d) dependences plotted in compliance with Eq. (7) using chromium as an example are 

provided in Fig. 6 (solid line). The following parameters were used to plot the dependence: 0 = 0.22 GPa, b = 

= 12 GPa, s = 0.3, ky = 1.6 · 10–2 GPa · mm1/2, t = 2 nm, dcr1 = 310 nm, and dcr2 = 67 nm. The experimental data 

points were obtained for chromium deposited by magnetron sputtering [12]. To describe the softening in single-
component materials, the grain-boundary strength b at d < dcr2 was assumed to be lower than the grain strength 

and equal to E/50 and E/100, which is much lower than theoretical grain strength CS (E/2–E/30). When the grain 

size reduces to dcr2, the H/E(d) dependence is an ascending curve, which clearly shows the transition from the 

dependence described by Eq. (1) to Eq. (3) near dcr1 and good agreement with the experimental data points. In 
 

 

Fig. 6. Grain-size dependence of the hardness normalized to Young’s modulus for some strength values 
for the grain-boundary material: E/10 (a); E/30 (b); E/50 (c); E/100 (d) (point 1 corresponds to the  

values in films with 4.4 at.% O; PO2
/PAr = 4.01  10–2) [38] 
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        a b 

Fig. 7. Average grain-size dependence of the yield stress for pure copper: a) dependence from the 
paper [39] (the solid line considers diffusion at ternary intersections; the dashed line  does not allow 
for diffusion at ternary intersections; the straight dotted line is the classical Hall–Petch relation); b) 
dependence (a) replotted considering two critical grain sizes (curve 1 considers diffusion at ternary  

intersections; 2 does not allow for diffusion at ternary intersections) 

transition to the nanosized range (d < dcr1), a descending curve is inevitable for pure undoped metals, characterized 

by lower interface strength.  
At the same time, the transition from Eq. (1) to Eq. (3) may be unobservable on the experimental (d) 

dependence because of the rather narrow-scale X axis, insufficient number of the experimental data points, and great 
scatter of the data points. The incorrect choice of the resultant curve obtained by fitting the experimental data points 
to the (d) dependence is evidenced by increased ky, calculated from the Hall–Petch relation. 

For example, ky calculated from the dependence (Fig. 7a) provided in [39] is 1750 MPa  nm1/2 for copper. 

If our generalized dependence, Eq. (7), is used to plot the curve with the same experimental data points considering 
two critical grain sizes (for contribution of ternary intersections at dcr1 = 20 nm and only for the Coble creep at 

dcr1 = 18 nm), then ky is equal to 1200 MPa  nm1/2 (Fig. 7b). Comparison of the dependences in Fig. 7a and Fig. 7b 

clearly shows that the experimental data points best agree with the resultant theoretical curves allowing for the 
existence of two critical grain sizes. 

Low-Doped Alloys. It should be noted that Takeuchi [21] proposed a relation close to Eq. (6) to describe the 
3(d) dependence. However, Takeuchi considered only one option when the grain strength was, by definition, 

always higher than the grain-boundary strength and neglected the variant when the grain-boundary strength could 
be equal to or even higher than the grain strength. At the same time, unlike decrease in the yield stress (hardness) in 
the nanosized range for undoped pure metals, the composition and constitution of grain boundaries may change for 
commercial-purity materials and low-doped binary or multicomponent alloys; this change is accompanied by a 
substantial increase in the intergrain adhesion strength and, thus, in the yield stress. 

We discussed this effect in the papers [12, 13], in which we proposed the concept of ‘useful’ impurities (the 
term was proven by Glikman back in 1972 [40]) for low-doped alloys. The main idea of the concept was that the 
intergrain adhesion strength might substantially increase through the segregation enrichment of the grain boundaries 
of metal M with impurity X so that the M–X bond energy became higher than the M–M bond energy. Doping 
elements possessing high heat of mixing with the solvent metal and substantially differing in atomic radii from the 
base metal can be regarded as such ‘useful’ impurities from this viewpoint. Small atoms can thus be displaced to the 
compressed regions at grain boundaries and large atoms to the elongated ones so that the weak places can be healed 
at grain boundaries. Oxygen in chromium and carbon in iron are examples of such ‘useful’ impurities. 

According to Glikman, at the semiquantitative level, the tendency of an element to the enrichment of grain 
boundaries can be characterized by difference in the solid- and liquid-state solubility of doping elements, corresponding 
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Fig. 8. Grain-size dependence of the yield stress for chromium deposited by magnetron sputtering 
[31, 32] 

to the ratio of the first derivatives, CL/c and Cs/c (slopes of the liquidus and solidus curves), at the melting 

point of binary systems. This approach can be justified to some extent if the grain-boundary constitution is 
represented as a supercooled liquid model (Bilby model [41]). 

In our papers [30, 31] focusing on chromium films deposited by magnetron sputtering, we also revealed 
sharp hardening in the same range (Fig. 8). The sharp increase in strength (hardness) of nanocrystalline chromium 
in accordance with our concept of ‘useful’ impurities [12, 13] results from the effect of interstitial oxygen atoms, 
which are ‘useful’ impurities for chromium as they have stronger chemical bonds with chromium atoms than the 
chemical bonds between the chromium atoms themselves. Oxygen segregation leads to a stronger (harder) shell 
from interfaces forming a cellular-like structure, softer plastic chromium grains being inside this structure (Fig. 3). 

Similar effects were found in [42] in hardening of the Fe–W condensates. The introduction of up to 
0.3 wt.% W substantially refines the grains and increases the ky constant in the Hall–Petch relation as tungsten 

enriches the grain boundaries and does not dissolve in the grains. It is shown in [43] that severe shear deformation 
of surface layers of carbon steels leads to the ‘dissolution’ of cementite and carbon redistributes along the 
boundaries of emerging nanograins. The carbon enrichment of grain boundaries (carbon being a ‘useful’ impurity 
according to [40]) significantly increases the hardness, to 12 GPa and above; hence, the strength (hardness) 
increases almost threefold compared to pure iron with the same nanograin size [44]. 

Therefore, abrupt increase in the yield stress when the grain size becomes smaller than dcr2 is possible only 

in doped systems with an appropriate choice of components, allowing the grain-boundary strength to be increased. 
In single-component materials, grain refinement increases the volume content of imperfect material at the grain 
boundaries and ternary intersections and, thus, decreases the yield stress (hardness). Hence, the potential for 
hardening in grain refinement in single-component systems is limited. These both cases are well described by Eq. 
(7) and are clearly shown in Fig. 6. It is seen that the H/E ratio (or yield stress) may either increase or decrease 
depending on the grain-boundary strength at grain sizes smaller than dcr2. 

Note also that the graphical H/E(d) dependence plotted in compliance with Eq. (7) can be used for tentative 
evaluation of the grain-boundary strength in the nanosized range. For example, comparison with the dependence 
shown in Fig. 6 and plotted with the data from [38] for magnetron-sputtered chromium films containing 4.4 at.% O 
and having 19.4 GPa hardness with 12 nm grains allowed us to evaluate the strength of grain-boundary material, being 
approximately equal to E/30 (respective point on curve b). These values approach the nanograin strength, which is close 
to the maximum possible (theoretical) strength for a given material in the absence of dislocations in nanograins. 

At the same time, the (d) (H/E(d)) dependences plotted in accordance with Eq. (7) suggest that the state of 
the grain boundaries and solid solution remains unchanged; they actually correspond to constant 0 and yk

 
for each 

grain size, which is possible only for single-component materials of high purity. In the actual commercial-purity 
materials, the state of the grain boundaries and solid solution continuously varies and so do the ky and 0 values 

with change in the grain size through heat treatment. In this regard, the construction of two bounding curves with 
limiting ky values seems to be more correct for plotting the generalized dependence and, in the case of potential 
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Fig. 9. Dependences of hardness normalized to Young’s modulus on the grain size of chromium and 
titanium at E/30 and E/50 strength of the grain-boundary material for chromium and E/50 and E/500 
for titanium plotted using the bounding curves in accordance with Eq. (7); limiting ky values (lower 

and upper curves) are 1.4  10–2 GPa  mm3/2 and 2.83  10–2 GPa  mm3/2 [30, 38] for chromium and 
4  10–3 GPa  mm3/2 and 7.2  10–3 GPa  mm3/2 [46–48] for titanium 

change in the solid-solution state, two limiting 0 values should be shown as well. All experimental data are located 

between the two curves, reflecting the difference in ky and 0 for each grain size. 

Figure 9 shows the grain-size dependences of hardness normalized to Young’s modulus in accordance with 
Eq. (7) using the bounding curves with E/30 and E/50 strength of the grain-boundary material for chromium and 
E/50 and E/500 for titanium. In the case of nanostructured magnetron-sputtered chromium films, the solubility of 
interstitial impurities in the solid solution is extremely low (for example, the maximum solubility of oxygen in 
chromium is only 0.04 at.% even at 1550C [46]). Hence, the bounding curves should allow only for a potential 
change in the state of grain boundaries (i.e., ky). For titanium films, when not only ky but also 0 changes, the 

bounding curves should also allow for change in 0. The experimental limiting ky  values (lower and upper curves) 

are 1.4  10–2 and 2.83  10–2 GPa  mm3/2 for chromium [30, 38] and 4  10–3 and 7.2 · 10–3 GPa  mm3/2  for 
titanium [46–48]. The 0 values for titanium range from 0.2 to 0.47 GPa. 

HARDENING IN NANOSTRUCTURED MULTICOMPONENT ALLOYS  

Solid-Solution Hardening in High-Entropy Single-Phase Alloys. In the last several years, multicomponent 
alloys containing at least five principle elements, content of each element varying from 5 to 35%, have been of great 
interest. These alloys are called high-entropy ones (HEAs) since they have high mixing entropy suppressing the 
formation of intermetallic phases and promoting the formation of a multicomponent solid solution with a simple 
crystalline structure (bcc, fcc, and bcc + fcc) in as-cast state. The high-entropy alloys feature high hardness, wear 
resistance, corrosion resistance, oxidation resistance, and high-temperature creep resistance [49–56]. 

The papers [52, 53] draw attention to abnormally high solid-solution hardening of HEAs, but the 
mechanisms of this hardening are not fully understood. For example, it is noted in [52] that the high hardness 
(5250 MPa) of the WNbMoTaV alloy with a bcc lattice can be due to a ‘nonobvious’ hardening mechanism. To 
evaluate the solid-solution hardening of the single-phase bcc TaNbHfZrTi alloy, Fleischer’s theory [57] (the alloy 
being regarded as a pseudobinary solid solution) is used in [53]. At the same time, we showed in [55, 56] that 
application of Fleischer’s theory was not possible to analyze the solid-solution hardening of the single-phase bcc 
AlTiVCrNbMo and fcc CrMnFeCoNi alloys.  

The equiatomic bcc AlTiVCrNbMo alloy was used as an example in [55] to show that the HEA hardening 
is due to stronger temperature dependence of the critical shear strength and to abnormally high athermal hardening 
resulting from the Burgers vector component perpendicular to slip plane b = nb(a/a)av, where n  0.5, b is the 

Burgers vector, and (a/a)av = [ci(ai–aexp)/aexp] is the averaged relative change in the HEA lattice parameter (ci 

and ai are the content and lattice parameter of an alloy element and aexp is the experimental lattice parameter of the 

alloy). The presence of this Burgers vector component leads to nonconservative elastic shear of dislocation regions. 
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To evaluate solid-solution hardening H of high-entropy alloys, we proposed quite a simple equation 
allowing for the empirical (average) shear modulus and average lattice misfit parameter: 

H = kSSH(a/a)av)Gav,
 (10)

 
where kSSH is the solid-solution hardening coefficient and Gav is the experimental (average) shear modulus. 

Considering Eq. (10), hardness of the high-entropy alloy representing a single-phase substitutional solution 
is described in [55] as 

 H = Hmix + H = Hmix + kSSH(a/a)av)Gav, (11)

where Hmix is the alloy hardness calculated with the mixture rule: Hmix = ciHi (ci and Hi are the content and 

hardness of an alloy element). 
It is shown in [55, 56] that Eq. (10) holds well and kSSH is 1.5–1.6 for the bcc AlTiVCrNbMo alloy, fcc 

CrMnFeCoNi alloy, and several HEAs whose hardness was taken from the papers [53, 58]. 
Analysis of H0 and kH Parameters in Hall–Petch Relation for Single-Phase Multicomponent Alloys. To 

study the hardening of multicomponent solid solutions, including HEAs, it is of interest to analyze variation in the 
yield stress over a wide grain-size range. However, literature analysis has shown that research efforts are 
insufficient in this area and studies in the nanosized range are absent at all. 

According to the paper [59], when the grain size varies from 3.9 to 26.2 µm, hardness of the single-phase 
high-entropy FeCrNiCoMn alloy corresponds to the classical Hall–Petch relation, though it has a relatively high kH 

coefficient: 
H = H0 + kHd–1/2. (12) 

While the upper kH limit corresponds to ~600 MPa · µm–0.5 [60] for fcc metals, kH is 677 MPa · µm–0.5 for 

the above alloy. Therefore, the hardening of the grain boundaries in the FeCoNiCrMn alloy is apparently higher, 
which agrees with the idea of strong lattice distortion in HEAs. As a result, the dislocation line is not straight and 
dislocation slip is more complex than in conventional alloys. 

Nevertheless, according to [61], just increase in the number of doping elements does not always makes the 
material harder. For example, addition of Co to pure Ni or FeNi insignificantly influences the hardening, while 
addition of Cr to NiCo and FeNiCo leads to great hardening. In other words, the nature of the added element is also 
important for hardening the equiatomic alloys. In general, there are the following factors that influence the solid-
solution hardening: atomic size misfit and different elastic moduli of the alloy elements, change in the energy of 
stacking faults, and change in long-range or short-range ordering. 

The paper [61] studied how microhardness HV of Ni and single-phase fcc NiCo, FeNi, NiCoCr, FeNiCo, 
and FeNiCoCr alloys changed with grain sizes varying from 150 to 25 µm. It is shown that Hall–Petch relation (1) 
is fully valid for this size range for the above alloys. The referenced paper also provides the H0 and kH values 

corresponding to Eq. (12) (Table 1). 

 
TABLE 1. Values of the H0 and kH Parameters of Eq. (12), Shear Moduli Gexp [61], and Our Average  

Lattice Misfit Parameter a/aB for Ni and Some Binary and Multicomponent Alloys  

Alloy H0, HV [61] kH, HV · µm–1/2 [61] Gexp, GPa [61] a/aB 

FeNiCoCr 118 165.6 84 0.008486 
FeNiCo 97.3 131.1 60 0.004449 
NiCoCr 146.5 197.3 87 0.010665 
FeNi 104.7 113.4 62 0.006484 
NiCo 62.2 167.1 84 0.00297 
Ni 68.6   34.3 76 0 
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a b 

Fig. 10. Dependence of the H0 (a) and kH (b) [60] parameters included in Eq. (11) on a/aB · G 

 

TABLE 2. FCC Lattice Parameter a for FeNiCoCr Alloy Elements 

Element a, nm 

Fe 0.357 
Ni   0.3524 
Co   0.3545 
Cr 0.362 

 
To process and analyze the results obtained in [61], we calculated the following characteristics: averaged 

lattice parameter of alloy aB = ciai (ai is the fcc lattice parameter of an element) and averaged relative change in 

the alloy lattice parameters (a/aB)av = ci(ai – aB)/aB. The fcc lattice parameter of chromium was determined with 

regard to transformation of its bcc lattice with a = 0.2885 to fcc lattice [62]. The correction factor was the bcc-to-fcc 
ratio for iron in its transition from the bcc to fcc lattice at 1183 K: BCC FCC

Fe Fe/a a = 2.8663/3.57
 
=

 
0.803 [53, 55]. The 

fcc lattice parameters for Cr and Fe, as well as for Ni and Co [62], are provided in Table 2. 
Our analysis shows that there is a linear dependence (Fig. 10) between the H0 and kH parameters obtained 

in [61] and the (a/a)av · G parameter included in Eq. (11) to evaluate solid-solution hardening H for the single-

phase fcc FeNi, NiCoCr, FeNiCo, and FeNiCoCr alloys (NiCo alloy was not considered as it is prone to twinning). 
Noteworthy is also that H0 increases by approximately a factor of two and kH by a factor of four when (a/a)av · G 

changes from ~0.2 to ~0.9. This allows us to assume that there is a specific hardening mechanism peculiar only to 
multicomponent solid solutions. 

Potential Changes in Yield Stress of Multicomponent Solid Solutions in Transition from Micro- to 
Nanostructured State. As is noted, the experimental data on variation in the yield stress in multicomponent solid 
solutions in transition from micro- to nanostructured state are still, unfortunately, missing in the literature. Hence, 
below is an assumption on potential features of this variation based on the above analysis of available data. 

It is apparent that a somewhat different hardening mechanism may act in multicomponent systems 
(containing five or more doping elements) compared to low-doped alloys: even if grain boundaries are not rich in 
one predominant element, microscopic redistribution of different-size atoms forming the grain boundary may occur. 
For example, smaller atoms move to compressed regions and larger atoms to elongated ones, the boundary energy 
decreasing and density equalizing. Slip transfer through these boundaries is significantly hampered and will be 
accompanied by increase in kH.  

It should also be noted that the H0 parameter significantly increases under the abnormal solid-solution 

hardening mechanism. 

GENERALIZED SCHEMATIC DEPENDENCE OF YIELD STRESS ON GRAIN SIZE  
FOR PURE METALS, LOW-DOPED ALLOYS, AND MULTICOMPONENT SOLID SOLUTIONS  

According to the above analysis, a generalized schematic dependence is provided in Fig. 11 for pure 
metals, low-doped alloys, and multicomponent solid solutions to describe variation in the yield stress of polycrystals 
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Fig. 11. Schematic grain-size dependence of yield stress : curve 1) for pure metals; lower bounding 
curve 2 and upper bounding curve 3) for low-doped alloys; and curve 4) for multicomponent solid  

solutions 

in transition from micro- to nanostructured state. The grain refinement in single-component materials (curve 1) to 
below dcr2 involves a noticeable decrease in the yield stress (hardness), i.e., leads to the inverse Hall–Petch effect. 

The 0 and ky parameters (like H0 and kH) remain unchanged. 

Significant hardening or, conversely, substantial softening can be observed in low-doped alloys, where the 
state of grain boundaries is largely determined by the segregation of the doping element along them, depending on 
whether the impurities are ‘useful’ or ‘poor’. Since the 0 and ky parameters (like H0 and kH) may undergo changes, 

Fig. 11 shows two bounding curves (lower curve 2 and upper curve 3), corresponding to their minimum and 
maximum values. 

Concerning multicomponent solid solutions (upper bounding curve 4), they show a specific hardening 
mechanism. The 0 and ky parameters (like H0 and kH) may vary with grain refinement because of microscopic 

redistribution of different-size atoms forming the grain boundaries. 
It should be noted that the maximum possible hardening of multicomponent solid solutions, ranging 

approximately from E/2 to E/30 according to our paper [35], will be ultimately determined (as is the case of low-
doped alloys) by their elastic modulus E. 

CONCLUSIONS 

According to the theoretical analysis, we have proposed a generalized schematic dependence of the yield 
stress of polycrystals on grain sizes, (d), over a wide range, with (d) variation for pure metals (1), low-doped 
alloys (2), and multicomponent solid solutions (3), including high-entropy alloys (HEAs). 

The general shape of the (d) curves and the potential for options (1), (2), and (3) are determined by the 
state of the grain boundaries and the solid solutionactually by the 0 and ky parameters (or H0 and kH) included in 

the Hall–Petch relation (or variant of Hall–Petch equation, H = H0 + kHd–1/2). 

In transition from micro- to nanostructured state, at least three grain-size ranges separated by dcr1 and dcr2 

critical sizes are observed, the grain-size dependence of the yield stress being qualitatively different in each range. 
When grain sizes decrease below dcr1 (even before transfer to nanostructured state), the Hall–Petch 

parameter changes from –1/2 to –1, which is due to the absence of dislocation pile-up inside the grains. This 
transition can be reached formally if the ky coefficient in this equation becomes dependent on the grain size at 

dcr2 < d < dcr1. 

The grain refinement in single-component materials to below dcr2 involves a noticeable decrease in the 

yield stress (hardness), i.e., the inverse Hall–Petch effect. The 0 and ky parameters (or H0 and kH) remain 

unchanged. 
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The state of grain boundaries in low-doped alloys is largely determined by segregation of the doping 
element along them. Significant hardening or, conversely, substantial softening can be observed depending on 
whether the impurity is ‘useful’ or ‘poor’ at grain sizes below dcr2. The 0 and ky parameters (or H0 and kH) may 

undergo changes. The concept of ‘useful’ impurities has been proposed to bring the strength of nanostructured 
materials to the level comparable with the maximum (theoretically) possible one (E/2–E/30). 

A somewhat different hardening mechanism may act in multicomponent systems (containing five or more 
doping elements) compared to low-doped alloys: even if grain boundaries are not rich in one predominant element, 
microscopic redistribution of different-size atoms forming the grain boundary may occur, smaller atoms moving to 
compressed regions and larger atoms to elongated ones. The boundary energy decreases and density equalizes in the 
process. Slip transfer through these boundaries will be significantly hampered and accompanied by increase in ky (kH). 

An important factor for multicomponent solid solutions is that the 0 (H0) parameter significantly increases 

because of abnormal solid-solution hardening. Noteworthy is that the dependence of H0 on the (a/a)av · G 

parameter is linear. The dependence of kH on (a/a)av · G is even stronger: while the H0 parameter increases by 

approximately a factor of two when (a/a)av · G changes from ~0.2 to ~0.9, the kH parameter increases by a factor 

of four. We assume that this is due to a new specific mechanism peculiar to multicomponent solid solutions. 
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