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MECHANICAL PROPERTIES OF POWDER TITANIUM AT DIFFERENT 
PRODUCTION STAGES. I. DENSIFICATION CURVES 
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The mechanical behavior of titanium powder billets at all production stages is examined. The 
dependence of how mechanical properties are formed on the structure is established. The 
compaction of a powder pressed in a rigid die mold, which is the initial stage of the production 
process, is analyzed. The experimental dependence of the compacting force on porosity is examined. 
The results are compared with theoretical data available. 
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INTRODUCTION  

Titanium is one of the most popular metals since it has many advantages over other metals because, first of 
all, it combines a small weight and high strength. Titanium metallurgy in general and titanium powder metallurgy in 
particular are quite difficult as titanium has a great affinity for oxygen. That is why ways to improve the titanium 
and titanium alloy production process have been sought for many years. There are adequate data on powder 
metallurgy methods to make titanium products [1], but there has hardly been comprehensive research into the 
evolution of the structure and properties of titanium billets at all production stages. This cycle of publications 
proposes analyzing the mechanical behavior of powder titanium billets at all production stages and associates 
mechanical properties with structural evolution. 

This paper examines the first stage of making a powder product: densification in a rigid die mold. Relating 
the compaction pressure to porosity is very important both for powder metallurgy theory and actual production of 
powder parts with preset properties.  

There are a lot of publications that analyze the densification and propose analytical connection between the 
compaction force and porosity. These publications are either of formal phenomenological nature (e.g., the theory of 
Bal’shin and his followers [2–4]) or are based on the analysis of physical processes that occur in solids when 
deformed [5–7]. The authors of these publications note, as a rule, that densification proceeds in stages. Practically 
strain-free motion of particles prevails at the first stages, the near-surface areas of the powder particles become 
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Fig. 1. Titanium powder of fine (a) and coarse (b) fractions 

deformed when pressure increases, and plastic deformation occurs in the volume of particles in further 
densification. 

It is plastic deformation of powder particles that is paid special attention in this paper. The point is that 
most publications do not allow for the mechanisms of solid-phase hardening, which predetermine the 
compressibility along with the evolution of pore morphology. The authors have gained wide experience in 
examining the densification of commercially pure recrystallized and deformed titanium [8, 9], which permits a 
deeper insight into the densification of powder titanium billets.  

MATERIALS AND PROCEDURE 

In this paper, as well as in all subsequent papers of this cycle, titanium powder of PTÉS grade was used to 
produce samples. The powder was bolted into the following fractions: –063; –063+05; –05+0315; –0315+02;                 
–02+01. Table 1 summarizes the properties of the initial powders. Figure 1 shows fine and coarse powder fractions 
to give an idea of the initial particle shape. 

 
TABLE 1. Properties of Initial Titanium Powders 

Density, g/cm3 
Fraction 

Bulk Compacted 
Hausner factor I = ρc/ρb Yield, sec 

–063 1.34 1.68 1.25 30.9 
–063+05 1.32 1.58 1.20 36.5 
–05+0315 1.31 1.63 1.24 33.3 
–0315+02 1.32 1.63 1.23 30.0 
–02+01 1.24 1.58 1.28 29.8 

 
TABLE 2. Porosity of Samples Depending on Compressibility of Titanium Powder of Different Fractions  

Fraction 
P, MPa 

–063 –063+05 –05+0315 –0315+02 –02+01 

100 41.19 39.95 40.34 40.35 42.23 
200 31.00 29.94 30.17 29.09 33.22 
400 20.31 19.10 19.77 18.24 22.12 
600 14.21 14.26 14.10 14.51 15.60 
800 10.25 9.89 9.87 10.60 11.72 
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Fig. 2. Densification curves of powder titanium: 1) T1 [7, 16], 2) T2 [11], 3) experimental results 

Fig. 3. Yield stress as a function of titanium strain: the dots stand for experimental values and the 
curve for values fitted by Eq. (1) 

Samples of two types were made of each powder fraction by cold double-action pressing for mechanical 
tests: cylinders 9.6–14.7 mm in height and 11 mm in diameter for Brazilian test and uniaxial compression; 
parallelepipeds 5 × 7 × 45 mm for four-point bending tests. Compaction stress was recorded during pressing, and 
the porosity of the samples was measured after that. 

Table 2 summarizes these parameters for the cylindrical compacts. The values of porosity are averaged for 
10 samples compacted under the same pressure. The porosity of the compacts somewhat increases with decreasing 
powder particle sizes (Table 2). 

EXPERIMENTAL RESULTS 

This paper is concerned with densification curves plotted in stress σ–porosity θ coordinates (Fig. 2) and 
analytical description of this dependence. 

A densification curve for compacted material can be regarded as a variety of a strain-hardening curve. As 
different from compact material, the strain coordinate is associated with changes in porosity since deformation is 
due to changes in volume, but not changes in shape. The stress coordinate (as in the case of compact material) 
characterizes the stress needed for solid-phase flow. For a porous body, this stress is determined by the presence of 
pores, which govern the distribution of stresses. It is obvious that deforming stress in compact material needs to be 
adequate to overcome the resistance from all structural elements with moving dislocations. 

To determine how the yield stress depends on the strain in deformed titanium, we conducted a series of 
additional experiments on VT1-0 compact titanium samples that had been deformed to reach different strains. We 
examined the hardening parameters in the compression of titanium deformed by rolling to strain e = 0.2–1.7 in three 
mutually perpendicular directions denoted by X, Y, and Z (Table 3).  

We used the values of yield stress averaged for the three directions to plot a strain-hardening curve for 
titanium (Fig. 3). According to the hardening theory proposed by Ludwig, this curve is described by the exponential 
function σy = σ0 + Ken, where σ0 is the yield stress of undeformed material; K is hardening factor; and n is strain-

hardening index. 
The experimental dependence of deforming stress on strain is well fitted by the following expression: 

σy = σ0 + Ke0.7, (1) 

where σ0 = 270 MPa; K = 380 MPa.  

Assuming that powder-phase deformation to the equivalent strain (calculated through changes in density) 
needs the same force as compact material does, we can regard the curve in Fig. 3 as the basis for plotting the 
densification curve. 
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TABLE 3. Hardening Parameters of Predeformed Titanium Tested by Uniaxial Compression  

Stress σy, MPa, at strain e 
Deformation direction 

0 0.18 0.36 0.5 0.7 1.0 1.25 1.7 

σy (X) 270 418 565 570 640 615 607 705 

σy (Y) 270 395 647 630 620 655 705 700 

σy (Z) 270 470 595 610 573 730 760 860 

 
The equivalent strain in the densification of a porous body was calculated in many papers [10–17]. The 

equivalent strain–porosity expressions fundamentally differ from various loading patterns [15–17]. We potted the 
densification curve using the model proposed in [11], which is most close to the densification in a die mold. In this 
case, the stress tensor is calculated as follows: 
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where θ and θ0 are current and initial porosities, respectively. In the case in question, θ0 is the ultimate porosity of 

the compact associated with its bulk density with the following relation: θ0 = (ρ – ρc)/ρ. 

We solve Eqs. (1)–(3), simultaneously to plot the densification curve T2 (Fig. 2). This dependence agrees 
well with the experimental results for low and medium porosity, but gives underestimated values for high porosity. 
We think that this deviation from the experimental results is due to changes in the stress-strain state of the compact.  

Based on our experimental data [7] and Koval’chenko’s calculations [19, 20], the effective Poisson ratio in 
uniaxial loading tends to zero at a porosity of about 30%. Therefore, there is no lateral pressure on the compact 
from the die mold at high porosity because of small transverse strain, and the sample is pressed in conditions that 
correspond to uniaxial compression. 

According to [7], we can calculate the stress developed in a porous sample in this case using the similarity 
principle for densification curves, which states that the yield stresses of compact and porous materials are in the 
same ratio as their elastic moduli are. The relation of yield stress on porosity is expressed by the following 
exponential function [21]:  

σy(θ) = σy
c(1 – θ/θ0)1.65, (4) 

which represents the modified Bal’shin equation considering that the ultimate porosity θ0 of the compact 

corresponds to its bulk density. (Here σy
c is the yield stress of the solid phase.) 

If transverse sizes of the sample remain unchanged (the efficient Poisson ratio being ν = 0), the strain of 
high-porous materials is associated with their porosity with the following relation [22, 23]: 

e = (θ0 – θ)/(1 – θ). (5) 

If the Poisson ratio is negative in the deformation of high-porous materials [19], the relation between their 
porosity and strain is described by the expression for triaxial compression: 

e = 4/3[(θ0)1/2 – (θ)1/2]. (6) 

Note that Eqs. (5) and (6) give close values of strain over the entire porosity range. Solving Eqs. (1), (4), 
and (6) simultaneously, we obtain the densification curve denoted by T1 in Fig. 2. Comparing the theory and 
experiment shows that the calculated compaction stress at high porosity agrees well with the experimented data. 
With increasing density of the compact, the experimental data become somewhat higher that the calculated ones  
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Fig. 4. Hardness as a function of indentation depth hc in continuous-indentation experiments 

since the proposed procedure to plot a densification curve accounts only for the stresses developed in the solid 
phase and ignores the lateral pressure from the die mold. 

Hence, in denser states, when the lateral pressure from the die mold additionally contributes to hardening, 
the densification curve is more accurately described by the model proposed in [11]. In the densification of high-
porous materials, when the transverse sizes of the compact remain practically unchanged, the other calculation 
procedure provides more accurate results. 

DISCUSSION OF RESULTS 

The proposed approach to plotting the densification curve assumes that the densification parameters for 
deformed compact material and the powder phase of porous material compacted to the same equivalent strain 
should be similar. To verify this assumption, we compared the yield stress of deformed compact material with the 
hardness of individual powder particles, Hμ. According to the theory that associates yield stress with hardness, the 

relation Hμ/3 = σy applies well to deformed materials [24–26]. 

Figure 4 shows hardness curves for deformed powder particles across the depth of indentation when 
hardness is measured by continuous-indentation method. The experimental results summarized in Table 4 indicate 
that the Hμ/3 values for the central part of a powder particle are practically the same as σy of the compact sample 

deformed to the same equivalent strain. The form of the hardness–indentation depth dependence indicates that strain 
is distributed more uniformly over a powder particle in denser compacts than in porous ones in which it is mainly 
concentrated in near-surface layers. Hence, the hardness of high-porous compacts changes from the surface deep 
into the powder particle (Fig. 4, curves 2, 3). Therefore, comparing the densification parameters for the solid phase 
of compacts with the properties of deformed titanium shows good agreement between theory and experiment.  

Note that, in the proposed densification curve analysis, the deforming stress of the solid phase reached in 
the compact at a given strain is determined from independent experiment performed on compact samples deformed 

 
TABLE 4. Yield Stress of Deformed Titanium and Hardness of Powder Particles after Pressing  

Compact porosity, % eeq σy, MPa Hμ, MPa Hμ/σy 

40.28 0.281 495 1000 2.02 
30.62 0.377 582 1600 2.74 
20.03 0.525 619 1700 2.75 
  9.95 0.714 630 1950 3.09 
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Fig. 5. Hardening curves for titanium samples: 1) deformed state (e = 0.7); 2) compact with 20% 
initial porosity  

to different strains. The papers that focus on the densification of brittle loose media [12] and plastic powder metals 
[13] often use results from uniaxial compression tests of densified compacts to calculate the deforming stress. It is 
assumed in these cases that the fracture stress [14] or yield stress [15] of the compact being compressed correlates 
with the stresses developed in material being densified. 

The difference in the mechanical behavior of deformed compact titanium tested by uniaxial compression 
and of the compact deformed to the same strain is revealed when the strain-hardening curves of these materials are 
analyzed. Figure 5 represents curve 2 showing the hardening of the compact densified to a porosity of 20%, which 
corresponds, according to Eq. (3), to equivalent strain e = 0.7, and curve 1 showing the strain hardening of compact 
titanium pre-deformed to e = 0.7, which (to account for the effect of porosity on hardening) has been normalized to 
the coefficient derived from Eq. (4) for a porosity of 20%. While deformed titanium has very low hardening 
parameters because of the features of dislocation structure that we described in [8], the green compact deformed to 
the same equivalent strain has much lower yield stress and densifies much faster. The high densification parameters 
of the compact are most likely associated with the evolution of pore space, but not with special mechanisms by 
which the solid phase of the compact hardens. The pore morphology formed in pressing is noticeably distorted 
when the sample is unloaded due to elastic after-effect. When the sample is repeatedly loaded, plastic strain is not 
uniform on different surfaces. This process turns to be “smeared out” by strain, which decreases the effective yield 
stress, on the one hand, and increases the effective hardening parameters, on the other. 

The densification curves resulting from uniaxial compression tests of porous compacts do not agree so well 
with the experimental data. In particular, the yield stress of the green compact is several times lower than the 
pressing stress over the entire porosity range of interest. The fracture stress of high-porous compacts is also 
substantially lower than the pressing stress, and compacts with a porosity lower than 20% don not break in 
compression at all.  

Therefore, the results show that the stresses developed in situ in the compact when densified and post 
factum when repeatedly loaded (e.g., by uniaxial compression) substantially differ because the pore space of the 
compact evolve in response to elastic after-effect. 

CONCLUSIONS 

A densification curve for commercially pure powder titanium has been plotted experimentally and 
theoretically with account of the solid-phase densification and pore-space evolution. The theory and experiment are 
in good agreement. 

In the densification of high-porous materials, when the transverse sizes of the compact remain practically 
unchanged, calculation with the model [7] is more accurate. In denser states, when lateral pressure from the die 



 412

mold additionally contributes to hardening, the densification curve is more accurately described with the model 
proposed in [11]. 

The continuous-indentation method is used to analyze how hardness changes across the depth of powder 
particles in compacts with different porosity. It is established that strain is distributed more uniformly across the 
powder particle in dense compacts than in porous ones in which it is mainly concentrated in near-surface layers. 
Hence, hardness abruptly changes from the surface deep into the powder particles in high-porous compacts. 

Comparing the hardening curves for compact deformed titanium and a compact deformed to the same 
equivalent strain shows that the compact has much lower yield stress but much higher hardening coefficient. This is 
attributed to the evolution of the pore space when the compact is repeatedly loaded. 
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