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The cohesive energy of transition metals and its contributions related to the s- and d-electrons are 
calculated. The correlation of interatomic bonding strength, molar volume, and compressibility of 
transition metals with cohesion energy and corresponding contributions to it is shown. It is demonstrated 
that the s-electrons play an important part in the cohesion of transition metals. The main contributions to 
the formation energy of disordered alloys of copper with transition metals are calculated using the tight-
binding approach. The results obtained are in qualitative agreement with experimental data on the 
thermodynamic properties of Cu–3d-metal systems. 

Keywords: cohesive energy, tight-binding approach, transition metals, copper-based alloys, formation 
enthalpy of alloy. 

In condensed state, atoms are held together by cohesive forces, which are the total forces exerted by an atom on 
its nearest neighbors. In most cases, it is very difficult to measure these forces because ultimate strength and elastic limit 
depend on the imperfection of samples in mechanical tests. Therefore, various physical properties associated with the 
cohesive forces and characterizing, in a way, the strength of interatomic bonds in a crystal are used as measures of these 
forces among atoms in a crystal lattice. These characteristics include various thermodynamic, elastic, and thermal 
constants of which the most important are sublimation heat, atomization energy, melting point, elastic modulus, Debye 
characteristic temperature, and thermal expansion coefficients [1]. 

Since elucidating the physical and chemical nature of interatomic interaction and cohesive forces in transition 
metals and their alloys is of great importance for developing the theory of condensed phases and modern physical 
metallurgy, it appears expedient to try to asses their cohesive energy within the available chemical binding models. 

COHESIVE ENERGY AND PROPERTIES OF TRANSITION METALS 

It was shown in [2−4] that the cohesive energy of transition metals is high due to the band energy of d-electrons 
and that the change of the energy along transition series may be associated with increased filling of the d-band. 
According to [2, 4, 5], the tight-binding model uses simple summation of one-electron cohesive energies to calculate the 
cohesive energy of a transition metal due to overlapping of d-electrons: 
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where Ed is the cohesive energy due to d-electrons; Ef is the Fermi energy reckoned from the conduction-band bottom; 

Ed is the energy of the atomic d-level spreading into a band of finite width Wd; Bd is the energy of the d-band bottom; and 

nd(E) is the density of electron states in the d-band. 

Thus, to calculate the cohesive energy of transition metals and their alloys, it is necessary to know the density 
of electronic states nd(E) in the d-band. In the general case, the function nd(E) has a complicated form (there are minima  
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Fig. 1. Density of electron states of transition metals according to the Friedel model [7] 

 

TABLE 1. Parameters of Band and Atomic Structure of Transition Metals [6] 

Me Wesc, eV Wd, eV Ed, eV Nd Ns r0, Å Rd, Å 

Sc 3.15 5.13 7.05 2.54 0.46 1.81 1.24 
Ti 3.95 6.08 7.76 3.42 0.58 1.61 1.08 
V 4.12 6.77 8.13 4.31 0.69 1.49 0.98 
Cr 4.58 6.56 8.01 5.24 0.76 1.42 0.90 
Mn 3.83 5.60 7.91 6.18 0.82 1.43 0.86 
Fe 4.31 4.86 7.64 7.16 0.84 1.41 0.80 
Co 4.41 4.35 7.36 8.16 0.84 1.39 0.76 
Ni 4.50 3.78 6.91 9.19 0.81 1.38 0.71 
Cu 4.40 2.80 5.90 10.0 1.00 1.41 0.67 
Zn 4.24 – – – 2 1.52 – 
Y 3.30 6.59 6.75 2.61 0.39 1.99 1.58 
Zr 3.90 8.37 7.17 3.53 0.47 1.77 1.41 
Nb 3.99 9.72 7.29 4.43 0.57 1.62 1.28 
Mo 4.30 9.98 7.12 5.33 0.67 1.55 1.20 
Tc 4.60 9.42 6.67 6.28 0.72 1.50 1.11 
Ru 4.60 8.44 6.02 7.27 0.73 1.48 1.05 
Rh 4.75 6.89 5.08 8.34 0.66 1.49 0.99 
Pd 4.80 5.40 4.52 9.41 0.59 1.52 0.94 
Ag 4.39 3.63 2.49 10.0 1.00 1.59 0.89 
Cd 4.10 – – – 2 1.71 – 
La 3.30 6.78 4.69 2.50 0.50 2.07 1.59 
Hf 3.53 9.56 9.12 3.33 0.67 1.75 1.44 
Ta 4.12 11.12 9.50 4.18 0.82 1.62 1.34 
W 4.54 11.44 9.45 5.04 0.96 1.56 1.27 
Re 5.00 11.02 8.99 5.96 1.04 1.52 1.20 
Os 4.70 10.31 8.38 6.91 1.09 1.49 1.13 
Ir 4.70 8.71 7.35 7.98 1.02 1.50 1.08 
Pt 5.32 7.00 6.51 9.06 0.94 1.53 1.04 
Au 4.30 5.28 5.18 10 1 1.59 1.01 
Hg 4.52 – – – 2 1.78 – 

and maxima), which primarily depends on the d-metal structure [6]. The complicated form of this function in the d-band 
can be modeled by constant density of states. Such a model was proposed by Friedel [7] where the density of states 
consists of (i) the density of d-type states located near the d-level energy Ed and being constant in a band of width Wd  
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Fig. 2. Cohesive energy of transition metals and its s- and d-band components 

 

corresponding to ten d-electrons per atom (Fig. 1) and (ii) the density of s-type states ns(E). The conduction-electron 

contribution to the cohesive energy can be calculated as follows [6]: 

Es ∫=
f
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s dEEEn , (2) 

where Es is the s-electron contribution to the cohesive energy, and ns(E) is the density of electron states in the 

conduction band, which can be found using the free-electron approximation [6]: 
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where r0 is the atomic radius; rd is the d-state radius; me is the electron mass; h  is the Plank constant; and R is a 

parameter characterizing the density of states in the conduction band. 
All the parameters needed to calculate the density of electronic states in the Friedel model (atomic radius r0, d-

state radius rd, d-band width Wd, the number of s- and d-electrons Ns and Nd (Table 1)) are taken from [6], where these 

parameters were calculated and tabulated for all elements of the Periodic table using a single approach. This is why 
these parameters stand out among those obtained by fitting random experimental data and allow us to understand the 
basic laws governing the change of the electronic structure during transition from one metal to another. 

Using the adopted form of the density of electronic states, we have calculated the cohesive energy of d-band, 
Ed, and s-band, Es, and the total cohesive energy of transition metals, Ecoh. The calculated results are presented in Fig. 2 

and Table 2 whence it follows that the cohesive energy Ecoh of transition metals exhibits extreme behavior and has a 
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minimum, while the cohesive force peaks for chrome, molybdenum, and tungsten. The minima of the cohesive energy 
of these metals are associated with the maximum negative contribution of Ed for each of them in the corresponding 

transition row. According to Eq. (1), such values of Ed are due to the fact that the d-bands of chrome, molybdenum, and 

tungsten are almost half-complete. Figure 2 suggests that the term Ed has a considerable contribution to the total 

cohesive energy Ecoh for the majority of transition metals. In each of the transitive rows, Ed decreases for metals of the 

eighth group and reaches zero for noble metals. 
The contribution of s-electrons, Es, to the total cohesive energy Ecoh is considerable and, for noble metals, is a 

unique source of cohesive force (Table 2). Figure 2 indicates that Es varies nonmonotonically within the transition rows. 

It is minimum in absolute magnitude for the metals at the beginning of the transition row and increases to the end of the 
row, peaking for cobalt, ruthenium, and osmium. These values are due to the competition of two parameters determining 
the cohesive energy of the conduction band: the number of s-electrons Ns filling it and the parameter r0 related to its 

depth Bs. 

Cohesive energy and bond strength in crystals play a paramount role for the melting process in which the 
cohesive forces holding atoms in a crystal lattice must be overcome [8]. It is important that the role of the cohesive 
energy is most significant at high temperatures close to the melting points because the effect of defects in the crystal 
lattice on crystal strength considerably weakens under such conditions. That the melting process and the cohesive force 
are related is evidenced by a clear correlation between the melting point of transition metals Tmelt [9] and the calculated 

values of cohesive energy (Fig. 3a). An important characteristic of the strength of interatomic bonds is the sublimation 
heat ΔHsubl, which is equal to the energy needed to transform one mole of solid substance into vapor consisting of neutral 

 
TABLE 2. Cohesive Energy of Transition Metals and Its s- and d-Band Components  

Me Es, kJ/mole Ed, kJ/mole Ecoh, kJ/mole 

Sc –154 –468 –622 
Ti –228 –659 –887 
V –306 –800 –1106 
Cr –359 –788 –1147 
Mn –406 –637 –1043 
Fe –422 –476 –898 
Co –424 –315 –739 
Ni –398 –136 –534 
Cu –422 0 –422 
Y –117 –612 –729 
Zr –161 –921 –1082 
Nb –222 –1156 –1378 
Mo –289 –1197 –1486 
Tc –328 –1060 –1388 
Ru –335 –807 –1142 
Rh –282 –460 –742 
Pd –235 –144 –379 
Ag –249 0 –249 
La –87 –613 –700 
Hf –291 –1023 –1314 
Ta –407 –1303 –1710 
W –527 –1378 –1905 
Re –604 –1278 –1882 
Os –652 –1061 –1713 
Ir –587 –676 –1263 
Pt –508 –287 –795 
Au –452 0 –452 
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Fig. 3. Dependence of the properties of transition metals on the cohesive energy Ecoh and the s-electron 

contribution Es to it: a) Tmelt on Ecoh; b) ΔHsubl on Ecoh; c) α on Ecoh; d) Vm on Es; e) β on Es; the equations  

of fitting curves are given together with coefficients of correlation 
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atoms. Figure 3b shows the standard sublimation heats of transition metals [10] as functions of the cohesive energy. It 
should be noted that the strong correlation between these quantities allows us to consider the cohesive energy as a 
physical constant characterizing the strength of cohesive forces in metal. 

Of the other characteristics dependent on the cohesive force and interatomic bond strength, we now consider the 
thermal expansion coefficient, which may be regarded as a measure of strength in the sense that the less this coefficient, 
the higher the resistance to the increase in the amplitude of thermal vibrations accompanying rise in temperature. In this 
case, the linear thermal expansion coefficient should be inversely proportional to the cohesive energy. Figure 3c shows 
how the linear thermal expansion coefficient α [11] depends on the cohesive energy. One might expect that the atomic 
mean-square displacements during thermal vibrations, as a characteristic of lattice strength, depend on the cohesive 
energy in a similar fashion. 

One of the challenges attacked by solid-state physics is to establish the volume–energy relationship needed to 
calculate the equilibrium values of density, interatomic distances, and mole volumes. It should be noted that the roles of 
the s- and d-electrons are in direct opposition to each other. The band width Wd and, hence, the contribution of the d-

electrons to the cohesive energy are strongly (as r–5) dependent on the interatomic distance; therefore, the equilibrium 
volume appears much smaller than that obtained neglecting the effect the d-electrons [6]. Thus, transition metals are 
distinguished by strong compression of the s-states by the cohesive forces exerted by the d-electrons so that the s-
electrons give one of the major contributions to the pressure, thus counterbalancing the attraction of the d-electrons [12]. 
Therefore, it is expedient to search for the relationship of the elastic constants and equilibrium mole volumes of 
transition metals with the contribution Es of conduction electrons to the cohesive energy. Figure 3d shows the mole 

volume Vm of transition metals [11] as a function of Es. By the behavior of this dependence, there are two groups of 

transition metals. The mole volumes of the 3d- and 4d-transition metals can be related to Es by the equation presented in 

Fig. 3d. Such values of Es correspond to greater mole volumes of 5d-transition metals, which may be attributed to the 

fact that 4f-electron shells take part in the formation of atomic volumes in the metals of the fifth period. There is also 
stable correlation between the compressibility coefficient β [11] of transition metals and the s-electron contribution to 
the cohesive energy (Fig. 3e). 

As for the properties of transition metals associated with the interatomic interaction in crystals, it should be 
pointed out that they are strongly correlated with the cohesive energy. After the above analysis, we can conclude that 
within a period the interatomic interaction, strength, and creep-resistance of d-metals increase in passing from the third 
to fifth group and then decrease in passing noble metals. This means that there is a certain pattern in how d-shells are 
filled as the atomic number increases, which results in extreme behavior of Ed within a period. In passing (within one 

group) from the third to the fifth period, the cohesive energy increases, which is consistent with the observed tendency 
to increase in their refractoriness and strength of interatomic bonds and may again be associated with the structure of the 
d-bands, namely, with their width. 

It should be noted that Ed plays a decisive, but not unique (as pointed out in [2, 3]) role in the formation of the 

cohesive force. An analysis shows that each of the above quantities has stronger correlation with the cohesive energy 
Ecoh in comparison with Ed. Hence, the effect of the s-electrons should be taken into account as a factor affecting the 

strength of transition metals. While the strength of interatomic bonds is determined by the joint contribution of the s- 
and d-electrons, the contribution of the s-electrons to the mole volume and compressibility is predominant. 

COHESIVE ENERGY OF TRANSITION METALS ALLOY AND BEHAVIOR  
OF ALLOY FORMATION ENERGY  

The contribution of electron transfer during alloying to the alloy formation energy can be calculated in the 
Hartree–Fock approximation as the difference between the cohesive energies of alloy A–B and its components A and 
B [2]: 

=Δ 1H  E
all
coh  – xAE

A
coh  – xBE

B
coh , (4) 

where ΔH1 is the contribution to the enthalpy of formation of the alloy A–B; xi are the mole fractions of the alloy 

components; and E all
coh , E A

coh , E B
coh  are the cohesive energies of the alloy and its components. 
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Fig. 4. Density of electron states of pure components and equiatomic alloy: the electron-band parameters 
of the components remain the same in the alloy 

In [4, 5, 13, 14], the contribution Ed was considered unique in calculating the heat of formation of disordered 

alloys of transition metals. The participation of the s-electrons in the formation of cohesion was not disregarded. 
However, the contribution of the s-electrons to Ecoh calculated in the first part of the present paper indicate that both 

contributions Ed and Es to the cohesive energies of the components and to the cohesive energy of the alloy should be 

accounted for in calculating the contribution ΔH1 to the enthalpy of formation of the alloy, according to Eq. (4). In 

calculating the cohesive energy of the alloy, an important problem is to model the density of electronic states of the 
alloy. One of the goals set here is to calculate the density of electronic states of an alloy from the electron-band 
parameters of its components. 

Let us examine an alloy band formation scenario in which the densities of electronic states due to the pure 
components are constant before and after alloy formation. This scenario is illustrated in Fig. 4. The form of density of 
electronic states of the alloy can be calculated from those of pure metals: 

)()()( BBAAall EnxEnxEn += . (5) 
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In calculating the cohesive energies of metals and alloys, the values of the energy E should be reckoned from 
one level, say, electron energy in vacuum, which is convenient. Then the cohesive energy can be calculated from the 
following formulas. 

For the pure component A — 
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where W A
d  is the width of the d-band of the metal A; E A

d  is the energy of the d-level of the metal A; E A
f  is the Fermi 

energy of the metal A reckoned from the conduction-band bottom; W A
esc  is the electronic work function of the metal A; 

RA is a parameter characterizing the density of electron states in the conduction band of the metal A; n A
d  is the density 

of electron states in the d-band of the transition metal A; and B A
s  is the energy of the conduction-band bottom of the 

metal A. 
For the pure component B — 
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where B
dW  is the width of the d-band of the metal B; B

dE  is the energy of the d-level of the metal B; E B
f  is the Fermi 

energy of the metal A reckoned from the conduction-band bottom B
sB ; W B

esc  is the electronic work function of the 

metal B; RB is a parameter characterizing the density of electron states in the conduction band of the metal B; and B
dn  is 

the density of electron states in the d-band of the transition metal B. 
For the component A in alloy — 
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where W all
esc  is the electronic work function of the alloy A–B, and E all

f  is the Fermi energy of the alloy A–B reckoned 

from the conduction-band bottom.  
For the component B in alloy — 
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The Fermi energy of the alloy A–B E all
f  can be calculated from the normalization condition for the functions 

ns(E) and nd(E): 

=+++ )()( B
d

B
sB

AA
A NNxNNx ds ∑ ∫ ∫

= ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

BA,

all
f

all
f

)()(
i i

s
i
d

E

B

E

B

i
d

i
s dEEndEEn , (10)

where A
sN , A

dN , B
sN , and B

dN  are the number of s- and d-electrons in the pure components A and B, respectively. 

Then resultant expression for the contribution ΔH1 due to electron transfer during alloy formation becomes 

ΔH1 = xA(E all A,
coh – E A

coh ) + xB(E all B,
coh – E B

coh ). (11) 
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Fig. 5.  First mixing enthalpy of 3d-metals ∞Δ MeH (kJ/mole) in liquid Cu–3d-metal alloys  as a function of the atomic 

number of the 3d-metal 

Fig. 6. First mixing enthalpy (kJ/mole) of 3d-metals and cuprum calculated by formula (5) 

The other contribution to the enthalpy of alloy formation is due to the difference between the d-band widths of 
the pure metals [2]: 

⎟
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This contribution is always positive, and its concentration dependence is symmetric about the equiatomic composition. 
When the widths of the d-bands of the component metals are equal, this contribution tends to zero. 

The contributions ΔH1 and ΔH2 can be used to calculate the mixing enthalpy of the components: 

ΔH = ΔH1 + ΔH2. 

Whether the above considerations are correct can be checked in calculating the state variables of the formation 
of disordered alloys of transition metals, such as mixing enthalpies of liquid alloys. The modern literature provides 
detailed experimental data on ΔH of liquid Cu−3d-metal alloys. The thermodynamic properties of liquid binary alloys of 
copper and 3d-metals depend in a complicated manner on the position of the components in the Periodic Table [15]. 
Figure 5 shows the first mixing enthalpies of 3d-metals and copper. The negative deviations from ideality in Cu−Sc and 
Cu−Ti melts, which are indicative of preferential interaction of unlike atoms, are succeeded by positive deviations from 
ideality in the Cu−V and Cu−Cr systems, which are indicative of the intensive interaction of like atoms. In Cu−Mn 
melts, the interparticle interaction of unlike atoms is more intensive, which results in sign-variable concentration 
dependence of excess thermodynamic functions of mixing. In going to Cu−Fe melts, the interaction of like atoms 
intensifies, resulting in positive deviations of the thermodynamic properties from ideality. In Cu−Fe → Cu−Co → 
Cu−Ni, the interaction of like atoms in melt is weaker, since the positive deviations of the thermodynamic functions of 
mixing from ideality decrease and then become negative for the Cu−Zn system. 

An analysis shows that it is possible to qualitatively interpret the above behavior of the mixing enthalpy of 
Cu−3d-metal melts. Figure 6 demonstrates the first mixing enthalpy of 3d-metals and copper. Comparing these 
calculated data with the experimental values in Fig. 5, we can conclude that the above procedure makes it possible to 
interpret qualitatively the exothermic mixing enthalpies of copper with scandium and titanium as well as the positive 
mixing enthalpies of vanadium and chrome, the exothermicity of the first mixing enthalpy of manganese, and the 
decrease in the first mixing enthalpies for elements of the row from iron to zinc. 
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Table 3 summarizes the calculated contributions ∞Δ 1H  and ∞Δ 2H  as well as the calculated first mixing 

enthalpies of the components, ∞Δ MeH . That the calculated first mixing enthalpy in some cases differs by several times in 

absolute magnitude from the experimental values should not be seen as a bad result. First, the calculations have been 
conducted ab initio, and none of the contributions was somehow normalized or adjusted. Second, the calculated mixing 

TABLE 3. First Mixing Enthalpy of d-Metals and Cuprum and Its Contributions Calculated by Formula (5) 

Me ∞Δ 1H , kJ/mole ∞Δ 2H , kJ/mole ∞Δ MeH , kJ/mole 

Sc –1205 211 –994 
Ti –407 352 –55 
V –247 464 217 
Cr –40 447 407 
Mn –685 315 –370 
Fe –132 200 68 
Co 0 111 111 
Ni 5 35 40 
Zn 11 0 11 
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Fig. 8. Density of electron states of pure components and alloy with equiatomic composition: the electron-

band parameters of the alloy differ from those of its components 

enthalpies have been found as the difference between large numbers, which always has an adverse effect in calculations. 
Third, the calculations allow us to reproduce not only the variation of the properties of a number of systems as a whole, 
but also correctly reproduce the concentration dependence of the mixing enthalpy for Cu−V, Cu−Cr, Cu−Mn, Cu−Fe, 
Cu−Co, and Cu−Ni alloys (Fig. 7). As follows from the figure, the positive mixing enthalpy in the Cu−V and Cu−Cr 
systems is due primarily to the large positive contribution ΔH2 associated with the considerable difference of Wd of the 

components. In contrast, the contribution ΔH1 appears small because the transition of electrons from the energy levels of 

vanadium or chrome to those of copper leads to decrease in Nd at the levels of vanadium and chrome in the alloy and, 

hence, to decrease in the terms E all V,
coh and E all Cr,

coh . The sign-variable mixing enthalpy of the Cu−Mn system can be 

attributed to the competition of ΔH1 and ΔH2 different in sign, but comparable in absolute magnitude. In the Cu−Fe, 

Cu−Co, and Cu−Ni systems, positive mixing enthalpies are associated with the contribution ΔH2, while the contribution 

ΔH1 decreases in absolute magnitude. 

The above approach failed to reproduce the concentration dependence of the mixing enthalpy for the Cu−Sc and 
Cu−Ti systems. For the Cu−Sc system, formula (5) yields negative mixing enthalpy over the entire range of structures, 
but the minimum shifts toward copper-rich alloys. For the Cu−Ti system, the mixing enthalpy appears positive for 
titanium-rich alloys. An analysis of Table 1 reveals a considerable difference of the electronic work functions and the 
widths of the d-bands of the components of the Cu−Sc and Cu−Ti systems. With such a combination of the electron-
band parameters of the components, formula (5) used to calculate the density of electronic states of alloys may not 
account for features of interaction in the system. In this connection, we analyzed another scenario in which the electron-
band parameters of the alloy differ from those of the pure component metals. 

One of the possibilities is to find the electron-band parameters of an alloy from those of the pure metals by 
using an additive model (Fig. 8) in which the density of electron states in an alloy is calculated as 

)()()( allallall EnEnEn ds += , (13) 
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Fig. 9. Theoretical concentration dependence of the mixing enthalpies (kJ/mole) of binary alloys of 
cuprum with scandium and titanium: solid line denotes ΔH, dashed line denotes ΔH1, dash-and-dot 

line denotes ΔH2, solid heavy line — ΔHexp according to the reference 

where 

ERxRxEns )()( B
B

A
A

all ⋅+⋅=  (14) 

is the density of states of conduction electrons in the alloy; AR  and BR  are parameters defining the form of the density 
functions for electron states in the conduction bands of the alloy components;  

[ ]B
B

A
A

all 10/)( ddd WxWxEn +=  (15) 

is the density of states in the d-band of the alloy. The energy of the atomic d-level of the alloy is defined by 

B
B

A
A

all
ddd ExExE += . (16) 

The Fermi energy can be calculated from the normalization condition  
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The energy of the conduction-band bottom of the alloy can also be calculated by the additive model: 
B
sB

A
sA

all
s BxBxB += . (18) 

In this case, the cohesive energy of the alloy can be calculated as 
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(19) 

The contributions ΔH1 and ΔH2 to the mixing enthalpy of the alloy have been calculated using formulas (4) and 

(12), respectively. The use of the second scenario to calculate the first mixing enthalpies of 3d-metals with copper 
shows that this model gives a worse fit to the experimental behavior values for a number of systems. At the same time, 
the first mixing enthalpy (−500 kJ/mole) of scandium appears closer to the experimental value. Moreover, such an 
analysis makes it possible to correctly interpret the concentration dependence of integral mixing enthalpy for the Cu−Sc 
and Cu−Ti systems (Fig. 9). The calculated minimum of ΔH shifts toward titanium-rich alloys for the Cu−Ti system and 
toward the equiatomic composition for the Cu−Sc system. According to the calculations, the exothermic mixing 
enthalpies in these systems are primarily determined by the contribution ΔH1 associated with the transition of electrons 

from the energy levels of scandium and titanium to those of copper during alloy formation. 
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Fig. 10. Theoretical and experimental [15] values of the first mixing enthalpy (kJ/mole) and integral 
mixing enthalpy (kJ/mole) of 3d-metals with cuprum 

An analysis of the calculated results for Cu−3d-metal systems reveals that for alloys whose components have 
similar electron-band parameters, the model in Fig. 4 is preferable to assess the mixing enthalpies, while expression (11) 
is preferable to calculate the contribution ΔH1. If an alloy has components with considerably different electron-band 

parameters, it is expedient to use the model in Fig. 8. 
The calculated values of the first mixing enthalpies of the components and the extreme values of the integral 

mixing enthalpy obtained as described above are compared with experimental data in Fig. 10. It is easy to notice that by 
introducing a normalization constant of about 4, we can achieve not only qualitative, but also quantitative agreement 
between the experimental and calculated values. The agreement between the calculated and experimental dependences 
indicates that the two contributions ΔH1 and ΔH2 taken into account here are indeed decisive, and the models proposed 

can be used to interpret the interaction of the components in other systems or rows of systems based on transition 
metals. Further efforts to improve the above method of calculating the energy contributions to the enthalpies of 
formation of disordered alloys for the purpose of achieving not only qualitative, but also quantitative agreement between 
the calculated and experimental values will go into the refinement of the electron-band parameters of alloys and their 
components, the use of more complicated forms of the density of electronic states in the d-band, the incorporation of 
some other energy contributions, say, the contribution due to the electron–phonon interaction, etc. 

CONCLUSIONS 

We used tight-binding and Friedel’s model for the density of electronic states to calculate the cohesive energy 
of transition metals and its s- and d-electron contributions. It has been shown that the strength of interatomic bonds, 
mole volume, and compressibility of transition metals correlate with the cohesive energy and its contributions. The 
important role of conduction electrons in the formation of cohesive force of transition metals has been shown. 

The major contributions to the formation energy of disordered alloys of copper with transition metals have been 
calculated. It has been shown that the mixing enthalpy of alloys can be represented as the sum of a negative contribution 
due to electron transitions during alloy formation and positive contribution due to the difference between the widths of 
the d-bands of the pure components. 
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The calculated results are in qualitative agreement with the experimental data on the behavior of 
thermodynamic properties in the Cu−3d-metal systems considered and on the experimental concentration dependence of 
the thermodynamic properties. 
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