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Abstract
Salinity stress is a major environmental factor impeding barley productivity on a global scale. Enhancing salt tolerance in barley 
is crucial for maintaining crop yield and agricultural sustainability. This study aimed to elucidate the genetic underpinnings of 
salt tolerance in barley, focusing on the identification of key genomic loci and quantitative trait nucleotides (QTNs) associated 
with stress resilience, particularly through the modulation of antioxidant defense mechanisms. A diverse set of barley lines was 
subjected to salinity stress conditions, and a genome-wide association study (GWAS) was conducted. Ten morphophysiological 
parameters related to salt stress tolerance, such as antioxidant enzyme activities, were evaluated. This study revealed distinct 
genomic loci and QTNs intricately linked with salt tolerance in barley. These genetic markers were found to influence the plant’s 
antioxidant defenses, including enzymes like superoxide dismutase, catalase, and ascorbate peroxidase, which play pivotal roles 
in mitigating oxidative damage under salinity stress after the application of Se NPs. For instance, significant SNP (G:A) on 
chromosome 7H at position (521,369,195- 521,370,360 bp). Within this region, a gene mapped as peroxidase, HORVU.MOREX.
r3.7HG0718950, was detected for SS_Se, SL_C, and SL_Se, suggesting the essential role of this gene in regulating the resilience 
of plant responses to salinity stress after application of selenium nanoparticles. Our findings provide a deeper understanding of 
the complex genetic architecture of salt tolerance in barley, highlighting the critical role of specific genomic regions in controlling 
antioxidant responses under salinity stress. The identified loci and QTNs serve as valuable genetic resources for the development 
of salt-tolerant barley cultivars, contributing to global food security and agricultural resilience in saline-prone environments.
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Introduction

Salinity stress is a major environmental factor that adversely 
affects plant growth and productivity. Understanding the 
impact of salinity on barley is crucial for developing effec-
tive management strategies (Kamran et al. 2020; Thabet 
et al. 2021b; Tobe et al. 2003). Elevated levels of salt in the 
soil can greatly diminish the speed and consistency of seed 
germination in barley (Rasouli et al. 2024). During the initial 
stages of growth, plants are highly vulnerable to salinity, 
which can result in inhibited growth and inadequate root 
formation (Nikolić et al. 2023). High levels of sodium and 
chloride ions can be harmful to plant cells, as they interfere 
with cellular functions and upset the balance of ions. Salinity 
can impede the absorption of vital elements such as potas-
sium and calcium, hence hindering plant growth even more 
(Atta et al. 2023). Plants can display diminished leaf area 
and decreased plant height in saline environments. Increased 
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salinity can cause alterations in the structure of the root sys-
tem, which can impact the plant’s capacity to uptake water 
and essential nutrients (Thabet and Alqudah 2023). Further-
more, the impact of salinity stress typically leads to a sub-
stantial decrease in grain output as a result of the combined 
influence on both growth and reproductive development. 
Munns et al. (2020) documented that salt stress hampers 
the growth and development of plants through the induc-
tion of osmotic and ion stress. Osmotic stress arises from 
an elevation in soluble salts, while ion toxicity results from 
the presence of exchangeable sodium (Na+) during salin-
ity stress (Thabet et al. 2021a). The effects of salt stress 
on plants exhibit significant variation, contingent upon the 
specific type and concentration of salt employed, ambient 
conditions, plant species, different cultivars within a spe-
cies, and the developmental phases of the plant (Tabur et al. 
2021). Plants evolve intricate ways to endure salt. Plant 
resistance to salinity can be categorized into three primary 
types: osmotic stress tolerance, exclusion of Na+ or Cl−, 
and tissue tolerance to accumulated Na+ or Cl− (Munns and 
Tester 2008). Abiotic stressful circumstances, such as salt, 
lead to the generation of harmful free radicals, specifically 
reactive oxygen species (ROS), which harm crop physi-
ological processes, growth, and yield, resulting in reduced 
yield (Thabet et al. 2021a). In addition, harmful free radi-
cals induce harm to cell membranes, oxidize proteins, and 
cause DNA damage, ultimately leading to cell death (Feng 
et al. 2015). Plants have developed regulatory mechanisms 
to maintain the stability of their life processes in response 
to damage caused by ROS. Hence, the involvement of active 
oxygen-scavenging enzymes, such as superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT), and other cru-
cial enzymes, is crucial in this process (Zhang et al. 2021). 
To address the issue of salt stress, it is crucial to evaluate 
different crop types for their ability to tolerate salinity and 
enhance their levels of salinity tolerance (Wu et al. 2015). 
While the creation of crop varieties that can tolerate salt is 
advantageous in certain situations, the process of cultivating 
and evaluating these varieties is laborious typically taking 
around 8–10 years (Noreen et al. 2021). On the other hand, 
the use of certain organic or inorganic compounds, known as 
the shot-gun technique, could be a viable strategy to mitigate 
the effects of salinity stress and safeguard various crops like 
wheat and barley (Agbolade et al. 2019).

Selenium (Se) nanoparticles have become prominent 
in the agricultural industry due to their distinct character-
istics and advantages (Song et al. 2023). Selenium nano-
particles (Se NPs) have the potential to be utilized for crop 
fortification, suggesting increases in the selenium level 
in crops, which is crucial for human well-being (Thabet  
and Alqudah 2023). They assist plants in managing diverse 
stressors such as water scarcity, high salt levels, and pollu-
tion from heavy metals. This is a result of their antioxidant 

capabilities, which counteract the damage caused by oxi-
dative stress in plants (Bano et al. 2021). Nanoparticles 
can affect the absorption of nutrients and the chemical 
processes in plants, resulting in enhanced growth and 
increased crop production (Samynathan et al. 2023). They 
can enhance the dietary value and shelf life of agricultural 
produce, hence improving its quality. Selenium nanoparti-
cles can transform hazardous forms of elements in the soil 
into less damaging forms, hence decreasing soil toxicity 
(Song et al. 2023). They provide an environmentally con-
scious approach to agriculture as a substitute for artificial 
pesticides and fertilizers. It is essential to comprehend 
the natural and physiological consequences of selenium 
nanoparticles (Gudkov et al. 2020). Prudent regulation 
is necessary to ensure their safe utilization. Continued 
research is necessary to comprehensively comprehend 
the processes by which they operate and to enhance their 
utilization in agriculture (Devi et al. 2023). Se NPs have 
significant potential to revolutionize agricultural methods. 
Due to their capacity to promote vegetative growth, pro-
vide resistance to infections, and increase crop produc-
tivity, while also being renewable, they are considered a 
great asset in the field of sustainability in the agricultural 
sector (Pyrzynska and Sentkowska 2022). Nevertheless, 
continuous study and meticulous control are needed to 
fully exploit their complete capabilities while guarantee-
ing well-being (Zohra et al. 2021).

Barley (Hordeum vulgare L.) is a widely grown cereal 
crop that ranks fourth in global popularity. It is planted for 
multiple reasons, including consumption as food, livestock 
sustenance, and numerous brewing and malting processes 
globally (Meints and Hayes 2019; Thabet et  al. 2020). 
Although barley is a biotic and abiotic stress-tolerant crop, 
its yield suffers greatly in saline environments (Noreen 
et al. 2021; Thabet et al. 2021a). Barley, despite its abil-
ity to withstand both biotic and abiotic stress, experiences 
significant yield reduction in saline settings (Thabet et al. 
2023). Barley cultivars display various degrees of salinity 
tolerance at the molecular level, which is a crucial factor to 
consider when growing them in saline regions. The primary 
objective of breeding and genetic engineering endeavors is 
to cultivate barley cultivars that possess heightened resist-
ance to salt (Thabet et al. 2021b). On the whole, salinity 
presents a substantial obstacle to the cultivation of barley, 
impacting all aspects of plant development, ranging from 
germination to crop production. Salt stress can significantly 
reduce the productivity of barley crops by causing physio-
logical, biochemical, and morphological alterations (Thabet 
et al. 2022b). Gaining a comprehensive understanding of 
these effects is crucial for the development of management 
strategies and breeding initiatives focused on enhancing 
barley’s ability to withstand salinity (Thabet et al. 2018). 
Given the significance of barley as a nutritional crop, we 
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propose that applying selenium nanoparticles (Se NPs) to 
the leaves can enhance growth and metabolic processes, 
leading to an overall increase in barley output when exposed 
to salinity stress.

Quantitative traits exhibit variation at specific locations 
on chromosomes known as quantitative trait loci (QTLs). 
Al-Tamimi et al. (2016) discovered many QTLs associated 
with shoot and root growth in the presence of salt stress. 
These QTLs indicate the presence of genetic loci that con-
trol water absorption and nutrient transportation, enabling 
plants to withstand high salinity levels. Within saline envi-
ronments, there are significant QTLs that have an impact 
on the absorption, movement, and storage of ions such as 
sodium (Na+), potassium (K+), and chloride (Cl−). QTLs 
can influence the expression or function of ion transport-
ers and channels. During periods of stress, the quantitative 
trait loci (QTLs) responsible for growth duration have an 
impact on the processes of tillering, flowering, and matu-
rity, as stated by Alqudah et al. (2014). QTL mapping in 
barley has discovered specific regions in the genome that 
influence several characteristics, such as salt tolerance 
(Thabet et al. 2021a). Recently, Thabet et al. (2022a) have 
discovered quantitative trait loci (QTLs) associated with 
antioxidant components in barley when subjected to salt 
stress. For instance, there is a notable single-nucleotide 
polymorphism (SNP) A:C located on chromosome 7H that 
controls the expression of SOD_S and APX_S. Interest-
ingly, Thabet and Alqudah (2023) discovered agricultural 
quantitative trait loci (QTNs) following the application of 
selenium nanoparticles to the leaves under slightly saline 
conditions. Hence, our work sought to examine the genetic 
connections associated with the foliar application of sele-
nium nanoparticles (Se NPs) during the vegetative stage, 
which improves stress tolerance in barley under salt stress. 
Furthermore, it investigates the crucial genomic areas 
linked to antioxidant chemicals as well as agronomical and 
yield-related characteristics.

Materials and Methods

Plant Material

In the present investigation, a total of 138 spring barley 
accessions from various geographical origins were exam-
ined, encompassing 54 cultivars and 84 landraces. The col-
lection was divided into 63 two-rowed and 75 six-rowed. The 
genotyping-by-sequencing (GBS) method was employed to 
genotype all the accessions, resulting in the identification 
of 19,276 single-nucleotide polymorphisms (SNPs), as out-
lined by Milner et al. (2019). The diverse collection utilized 
in this investigation was obtained from the German ex situ 
IPK-Gatersleben GeneBank (Table S1).

Experimental Setup

Over 2 years, 138 spring barley accessions were grown at the 
University of Fayoum Experimental Station (29°11′20.36″N, 
30°10′06.45″E). Experimental planting began on November 
25 and ended on April 20 (2022/2023). We collected soil 
samples from the experimental farm site before each trial 
to analyze physicochemical and fertility status (Table S2) 
using (Jackson 1958) techniques. As indicated in Dahnke 
and Whitney (1988), these findings revealed that the experi-
mental soil had a high salt content, as shown by an ECe 
value of 8.51–8.61 dS m−1 for both seasons (Table S2). The 
barley seeds underwent surface sterilization using sodium 
hypochlorite for a duration of 10 min. Subsequently, they 
were rinsed with distilled water and left to dry in the air for 
a period of 2 h. A total of five rows, each measuring 3 m in 
length, were planted with a spacing of 0.23 m between the 
rows. Each row was divided into hills, with four seeds put 
in each hill. The distance between the hills was maintained 
at 15–20 cm. There were two robust seedlings on each hill 
prior to the initial watering. Prior to field planting, the soil 
was enriched with 280 kg per hectare of (NH4)2SO4 (20% 
nitrogen) and 350 kg per hectare of Ca2+ superphosphate 
(15.5% phosphorus pentoxide). In a fully randomized design, 
a concentration of 1-mM selenium nanoparticles (Se NPs) 
was administered as a foliar treatment, while distilled water 
was used as a control. Three replicas were utilized. Sigma 
Aldrich Co. offered spherical selenium nanoparticles (Se 
NPs) with a diameter ranging from 10 to 45 nm, a surface 
area of 30 to 50 m2/g, a density of 3.89 g/cm3, and a purity 
of 99.5%. Following a period of 25 days, the plants were 
subjected to two rounds of spraying with distilled water (as 
a control) and 1-mM Se NPs (the second and third sprays) 
when they reached the ages of 35 and 45 days, respectively.

Morphological Traits

Spike length (SL), measured in centimeters from the spike’s 
base to its tip, excluding the awns, was one of five pheno-
typic features analyzed. The number of spikelets per spike 
(SS) counted each spike’s produced spikelets. Grain count 
(GS) requires counting each spike’s grains. The weight of 
grains per spike (WGS) was recorded in grams, and thou-
sand kernel weight (TKW) was determined by counting 100 
seeds from the collective seed batch of each genotype using 
a high-speed automatic seed counter (Model-IC-VA, Aidex-
Japan) and amplifying the subsequent grain weights by 10.

Antioxidant Enzymes Determination

The enzymes were extracted using the method outlined by 
Garratt et al. (2002). The enzymes ascorbate peroxidase 
(APX), glutathione reductase (GR), catalase (CAT), and 
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superoxide dismutase (SOD) were evaluated, as stated by 
Maehly and Chance (1954), Sairam et al. (1997), and Rao 
et al. (1998). Nonenzymatic antioxidants ascorbic acid and 
glutathione were assayed as described in methods by De 
Kok et al. (1986).

Genome‑Wide Association Scan and Candidate 
Genes

The barley population underwent genotyping utilizing gen-
otyping by sequencing (GBS). The GWAS study was con-
ducted using the FarmCPU technique, which assessed the 
genome containing 19,000 single-nucleotide polymorphisms 
(SNPs) (Milner et al. 2019). The analysis also included the 
evaluation of the best linear unbiased estimators (BLUEs) for 
the evaluated variables. The FarmCPU statistical model is a 
robust approach for GWAS analysis that allows us to effec-
tively manage both false-positive and false-negative correla-
tions (Alqudah et al. 2020). The physical positions of SNP 
markers were determined using the Morex genome sequence 
v2 (Monat et al. 2019). The genome-wide significance crite-
rion for the GWAS was established as P < 0.0001 (equivalent 
to − log10 (P) ≥ 3) for all traits. The genome-wide pairwise 
estimates of linkage disequilibrium (LD) were computed as 
the squared correlation between pairs of SNPs (r2). The study 
conducted by Alqudah et al. (2020) involved calculating the 
LD block for a given physical distance, which included the 
strongest linked markers. This was done to determine the 
physical interval of the related quantitative nucleotide region 

(QNR). The identified physical interval was then used in sub-
sequent analysis to identify candidate genes.

Using the BARLEX IPK database, we identified the 
candidate genes and their gene annotations based on 
the physical positions of SNP markers (https://​apex.​ipk-​ 
gater​sleben.​de/​apex/f?​p=​284:​10). Moreover, expression pro-
files for our potential candidates were measured using the 
RNA-Seq expression database at different developmental 
stages in barley according to the OPEN-ACCESS version 
of the Genevestigator program. The program includes the 
transcriptome and expression of barley genes from different 
tissues and organs such as anatomy and development from 
controlled and stressed conditions.

Results

The average genotypic values for SOD, CAT, APX, GR, 
AsA, and GSH were measured as 0.21, 0.058, 0.97, 0.38, 
29.16, and 34.86 μmol mg−1 protein, respectively (Table S3). 
The average genotypic values for SOD, CAT, APX, GR, 
AsA, and GSH were measured as 0.67, 0.20, 3.76, 1.18, 
101.10, and 104.4 μmol mg−1 protein, respectively, after the 
application of Se NPs to the leaves. These data may be found 
in Table S4. Enzymatic antioxidants, specifically SOD, 
CAT, APX, and GR, exhibited a significant increase of 69%, 
71%, 74%, and 67%, respectively, when treated with Se NPs 
relative to the control, as shown in Fig. 1. Nonenzymatic 
antioxidants ascorbic acid (AsA) and glutathione (GSH) 

Fig. 1   Box plot analysis reveals the natural variation of enzymatic 
and nonenzymatic antioxidants, including superoxide dismutase 
(SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione 

reductase (GR), and ascorbic acid (AsA) under both control (C) and 
selenium nanoparticles (Se NPs)

https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://apex.ipk-gatersleben.de/apex/f?p=284:10
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increased by 71% and 67%, respectively, as illustrated in 
Fig. 1. All enzymatic and nonenzymatic antioxidants showed 
substantial natural variation in both treatments, as indicated 
by the data in Table S5 and Table S6. The heritability values 
varied from 69.22 for AsA to 96.93 for SOD in normal set-
tings and from 90.92 for AsA to 98 for GSH following Se 
NPs treatment (Table S4). The minimum, maximum, and 
mean values for each agronomic trait across all genotypes 
can be found in Table S2 and Table S3. The mean perfor-
mance of all yield features was significantly higher under 
Se NPs compared to the control circumstances, as shown 
in Table S5 and Table S6. The average values for the yield 
attributes SL, SS, GS, WGS, and TKW were 8.21, 9.49, 
43.33, 1.37, and 39.43, respectively, as indicated in Figure 
and Table S1. The average genotypic values for SL, SS, GS, 
WGS, and TKW were measured as 12.52, 14.82, 52.93, 
3.01, and 57.32, respectively, under Se NPs treatment. These 
results may be found in Table S5 and Table S6. Significantly, 
all morphological and yield parameters exhibited increment 
by 34%, 36%, 18%, 54%, and 31% for SL, SS, GS, WGS, and 
TKW, respectively, after Se NPs treatment in contrast to the 
control (salt stress), as depicted in Fig. 2. The broad-sense 
heritability (H2) values varied from 94.62 for TKW_C to 
99.3 for GS_C, as shown in Table S6. The H2 was observed 
in GS (99.55), followed by SL (98.81), while the lowest H2 
was found in TKW (95.17) (Table S6).

Correlation Analyses

Pearson’s correlations across attributes, determined by the 
mean of all accessions for each treatment condition, showed 
a significant association among all examined traits for both 
treatments. Strong negative correlations were found between 
nonenzymatic antioxidants (AsA and GSH) and enzymatic 
antioxidants (SOD, CAT, APX, and GR) in both control and 
Se NPs conditions. This indicates that nanoparticles play a 
crucial role in improving antioxidant defenses, which in turn 
promotes plant resilience in environments with high salt lev-
els (Fig. 3). Simultaneously, there were notable connections 
observed among all the examined agronomic characteristics 
(SL, SS, GS, WGS, and TKW) that exhibited positive cor-
relations in the two scenarios. This indicates the existence of 
shared genetic factors that influence all agricultural features 
and the process of grain filling in response to salt stress 
(Fig. 3).

Genome‑Wide Association Scan (GWAS)

The GWAS analysis revealed 653 SNPs that showed sig-
nificant associations with 10 characteristics and met the 
criteria of − Log10 (p) ≥ 3.0 under both control and Se NPs 
treatments (Table S7). Among the 653 SNPs, we detected 
77, 51, 36, and 28 SNPs each connected with antioxidant 

Fig. 2   Box plot analysis reveals the natural variation of agronomical traits, including spike length (SL), spikelets per spike (SS), grains per spike 
(GS), weight of grains per spike (WGS), and thousand kernel weight (TKW) under both control (C) and selenium nanoparticles (Se NPs)
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components, specifically CAT_C, GSH_C, SOD_C, 
CAT_Se, SOD_Se, and GSH_Se. In contrast, less than 10 
SNPs were linked to each of the other attributes mentioned 

(Table S6 and Figure S1). A total of 86 single-nucleotide pol-
ymorphisms (SNPs) with a p-value of -log10 ≥ 3 were found 
to be substantially associated with all agronomic characteris-
tics across all chromosomes (Table S7). The largest number 
of markers was observed for SL_C (101 SNPs), after SL_C 
and SL_Se (64 SNPs each), while 40 SNPs were linked to 
each of the other variables (Table S7 and Figure S2). Highly 
significant SNP markers (− log10 (p-value) > 11) have been 
identified and correlated with GS_Se (p = 2.22E-17) on chr 
2H at position 572,438,008 bp; SOD_C (p = 2.29E-15) on 
chr 5H at position 536,154,191bp; and GS_C (p = 2.040E-
13) on chr 2H at position 572,438,008 bp (Table S7). This 
research identified 30 genomic regions through marker-
trait associations (MTAs) and LD. These regions, located 
on chromosomes 1H, 2H, 3H, 5H, 6H, and 7H, consist of 
24 potential candidate genes. These genes were found to 
regulate antioxidant components in response to salt expo-
sure as described in Table S8 and Table S9. At position 
(6,695,881–6,697,565 bp) on chromosome 1H, a gene called 
HORVU.MOREX.r3.1HG0003270 was discovered. This 
gene encodes a protein from the Core-2/I-branching beta-
1,6-N-acetylglucosaminyltransferase family. It was found 
at the specific position of 6,697,338 bp, which is associ-
ated with all antioxidant components in both treatments, 
as shown in Fig. 4. Moreover, there is a consistent region 

Fig. 3   Correlation analysis for all of the studied traits under both con-
trol (C) and selenium nanoparticles (Se NPs)

Fig. 4   Locus zoom on regional plot colocalization of highly associ-
ated QTNs that control the variation of the studied traits including 
ascorbate peroxidase (APX), glutathione reductase (GR), and ascor-
bic acid (AsA), glutathione (GSH), weight grains per spikes (WGS), 

and grains per spikes (GS) under both control (c) and selenium nano-
particles (Se NPs). The x-axis shows the chromosomes and the QTN 
order. The y-axis shows the − log10 (p-value) for each QTN marker
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with a highly significant SNP (A:G) at position 8,959,918 
base pairs. The gene HORVU.MOREX.r3.1HG0004230, 
which is designated as an elongation factor, has been found 
inside the aforementioned region (Fig. 4). Furthermore, 
genetic loci with substantial LD were identified on chromo-
some 1H. Specifically, SNP with a (T:C) allele was found 
at position 58,238,555–58,239,948 bp. The gene HORVU.
MOREX.r3.1HG0018170, which is known as polyadenylate-
binding protein 1-B-binding protein, was identified in the 
GS_Se, WGS_C, and WGS_Se (Fig. 4). Additionally, the 
receptor-like protein kinase plays a role in salt tolerance. 
The HORVU.MOREX.r3.6HG0596150 gene was identified 
at position (374,041,230–374,043,818 bp) of the (T:C) SNP 
on chromosome 6H. This gene is involved in antioxidants in 
both circumstances (Fig. 4), indicating its vital role in con-
trolling plant responses and determining the final grain yield 
in barley. A significant SNP (G:A) was found on chromo-
some 7H at position 521,369,195–521,370,360 bp. Within 
this region, a gene called peroxidase, HORVU.MOREX.
r3.7HG0718950, was identified for SS_Se, SL_C, and SL_
Se (Fig. 4). This suggests that this gene plays a crucial role 
in restricting the plant’s ability to respond to salt stress after 
Se NPs treatment (Fig. 5).

Discussion

Salinity stress is one of the most detrimental factors 
affecting the growth, development, and yield of barley, 
a major cereal crop. Under salinity stress, plants experi-
ence osmotic and ionic stress, leading to adverse effects 
such as osmotic imbalance, nutrient deficiency, and oxi-
dative stress (Munns and Tester 2008; Thabet and Alqu-
dah 2023). In this study, all agronomical and yield traits 
showed increment for SL, SS, GS, WGS, and TKW, 
respectively, under Se NPs treatment compared to salt 
stress (control). These findings showed agreement with 
Thabet and Alqudah (2023), highlighting the essential role 
of selenium nanoparticles in regulating the resilience of 
plant responses to salinity stress. In addition, it could be a 
valid selection criterion for assessing salinity stress toler-
ance in barley breeding programs.

Salinity stress affects a range of morphological and physi-
ological traits in barley, and understanding the genetic basis 
of these traits is crucial for breeding programs aimed at 
enhancing salinity tolerance. Here are key QTLs associated 
with morphological and physiological traits in barley under 
salt stress. This study showed 86 SNPs (− log10 p-value ≥ 3) 

Fig. 5   Differential gene expression of the HORVU.MOREX.
r3.7HG0718950 gene that encodes peroxidase at different develop-
mental stages in barley. (a) Up- and/or downregulation underlying the 

natural phenotypic variation in several organs of barley. (b) Up- and/
or downregulation underlying the natural phenotypic variation under 
abiotic stress conditions, including salt stress
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for all agronomic traits that were significantly detected on all 
chromosomes. Interestingly, highly significant associations 
(− log10 (p-value) > 11) were discovered on chromosomes that 
were found to be highly associated with GS_Se on chr 5H. 
Our findings also showed agreement with Thabet and Alqu-
dah (2023), suggesting that these QTLs are fundamental for 
marker-assisted selection (MAS) and for the design of strate-
gies aimed at improving the salinity tolerance of barley.

Candidate Genes

Based on GWAS analysis, a gene encoding Core-2/I-branching  
beta-1,6-N-acetylglucosaminyltransferase family protein 
(HORVU.MOREX.r3.1HG0003270) on chromosome 1H 
was found at 6,697,338 bp of the top SNP (A:C) associated 
with enzymatic and nonenzymatic antioxidants_ related traits 
under both treatments. The Core-2/I-branching beta-1,6-N-
acetylglucosaminyltransferase (C2GnT) family of enzymes 
is involved in complex glycan biosynthesis. These enzymes 
modify the structure of glycoproteins by catalyzing the trans-
fer of N-acetylglucosamine (GlcNAc) in a beta-1,6 linkage 
to a mannose core, a process integral to the formation of 
complex or hybrid N-glycans (Bierhuizen et al. 1995). In 
plants, this process is vital for protein folding, stability, and 
function, which are crucial under stress conditions such 
as salinity (Strasser 2016). Glycosylation, particularly N- 
glycosylation, is a significant posttranslational modification 
that affects protein conformation, distribution, stability, and 
function. Under salinity stress, the demand for proper protein 
folding and stabilization is heightened due to the increased 
production of stress-related proteins (Solá and Griebenow 
2009). The role of C2GnT enzymes in this context is to 
ensure the structural integrity and functionality of these pro-
teins, particularly those involved in stress response pathways 
(Nagae et al. 2020). For example, glycosylated proteins in the 
plasma membrane can affect ion transport mechanisms which 
are essential for maintaining ion homeostasis in a saline 
environment (Kang et al. 2008). Research has suggested that 
complex N-glycans may have roles in signaling processes 
related to plant stress responses. The modification of glyco-
proteins by C2GnT enzymes could influence the interactions 
between hormones and their receptors or other key signaling 
molecules, thereby affecting gene expression patterns nec-
essary for salinity tolerance (Saint-Jore-Dupas et al. 2006). 
Moreover, properly glycosylated proteins, facilitated by the 
action of C2GnT enzymes, are crucial for the stability and 
function of antioxidant enzymes involved in ROS scaveng-
ing. This helps in mitigating oxidative damage during salinity 
stress (Apel and Hirt 2004; Hasanuzzaman et al. 2021).

Similarly, the reliable region with high significant SNP 
(A:G) at position 8,959,918 bp was mapped on chromosome 
1H. Within this region, HORVU.MOREX.r3.1HG0004230 
gene was annotated as elongation factor was identified. 

Elongation factors play crucial roles in protein synthesis 
within cells, and their functions can be particularly impor-
tant for plants under environmental stress, such as salinity 
(Shin et al. 2009). Salinity stress is known to affect plant 
growth and productivity significantly, especially in barley, 
one of the more salt-sensitive cereals. Understanding the 
role of elongation factors in response to salinity stress in 
barley involves exploring molecular and physiological path-
ways (Thabet et al. 2021a, b). Elongation factors like eEF 
(eukaryotic elongation factor) are integral to the process of 
translation, or protein synthesis, in the cell. Under salinity 
stress, certain proteins that protect the plant or repair dam-
age are in high demand, and the role of elongation factors 
becomes critical (Gao et al. 2019). These factors may ensure 
the synthesis of stress-related proteins, including osmo-
protectants, antioxidants, and ion transport regulators that 
help barley cope with high salinity. For instance, Gao et al. 
(2019) reported that overexpression of the elongation factor 
GmEF4 can improve tolerance to salinity and drought in 
soybean. This indicates that manipulating the components of 
the translation machinery, such as elongation factors, could 
be a viable strategy for enhancing salinity stress tolerance 
in barley (Athar et al. 2022). Understanding the role of 
elongation factors in salinity stress response opens avenues 
for genetic improvements in barley. Through traditional 
breeding or genetic engineering, varieties of barley could 
be developed that overexpress specific elongation factors, 
potentially enhancing their salinity tolerance (Munns and 
Tester 2008). In conclusion, elongation factors are central 
to the protein synthesis machinery of the cell and play a 
crucial role in the response of barley to salinity stress. Their 
involvement in the regulation of stress-related proteins, gene 
expression, osmotic stress adaptation, and interaction with 
other stress response pathways highlights their importance. 
Further research in this area could help improve plant resil-
ience in saline environments, enhancing food security in 
affected areas.

Moreover, high-LD genetic loci were mapped on chro-
mosome 1H with the (T:C) SNP that was located at posi-
tion (58,238,555–58,239,948 bp). Within this region, a gene 
mapped as polyadenylate-binding protein 1-B-binding pro-
tein, HORVU.MOREX.r3.1HG0018170, was detected for 
GS_Se, WGS_C, and WGS_Se. Polyadenylate-binding pro-
tein 1 (PABP1) is a critical component of cellular machinery 
in eukaryotes, involved in the regulation of mRNA stability 
and translation. PABP1-binding protein (PABP1-BP) serves 
as a modulator of PABP1 activities (Brook et al. 2012). 
PABP1-BP interacts with PABP1 and can modulate its func-
tion. Under normal conditions, PABP1 binds to the poly(A) 
tail of mRNA molecules, influencing their stability and the 
efficiency of translation. During salinity stress, plants need 
to rapidly alter their protein synthesis patterns, favoring the 
production of stress-responsive proteins (Urquidi Camacho 
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et al. 2020). PABP1-BP could potentially regulate these pro-
cesses by influencing PABP1’s interaction with mRNAs, 
thereby affecting the synthesis of proteins crucial for salin-
ity stress response (Addo-Quaye et al. 2008). Salinity stress 
typically activates various signaling pathways in plants, 
including the mitogen-activated protein kinase (MAPK) 
cascade. While the direct connection between PABP1-BP 
and MAPK pathways in barley under salinity stress has not 
been explicitly established, studies in other organisms sug-
gest that PABP1-BP could potentially interact with compo-
nents of signal transduction pathways, thereby affecting the 
cellular response to salinity stress (Jerome Jeyakumar et al. 
2020). Further research is needed to elucidate the precise 
roles of PABP1-BP in barley’s response to salinity stress, 
including its potential interaction with PABP1, involvement 
in stress granule dynamics, regulation of signal transduction 
pathways, and role in PCD. Such studies would enhance our 
understanding of stress response resilience mechanisms in 
barley and could offer new strategies for improving salinity 
tolerance in this important crop.

As well, receptor-like protein kinase is involved in salt 
tolerance, and HORVU.MOREX.r3.6HG0596150 was found 
at position (374,041,230–374,043,818 bp) of the (T:C) SNP 
on chromosome 6H for antioxidants in both conditions. 
Receptor-like kinases (RLKs) are a group of cell-surface 
receptors that play vital roles in perceiving extracellular 
signals and transducing these into intracellular responses in 
plants (Jose et al. 2020). They are crucial for various physi-
ological processes, including growth, development, and 
stress responses. RLKs are integral to the plant’s ability to 
perceive, respond, and adapt to the increased salinity in its 
environment (Xiao and Zhou 2023). RLKs are known to 
perceive stress signals and initiate stress response pathways. 
Under salinity stress, specific RLKs in barley may recog-
nize the increased salt concentration or the resultant cellular 
effects as a stress signal, which triggers a cascade of down-
stream signaling processes (Xiao and Zhou 2023). Upon per-
ceiving the stress signal, RLKs activate various intracellular 
signaling pathways. This includes the mitogen-activated pro-
tein kinase (MAPK) signaling cascade, which is a critical 
component of the stress response in plants. Through phos-
phorylation events, the signal is transduced within the cell, 
eventually leading to the activation of specific transcription 
factors and gene expression (Ahanger et al. 2017). One of 
the challenges plants face during salinity stress is the exces-
sive accumulation of sodium ions (Na+). Some RLKs are 
known to regulate the activity of ion transporters. In barley, 
these RLKs might influence the expression or activity of 
sodium transporters, helping to maintain ion homeostasis 
by controlling uptake, compartmentalization, or exclusion 
of Na+ (Zhu 2003). Furthermore, certain RLKs interact with 
ABA signaling pathways, potentially affecting stomatal clo-
sure, seed germination, and other processes that found to be 

involved in  salinity stress (Berens et al. 2017). Therefore, 
understanding the specific RLKs expressed in barley, their 
signal transduction pathways, and their interactions with 
other proteins will be crucial for developing salinity-tolerant 
barley varieties through breeding and genetic engineering.

Ultimately, significant SNP (G:A) was detected on chro-
mosome 7H at position (521,369,195- 521,370,360 bp) that 
found to be associated with our trait of interest. Within this 
region, a gene mapped as peroxidase, HORVU.MOREX.
r3.7HG0718950, was detected for SS_Se, SL_C, and SL_Se. 
Peroxidases are a group of enzymes that play crucial roles in 
various biological processes, including lignification, suberiza-
tion, cross-linking of cell wall proteins, defense against patho-
gens, and responses to abiotic stresses (Tognolli et al. 2002). 
Under salt stress, peroxidases participate in reactive oxygen 
species (ROS) scavenging, modulation of signaling pathways, 
and enhancement of antioxidant defense and contribute to the 
lignification process which reinforces cell walls (Kidwai et al. 
2020). Under salinity stress, excessive accumulation of salts 
can lead to increased production of ROS, which is harmful to 
cellular structures and can lead to oxidative damage. Peroxi-
dases, particularly class III peroxidases, are vital for the scav-
enging of ROS, thereby protecting cells from oxidative stress. 
They catalyze the reduction of H2O2 (a primary ROS) using 
various phenolic compounds as substrates (Hasanuzzaman 
et al. 2021). Under salinity stress, the balance between the 
production and scavenging of ROS is disrupted. Peroxidases 
work in conjunction with other antioxidants like SOD, CAT, 
and APX to mitigate oxidative damage, thereby contributing 
to stress tolerance (Kesawat et al. 2023). Furthermore, salinity 
stress can affect the integrity and permeability of plant cell 
walls. Peroxidases are involved in the lignification process, 
which reinforces cell walls and provides an enhanced bar-
rier against the excessive uptake of Na+ and Cl− ions. This 
process is crucial for maintaining ion homeostasis in plant 
cells under saline conditions (Liu et al. 2021). Peroxidases 
can influence various signaling pathways associated with 
plant stress responses. For example, they are thought to par-
ticipate in ABA-mediated signaling pathways during salin-
ity stress, contributing to stomatal closure to prevent water 
loss and regulate seed germination under stressful conditions  
(Balasubramaniam et al. 2023; Zhao et al. 2021). Certain per-
oxidases are involved in the detoxification processes that con-
tribute to salt tolerance. They participate in the metabolism of 
toxic compounds produced under stress conditions, including 
certain phenolic compounds that are generated in response 
to salt stress (Naliwajski and Skłodowska 2021). Therefore, 
understanding the specific peroxidases expressed during 
salinity stress and their precise functions requires detailed 
molecular, biochemical, and physiological studies. Advances 
in genomic tools and techniques, including transcriptomic and 
proteomic analyses, are facilitating this research, potentially 
enabling the development of barley cultivars with enhanced 
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salinity tolerance through genetic engineering or selective 
breeding.

Conclusion

In conclusion, the comprehensive study on genetic mapping 
in barley has illuminated the significant role that specific 
genomic loci and quantitative trait nucleotides (QTNs) play 
in enhancing stress resilience, particularly in the context of 
salt tolerance. This research underscores the critical inter-
play between these genetic regions and the plant’s inherent 
antioxidant defenses, a relationship that emerges as a corner-
stone in the plant’s ability to thrive in saline environments. 
Based on GWAS, significant SNP (G:A) on chromosome 7H 
at position (521,369,195- 521,370,360 bp) was detected to 
be associated with our trait of interest under selenium nano-
particles application. Within this region, a gene mapped as 
peroxidase, HORVU.MOREX.r3.7HG0718950, was detected 
for SS_Se, SL_C, and SL_Se, suggesting the essential role 
of this gene in regulating the resilience of plant responses to 
salinity stress after application of selenium nanoparticles. By 
identifying and understanding the function of these pivotal 
genomic positions, we unlock new varieties for the advance-
ment of breeding programs. This knowledge paves the way 
for the development of barley cultivars with improved salt 
tolerance, a breakthrough with substantial implications for 
agricultural sustainability and food security. These findings 
are especially relevant in the face of global challenges such 
as climate change and soil salinization, which pose increas-
ing threats to crop productivity and agricultural landscapes 
worldwide. Furthermore, the insights gained from this study 
extend beyond barley. They provide a valuable genetic blue-
print that could potentially be extrapolated to other impor-
tant cereal crops, thereby broadening the scope of resilient 
agriculture. Ultimately, this research represents a significant 
stride forward in our scientific understanding and offers tan-
gible pathways for the practical application of genetic find-
ings to secure and enhance global food production under 
stress conditions.
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