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Abstract
Drought stress is a major limiting factor for rice production globally. The current climatic changes have further increased 
the incidence and duration of droughts worldwide. On the other hand, seaweed extracts have been extensively studied as 
biostimulants that improve plant growth, nutrition, quality, yield, and stress tolerance of rice (Oryza sativa). Different types 
of seaweeds have been employed for biostimulant preparation, of which algae is most commonly used. Of particular interest 
were Galaxaura oblongata and Turbenaria ornate seaweeds, as biostimulants that inoculate with soil in rice plants growing 
under drought conditions to boost the resilience of rice to drought. The incorporation of drought-stressed-rice soil with two 
investigated seaweeds led to improved growth, almost regulated levels of photosynthetic pigments, compatible solutes, MDA, 
hydrogen peroxide, and phenolic compounds as well as flavonoids, along with notably upregulated expression of PIP1;4, 
PIP2;7, NCDE5, and OsMyb-R1 genes of the rice cultivars Giza 177 and Giza 179, and this enhanced the water status of 
rice cultivars grown under drought conditions. Furthermore, this study suggested that amending soil with investigated sea-
weeds enhanced nutrition and osmolyte production, ameliorated MDA, and upregulated investigated drought-responsive 
genes as well as promoted the growth along with antioxidant reply thoroughly contribute to improving rice plant tolerance 
to drought stress.
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Introduction

Rice (Oryza sativa L.) is a main staple of diets and a major 
source of food security for more than half of the world’s 
population; the sustenance of many people depends upon the 
rice plant (Samal et al. 2021). The production and improve-
ment of rice are affected by several environmental stresses, 
particularly water deficits, and these stresses have a nega-
tive impact on the rice plant’s growth, development, and 
physiological as well as phytochemical aspects (Datta et al. 

2017). Water deficits cause plants to continuously lose water 
via transpiration or evaporation. During periods of drought, 
plants close their stomata to prevent evaporation and this 
reduces the plants’ ability to effect gas exchange. Irrigation 
is one of the main strategies used to offset water shortages; it 
enhances the efficiency of water use across the world (Bakry 
et al. 2012). Water resources in Egypt are very limited, so 
Egypt has established several water-preserving irrigation 
practices that can benefit rice plants.

Indeed, drought stress alters the biochemical, physiologi-
cal, and molecular parameters of almost all crop plants, and 
these changes help plants to tolerate harsh environmental 
stresses. The extent of these alterations differs significantly 
depending upon the plant species and the stress duration and 
intensity, as well as the growth stage of plants (Abd Elhamid 
et al. 2016; Ahmed and Sadak 2016; Sadak 2016; Arora 
et al. 2002). Abiotic stresses such as salinity and drought are 
global issues threatening the survival of agronomic crops 
and maintainable production of food (Elewa et al. 2017; 
Dawood et al. 2017). A water deficit is a restrictive factor 
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during the primary stage of plant growth and development, 
and it can have harmful effects on a plant’s cell structure 
and metabolism (Anjum et al. 2003; Bhatt and Rao 2005; 
Kusaka et al. 2005; Ezzo et al. 2018). Rice may be more 
susceptible to drought stress than other crops because it is 
actually grown in water.

Drought damages a plant’s photosynthetic apparatus by 
inhibiting the content of chlorophyll and the enzyme activi-
ties involved in photosynthesis (Monakhova and Chernyadev 
2002; Bakry et al. 2019). Moreover, it alters the metabo-
lism of antioxidants, which is considered one of the essen-
tial metabolic processes that may enhance plants’ tolerance 
to drought stress (Da Costa and Huang 2007; Sadak et al. 
2020). Notably, the imbalance between the production and 
elimination (or detoxification) of reactive oxygen species 
(ROS) induced by water stress causes cellular injuries (Foyer 
and Noctor 2002; Sadak and Bakry 2020). Meanwhile, some 
plants can tolerate stresses via developing cellular adap-
tive mechanisms, including the accumulation of protective 
compatible solutes such as soluble sugars and proline, as 
well as the upregulation of oxidative stress markers; these 
mechanisms help plants to tolerate environmental conditions 
(Sakamoto and Murata 2002; Abd El-Hameid and Sadak 
2020). Consequently, enzymatic and nonenzymatic antioxi-
dant defense mechanisms such as catalase (CAT), ascorbate 
peroxidase (APX), and peroxidase (POX), as well as ascor-
bate (AsA), the total phenolic compounds, and the flavo-
noids, are the most potent defense systems for scavenging 
ROS (Abd Elhamid et al. 2021).

Furthermore, plants undergo molecular changes to  
counteract the adverse effects of environmental stresses  
(El-Esawi et al. 2018, 2019). The water channel proteins 
called aquaporins form pores in the membranes of biological  
cells, mainly facilitating the transport of water between  
cells. Plant aquaporin proteins (AQPs) are intrinsic protein 
families that are widely distributed in plasma membranes  
(Quigley et  al. 2002; Agre 2006). Plasma membrane  
intrinsic proteins (PIPs) are the main groups of AQPs, and 
they are subdivided into two subgroups PIP1 and PIP2 
(Kaldenhoff and Fischer 2006). The overexpression of PIP1 
and PIP2 genes has improved plant tolerance in response  
to abiotic stresses and mitigated the negative effects of 
drought stress (Aharon et al. 2003; Jang et al. 2007; Liu et al. 
2013; Ayadi et al. 2019). Concurrently, the abscisic acid 
(ABA) biosynthetic pathway NCED5 gene encoded 9-cis-
epoxycarotenoid dioxygenase 5 (Lefebvre et al. 2006; Yang 
and Guo 2007). Moreover, the myeloblastosis transcription 
factor (TF) Myb-R1 is one of the most important classes of 
TFs, as it has an essential role in regulating a plant’s defense 
mechanism by mitigating the adverse effects triggered by 
biotic or abiotic stresses (Erpen et al. 2018).

The global population growth poses a serious threat 
to food security due to a certain amount of land available 

for agriculture which decreased with time. Consequently, 
the development of environmentally friendly products like 
biofertilizers as well as its influences as a result of modern 
agriculture has been explored with respect to several crops, 
including rice. Therefore, the improvement of the yield and 
crop quality can be achieved by the use of fertilizers. Tra-
ditional fertilizers, coming from either organic or inorganic 
origins play a vital role in agriculture which qualifies the 
production of food at a broad scale that sustains the global 
population (Mahanty et al. 2017). The application of sea-
weeds as biofertilizers is seen as a potential substitute for 
chemical fertilizers in agricultural due to a vast potential for 
improving crop productivity and food safety. Seaweeds are  
macro-aquatic thallophytic algae of the kingdom Planta (Arioli  
et al. 2015). Seaweeds are a renewable natural resource  
that adapts to environmental conditions, and they are rich in 
various types of natural biologically bioactive compounds 
(Nabti et al. 2017; Bakhoum et al. 2023). The derivation 
of biofertilizers from seaweeds such as Ascophyllum and 
Sargassum is considered an ecofriendly activity because 
these seaweeds are nontoxic, biodegradable, and nonpollut-
ing, as well as harmless to humans and animals (Dhargalkar 
and Pereira 2005). Therefore, nowadays, seaweeds have 
the potential to be used, and are used, as bioresources and 
biofertilizers in sustainable applications instead of chemical 
fertilizers (Khan et al. 2009; Layek et al. 2018). In addition, 
the recent application of seaweeds as bio-fertilizers in agri-
culture and for the improvement of crop plants is considered 
a tool for preserving the environment. The application of 
seaweed products in the fields of horticulture and agricul-
ture has led to enhanced seed germination, improved plant 
development, and increased abilities of plants to tolerate 
environmental conditions (Zhang and Ervin 2008). Hashem 
et al. (2019) reported that the potential of different algal taxa 
such as Ulvalactuca, Cystoseira spp., and Gelidiumcrinale 
for use as biofertilizers could improve the growth and pro-
ductivity of canola plants under salt stress conditions. Also, 
the results obtained by Hussein et al. (2021) confirmed that 
the application of the seaweeds Ulvafasciata, Cystoseira-
compressa, and Laurenciaobtusa as biostimulants had the 
potential to enhance the salinity tolerance of Vigna sinensis 
and Zea mays plants.

Irrigation management practices have been described as 
water-saving as compared with submerging in rice produc-
tivity. Moreover, the deficit irrigation adjusts the manage-
ment use of nitrogen fertilizers is not clear. The influence 
of deficit irrigation on the efficient nutrient use of rice is 
important for improving the fertility of the soil and growing 
rice cultivation. Consequently, this study aimed to eluci-
date the mechanism by which the rice plant survives drought 
stress. This was estimated by assaying the plant’s physio-
logical, biochemical, and molecular responses to drought. 
Attempts were investigated to check the performance of both 
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rice cultivars, Giza 177 and Giza 179 exposed to drought 
conditions, in terms of their productivity by using sea-
weeds as biofertilizers in combination with soil also made 
to enhance the defense mechanisms in both rice cultivars. 
Finally, this study considered a sustainable approach for 
reducing water consumption through the management of 
irrigation practices in improvement the rice production (de 
Avila et al. 2015; Chen et al. 2021).

Materials and Methods

Plant Material

Two different cultivars of rice (Oryza sativa L) grains, 
Giza 177 and Giza 179 were attained from the Agriculture 
Research Center, Rice Research Institute in Giza, Egypt.

Algal Collection

Two seaweed species were collected by handpicking from 
the Red Sea coast in Egypt, with the littoral zone of rocky 
shorelines in Hurghada city (27° 15´ 58.45˝ N, 33° 48´ 
57.09˝). Algal identification was performed according to 
(Aleem 1993) which was established by morphological 
structures determined by microscopic examination. One of 
them belongs to the division Rhodophyta (red algae) and 
identified as Galaxaura oblongata (Tricleocarpafragilis) 
(J. Ellis & Solander) J.V. Lamouroux, while the other one 
from the Pheaophyta division (brown algae) and identified 
asTurbenaria ornate (Turner) J. Agardh. After collection, 
the algal samples were washed with tap water to eliminate 
salt and sand particles, then air-dried, and finally grounded 
into small powder using a mill and stored at room tempera-
ture for analysis (Table 1).

Chemicals

The chemicals used in the present work with high purity, 
obtained from Sigma-Aldrich Chemical Co., Germany, and 
the organic solvents used with AR grade.

Experimental Design and Growth Condition

Rice grains were immersed for 5 min in sodium hypochlo-
rite solution (1%) to ensure surface sterilization was per-
formed, then washed carefully with tap water. The pot 
experiment was directed in the Botany Department, Fac- 
ulty of Science, Ain Shams University. This experiment  
was performed during the autumn season of 2022 from  
September to October. Two native rice grains (Oryza  
sativa L.) cultivars were applied in the current experiment 
defined; Giza 177 and Giza 179. The pots were separated 
into 2 groups; the first group was used for cv. Giza 177  
and the later one for cv. Giza 179. The rice grains were 
planted in pots (30 × 18 cm) occupied with standardized 
clay/sandy (2:1) soil (8 kg). The physical and chemical  
constituents of the experimental soil are presented in 
Table 2. The clay/sandy soil was divided into three sub-
groups for each cultivar. The two series were amended by 
10 g w/w from the two investigated seaweeds T. ornate 
and G. oblongata as well as the third one remains without 
algal treatment which serves as a control. A randomized 
complete block design was performed with 3 replicates  
per each treatment for all analyses, except; 10 different  
replicates from each treatment were chosen for measur-
ing the growth parameters. The range of relative humidity 
recorded was 24 and 60%. The maximum and minimum  
day temperatures were 38 °C and 18 °C, respectively. All 
pots were provided with sufficient irrigation. Moreover, 
after 2 weeks, the drought stress condition was exercised  
in half of each treatment through withholding water capac-
ity as irrigation was displayed every 12 days (Alharbi et al. 
2021). The plants after thinning were left-hand to develop 
with the different treatments for one month, and then seed-
lings were collected for measuring growth criteria, and 
physiological, biochemical, and molecular analyses.

Methods

Growth Parameters

The growth parameters were measured after 30 days from 
sowing. Ten plants were randomly sampled in the morn-
ing from each treatment sensibly washed with tap water to 

Table 1  The main 
phytochemical constituents of 
the two investigated seaweeds

Parameters/treatments Total soluble 
sugar (mg/g 
DW)

Total phenols 
(mg/g DW)

Flavonoids 
(mg/g DW)

Total antioxidant 
capacity (µg/g 
DW)

Algal name G. oblongata 1.135 12.12 0.830 0.982
T. ornate 2.828 16.76 0.515 1.028
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remove soil debris, and left on the filter sheets to get rid of 
water. Plant growth parameters in terms of root and shoot 
lengths as well as fresh weights of roots and shoots.

Extraction and Estimation of Photosynthetic Pigments

The chlorophylls a and b and carotenoids were extracted 
and estimated according to the method of Metzner et al. 
(1965). One gram of leaves was extracted with 85% (v/v) 
acetone, then the extract was filtered and up to the total  
volume (100 mL) by acetone. The absorbance was recorded 
at three wavelengths of 663, 644, and 452.5 nm. The pho-
tosynthetic pigment content was assayed according to the 
following equations:

Extraction and Estimation of Carbohydrates

The method described for carbohydrate extraction was 
adopted by (Homme et al. 1992). A known weight of fresh 
plant tissue was extracted with boiled 80% (v/v) ethanol. The 
homogenate was filtered through filter paper (Whatman No. 
1), then was oven-dried at 60°C, followed by dissolving the 
residue in a known volume of distilled water to get ready for 
soluble sugar determination. Furthermore, the method used 
for soluble sugar determination was that of (Blakeney and 
Mutton 1980). Two mL of dissolved residue was mixed with 
10 mL of anthrone reagent, then placed in a boiling water 
bath for 20 min, then cooled and finally, the absorbance was 
measured at 620 nm.

Extraction and Estimation of Total Soluble Proteins

Total soluble proteins were extracted by 0.15 N NaCl. The 
homogenate was centrifuged at 4,000 rpm. A known vol-
ume of supernatant was taken to determine the soluble pro-
tein content by using the Folin–Ciocalteu reagent according 
to the method adopted by (Daughaday et al. 1952).

Extraction and Estimation of Proline

Proline was determined according to the method described 
by (Bates et  al. 1973). Fresh plant tissue (0.5  g) was 
extracted with 3% sulfosalicylic acid, the homogenate was 
filtered by Whatman No.1 filter paper. Two milliliters of 
filtrate were added to 2 mL of acid ninhydrin reagent and 
2 mL of glacial acetic acid. The absorbance at 520 nm was 
recorded against toluene as blank.

Chlorophyll a = 10.3 E663 − 0.918E644

Chlorophyll b = 19.7 E644 − 3.870E663

Carotenoids = 4.2 E452.5 − (0.0364chlorophyll a + 0.426chlorophyll b )
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Extraction and Estimation of Hydrogen Peroxide

The hydrogen peroxide was assayed by Titanium reagent 
according to the Yu et al. (2003) method. The absorbance 
was measured by spectrophotometric at 415 nm.

Extraction and Estimation of Lipid Peroxidation Product (MDA)

The level of lipid peroxidation product was determined by 
determining the amount of malondialdehyde (MDA) confer-
ring to the method of Minotti and Aust (1987). Plant tissue 
(100 mg) was ground with 2 mL of distilled water, then cen-
trifuged at 4000 rpm for 15 min. The supernatant was added 
to the same volume of 0.5% thiobarbituric (v/v) dissolved in 
20% (w/v) trichloroacetic acid. The mixture was heated at 95 
°C for 30 min, after cooling in an ice bath, the absorbance 
was measured at two wavelengths; 532 and 600 nm.

Extraction and Estimation of Ascorbic Acid (AsA)

Nonenzymatic antioxidants like ascorbic acid were per-
formed by the method of Mukheriee and Choudhuri (1983). 
Half a gram of fresh plant sample was homogenized with 10 
mL of 6% (w/v) trichloroacetic acid. The As A content was 
determined by a 2% dinitrophenylhydrazine reagent. The 
absorbance was recorded at 530 nm.

Extraction and Estimation of Total Phenolic Compounds

Total phenols were measured according to the method applied 
by (Makkar et al. 1993). The extraction method was per-
formed with 80% methanol, then evaporation was carried out 
and the evaporated residue was up to the known total volume 
by distilled water. The estimation method was applied by add-
ing 0.5 mL of extract to 0.5 mL Folin–Ciocalteu reagent. The 
optical density was recorded at 725 nm.

Extraction and Estimation of Flavonoids

According to Harborne (1998), flavonoids were measured 
based on the reaction of the aluminum chloride colorimetric 
method. After extraction of flavonoids from the plant sample 
as carried out in the total phenols method, a known extract vol- 
ume (1 mL) was added to 0.1 mL (1 M potassium acetate), 1.5  
mL (methanol), 0.1 mL (10% aluminum chloride) and 2.8 mL  
(distilled water). The mixture was left at room temperature for  
half an hour. Finally, the absorbance was measured at 415 nm.

Extraction and Estimation of Total Antioxidant Capacity

The ferric reducing antioxidant power (FRAP) method was 
followed for the estimation of total antioxidant capacity as 
reported by Oyaizu (1986).

DPPH Radical Scavenging Assay

The antioxidant capacity of plant extract was determined 
through the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method 
followed by (Yamaguchi et al. 1998) and calculated confer-
ring to the below equation:

So, A0 is the absorbance of the DPPH blank solution, and 
A1 is the sample absorbance.

Extraction and Estimation of Antioxidant Enzymes

The method described for enzyme extraction was that 
according to (Mukheriee and Choudhuri 1983). Catalase 
(CAT) activity was assayed following the method of Chen 
et al. (2000). Peroxidase (POX) activity was determined 
according to the method of Kar and Mishra (1976). Ascor-
bate peroxidase (APX) activity was assayed as described by 
(Koricheva et al. 1997).

RT‑PCR Analysis

Total RNA was extracted from leaf tissues using  
the GeneJet RNA purification kit (Cat. No. K0731,  
Thermo Scientific, US) conferring to the manufacturer's 
instructions. The concentration of total RNA and their 
purity were determined by using NanoDrop (Thermo  
Scientific, USA); the purity of extracted RNAs (A260/ 
A280) was 1.8–2. The High-Capacity cDNA Reverse- 
Transcription Kit (Applied Biosystems, US) cat.no.  
4368814 was used to synthesize cDNA from isolated  
RNA. The real-time SYBR Green PCR method was  
utilized for the PCR analysis, with the Maxima SYBR  
Green qPCR master mix (Thermo Scientific, US) cat. 
no. K0251 and primers are listed in Table 3. qPCR was 
performed on an optical 96-well plate using a real-time 
polymerase chain reaction (Agilent Stratagene MX3000P, 
USA) under cycling conditions (10 min at 95 °C, followed 
by 45 cycles of 15 s at 95 °C, 60 s at 60 °C, and 30 s at  
72 °C). The melting curves were examined to confirm  
the amplicon specificities for SYBR Green-based PCR 
amplification. A thresholding approach was used to assess 
relative gene expression. Every sample was tested twice 
to express relative mRNA levels, the relative quantitation  
was calculated as  2−ΔΔCt according to the technique  
applied by Livak and Schmittgen (2001). The resulting 
cDNA was subjected to PCR for 35 cycles with respective 
primers designated from the sequence of the OsMyb-R1, 
OsPIP1;3, OsPIP2;7, OsNCED5 genes (Table 3) using 
primer premier 5.0 software and were procured from  
Invitrogen Corporation (Van Allen Way, Carlsbad, 

%DPPH radical scavenging = [(A0 − A1)∕A0] × 100.
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 Canada). Dream Taq™Green PCR Master Mix (Invitrogen  
Corporation) was used in the PCR. Amplification yields 
were run in 1.5% agarose gel 1 × TAE (Tris–Acetate- 
EDTA) buffer at approximately 120 V, which was  
separated by electrophoresis, and then visualized via  
staining the gel in ethidium bromide. For comparative  
determinations, the control samples and treated PCR  
yields were run on the same gel. Gel images were analyzed 
by using Gel Analyzer Pro software (version 3.1).

Statistical Analysis

The data were expressed as mean values ± standard error 
(SE). One-way analysis of variance (ANOVA) test was  
used to perform the statistical analysis using SPSS ver-
sion 25. Furthermore, apply the least significant differ- 
ence (LSD) test applied by Snedecor and Cochran (1980) 
at P-value < 0.05. Finally, Duncan’s multiple range test was 
carried out to comparisons between intergroups. Further 
comparisons between intergroup heatmap and PCA (prin-
cipal comparison analysis) were performed.

Results and Discussion

Drought stress has become a detrimental factor to the growth 
of rice, as shown in the morphological, physiological, and 
biochemical, as well as molecular, alterations in rice plants 
suffering drought (Quampah et al. 2011).

Changes in Growth Parameters

In this study, drought stress altered the length of the  
roots of the two investigated rice cultivars, Giza 177  
and Giza 179, compared with the corresponding control  
values (Table 4). This might be attributed to the deficits  
in irrigation intervals experienced by the rice plants. The 
roots of both investigated rice cultivars were significantly 
lengthened due to the fact that desiccation caused the root 
systems to become thick and long so they could reach water 
(Bouman and Tuong 2001; Lipiec et al. 2013). Moreover, 
these conditions may also have facilitated improved drought 
tolerance in the plants via the deep absorption of water from 
the soil and the reduction of toxic elements and organic  

Table 3  Sequences of the 5′ 
and 3′ primers applied in PCR-
technique

Gene Primer sequence
Forward 5′-3′ Reverse 5′-3′

OsMyb-R1 CTA CAA GGA ATT ACC GGC CAA TCG GCA GCT ATA CAC AGG CCC ATC AAC 
OsPIP1;3 AAG GAC TAC CGG GAG CCG GGT AGA ACG ACC ACG ACG TCA 
OsPIP2;7 ACG AGC GAG CTG GGT AAG TG ATG AGC GTC GCC ATG AAC TC
OsNCED5 CAT CTT CAA CGA GTC GGA GTA GGC GTA CCT CGT CTT C
OsActin AGC TAT CGT CCA CAG GAA ACC GGA GCT AAT CAG AGT 

Table 4  Influence of amended soil with either Turbenaria ornate or Galaxaura oblongata on shoot, root lengths, and root/shoot ratio as well as 
fresh weights of shoots and roots of the two rice cultivars Giza 177 and Giza 179 grown under drought condition

Results are shown as the mean of ten replicates ± SE. The values with the same letters in the same column are non-significant

Cultivar Parameters/treatments Shoot length (cm) Root length (cm) Shoot/root ratio Shoot Fwt (g) Root Fwt (g)

Giza 177 Control 29.0 ± 0.11b 8.9 ± 0.12c 3.2 ± 0.01a 0.145 ± 0.001f 0.050 ± 0.002e

T. ornate 29.8 ± 0.08a 9.2 ± 0.14ab 3.4 ± 0.03a 0.277 ± 0.001a 0.082 ± 0.001a

G. oblongata 29.5 ± 0.11a 9.1 ± 0.24a 3.2 ± 0.05a 0.186 ± 0.001c 0.068 ± 0.001bc

Drought 27.0 ± 0.18e 9.4 ± 0.26a 3.1 ± 0.08b 0.085 ± 0.001i 0.027 ± 0.001g

Drought + T. ornate 27.9 ± 0.03d 8.6 ± 0.08c 3.2 ± 0.06a 0.183 ± 0.002c 0.084 ± 0.001a

Drought + G. oblongata 28.4 ± 0.11c 8.9 ± 0.10bc 3.1 ± 0.13a 0.169 ± 0.001e 0.061 ± 0.001d

Giza 179 Well-watered 15.8 ± 0.06h 7.9 ± 0.17d 2.0 ± 0.03c 0.172 ± 0.001d 0.063 ± 0.002d

T. ornate 16.6 ± 0.12g 9.5 ± 0.12a 1.7 ± 0.06ef 0.195 ± 0.001b 0.079 ± 0.001b

G. oblongata 15.9 ± 0.05h 8.9 ± 0.10bc 1.8 ± 0.04def 0.182 ± 0.001c 0.066 ± 0.008cd

Drought 14.3 ± 0.10i 8.6 ± 0.06c 1.6 ± 0.02f 0.087 ± 0.008i 0.034 ± 0.002f

Drought + T. ornate 17.2 ± 0.14f 9.2 ± 0.14ab 1.9 ± 0.02cd 0.113 ± 0.002g 0.076 ± 0.001b

Drought + G. oblongata 17.7 ± 0.14f 9.1 ± 0.11a 1.9 ± 0.03de 0.101 ± 0.001h 0.064 ± 0.002d

LSD at 0.05% 0.162 0.213 0.083 0.002 0.002
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acid intermediates, thereby increasing the bioavailability  
and utilization of some nutrients such as nitrogen and  
phosphorus, as well as potassium, compared with plants 
flooded control treatment (Gowda et al. 2011; Uga et al. 
2013). On the other hand, the continuous flooding of rice 
seedlings followed by water deficit irrigation every 12 days 
significantly reduced the lengths of the shoots and the fresh 
weights of the shoots and roots of both cultivars (Table 4). 
Our results are in agreement with those of Ghouri et al. 
(2021), who postulated that the root length would increase 
with an increased irrigation period and the shoot length 
would be reduced in rice plants. Moreover, the amending  
of the soil with the seaweedGalaxaura oblongata or  
Turbenaria ornate resulted in significant increases in the 
previously mentioned growth parameters of both stressed 
and unstressed rice plants (Table 4). This increase might be a  
result of the application of seaweed as bio nutrient fertilizers 
increasing the tolerance to abiotic stress in plants, which the 
plants can benefit from the water and nutrients in the soil 
more effectively to the endogenous nutrients of seaweed; 
as well as the high quantities of organic matter present in 
seaweeds (Kumareswari and Rani 2015; Layek et al. 2018). 
The application of seaweed stimulated root proliferation in 
tomato plants, and this increased the ability of the plants  
to absorb sufficient nutrients from the soil, leading to  
plant growth and improvement (Hernández-Herrera et al. 
2013). The efficient biostimulation of the investigated  
seaweeds might be attributed to their total soluble sugars, 
total antioxidant capacity, flavonoid content, and content 
of phenolic compounds (Table 1). Moreover, the positive  
effect of seaweeds as biofertilizers was noticeable in the 
growth of apple trees, and this could be due to the seaweeds’ 
adequate supply of essential nutrients and their enhancement 

of the soil textures, as well as to an improved water-holding 
capacity (Mazzola and Brown 2010). Nedzarek and Rakusa-
Suszczewski (2004) mentioned that the biodegradability of 
seaweed in soil released great amounts of organic material 
and various minerals, especially phosphate,  NO2,  NO3, and 
 NH4, which enhanced the fertility of the soil.

Changes in Photosynthetic Pigments

A water deficit is a great loss of water that induces a dis-
turbance in the structure and metabolism of plant cells. It 
also ultimately diminishes the water content and leaf turgor  
and causes the stomata to close; all these activities arrest 
photosynthesis (Jaleel et  al. 2007, 2008). A significant 
reduction in chlorophylls a and b and the carotenoid con-
tent was recorded in the two investigated rice cultivars, 
Giza 177 and Giza 179, that were cultivated under drought 
conditions (Table 5). This reduction might be attributed to 
the inhibition of chlorophyll synthesis or the destruction of 
chloroplasts in the rice plants and the consequent reduction 
in the photosynthetic apparatus and inhibition of growth 
(Monakhova and Chernyadev 2002; Faseela et al. 2019). The 
results of the current study agreed with those of several other 
studies (Keyvan 2010; Arjenaki et al. 2012; Embiale et al. 
2016; Alharbi et al. 2022) on rice plant species. Consist-
ent with our results, it was recorded that soil amended with 
G. oblongata or T. ornate ameliorated the effects of water 
deficit stress. This may have been due to the protection of 
photosystems against photo-oxidation and the minimization 
of ROS production triggered by oxidative stress as compared 
with the controls (see Table 5). Moreover, seaweed applica-
tion is considered a source of cytokinins, which have pro-
tective properties on chloroplasts (Wally et al. 2013), thus, 

Table 5  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura 
oblongata on the contents of 
photosynthetic pigments of the 
two rice cultivars Giza 177 and 
Giza 179 grown under drought 
condition

Results are shown as a mean of three replicates ± SE. The values with the same letters in the same column 
are non-significant

Cultivar Parameters/treatments Chlorophyll a Chlorophyll b Carotenoids chl-a/b

(µg/g Fwt)
Giza 177 Control 89.8 ± 0.26f 40.5 ± 0.36e 69.2 ± 1.04ef 2.21 ± 0.02e

T. ornate 116.8 ± 0.28d 58.3 ± 0.26b 90.1 ± 3.11b 2.00 ± 0.01f

G. oblongata 109.7 ± 0.75e 45.1 ± 0.43d 84.2 ± 2.04c 2.43 ± 0.03c

Drought 68.3 ± 0.44h 37.7 ± 0.61f 27.2 ± 1.52g 1.81 ± 0.03g

Drought + T. ornate 91.3 ± 0.43f 44.7 ± 0.96d 78.3 ± 0.15cd 2.04 ± 0.05ef

Drought + G. oblongata 89.4 ± 0.10f 41.3 ± 0.44e 65.8 ± 3.52ef 2.16 ± 0.02e

Giza 179 Well-watered 123.8 ± 0.36c 43.2 ± 0.68de 75.4 ± 2.86de 2.86 ± 0.04a

T. ornate 172.7 ± 0.87a 65.5 ± 0.80a 119.3 ± 3.11a 2.63 ± 0.03b

G. oblongata 147.1 ± 0.68b 62.4 ± 1.63a 118.8 ± 0.84a 2.35 ± 0.06de

Drought 83.0 ± 1.65g 33.1 ± 0.34g 66.2 ± 3.18f 2.50 ± 0.07b

Drought + T. ornate 117.3 ± 1.08d 49.1 ± 0.58c 99.4 ± 2.80b 2.38 ± 0.04cd

Drought + G. oblongata 107.5 ± 0.31e 44.1 ± 1.53d 81.7 ± 0.33c 2.43 ± 0.08c

LSD at 0.05% 1.04 1.18 3.33 0.069
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they reflect on the chlorophyll contents. Our findings on the 
stimulatory effect of the investigated seaweeds on the con-
tent of photosynthetic pigments were similar to the findings 
of Kumar (2014) and Ali et al. (2022) on tomato and okra, 
respectively, plants.

Changes in Soluble Sugars, Soluble Proteins, 
Proline, and Lipid Peroxidation Products

Sugars are considered the first organic compounds to be 
synthesized in plants as metabolic photosynthetic products. 
A water deficit impacts the metabolism of carbohydrates, 
and this causes the formation of a group of compatible 
solutes that act as osmolytes to maintain leaf cell turgor, 
which can be affected by stress conditions (Rolland et al. 
2006; Mahmood et al. 2020). Our study clearly showed 
that drought stress significantly increased the total soluble 
sugars in seedlings of the rice cultivars Giza 177 and Giza 
179. The percentage was noticeably higher in Giza 177, at 
152.3%, than in Giza 179, at 88.9%, compared with their 
corresponding controls grown under well-watered condi-
tions. The mechanism of accumulation of soluble sugars in 
plants is recognized as an osmotic regulation that is closely 
related to the severity of the plant drought stress (Shehab 
et al. 2010; Usman et al. 2013; Maisura et al. 2014). The 
percentages of our findings might be attributed to the role 
of soluble sugars in scavenging ROS, which enhanced water 
uptake from drying soil and was associated with improved 
plant tolerance under drought conditions. Our results were 
in agreement with those of Li et al. (2020) who found that 
increased drought intensity was responsible for an increased 
sugar content in maize plants. In addition, the application 

of either G. oblongata or T. ornate to soil significantly 
increased the total soluble sugars (Table 6) in both the 
stressed rice cultivars. Such a percentage of total soluble 
sugars of seaweed-treated rice plants might be attributed to 
the effect of the applied algae on the mitigation of the injuri-
ous impacts of drought stress on chloroplasts. The results in 
this study were in agreement with those of El Boukhari et al. 
(2023), who reported that the application of Fucusspiralis, 
Ulvalactuca, and Ascophyllum nodosum improved the levels 
of soluble sugars in faba bean plants as compared with the 
control as a response to drought stress.

The synthesis of protein, as well as its degradation, is 
one process affected by drought stress in plants. The soluble 
protein content is an important sign of the plant’s physiologi-
cal status (Doganlar and Atmaca 2011). In the current study, 
the increase in the total soluble protein content was noticed 
in both Giza 177 and Giza 179 planted under drought stress 
(see Table 6). This increase was more pronounced in Giza 
177. The decrease in the total soluble protein during drought 
stress could be due to the appearance of new stress proteins 
(Jiang and Huang 2002). Furthermore, the increment in the 
total soluble protein content might be the cells compensat-
ing for both that have been deactivated due to ROS binding 
(Seregin and Ivanov 2001; Lamhamdi et al. 2010). Moreo-
ver, it could be that drought causes disturbances in the nitro-
gen metabolism of many plants. The results in Table 6 indi-
cated that the cultivation of the investigated rice cultivars in 
soil amended with G. oblongata or T. ornate significantly 
induced the further accumulation of total soluble proteins 
in both cultivars. The increases in total soluble proteins in 
stressed plants grown in algae-treated soil were consistent 
with the findings of Xu and Leskovar (2015) and Kapur et al. 

Table 6  Influence of amended soil with either Turbenaria ornate or Galaxaura oblongata on soluble sugar, soluble protein, proline, and MDA 
contents of the two rice cultivars Giza 177 and Giza 179 grown under drought condition

Results are shown as a mean of three replicates ± SE. The values with the same letters in the same column are non-significant

Cultivar Parameters/treatments Soluble sugar Soluble protein Proline MDA (nmol/g Fwt)
(mg/g Fwt)

Giza 177 Control 8.64 ± 0.008d 10.56 ± 0.10i 1.12 ± 0.008d 0.037 ± 0.003c

T. ornate 5.37 ± 0.09f 11.43 ± 0.04h 0.81 ± 0.02def 0.014 ± 0.003i

G. oblongata 4.40 ± 0.10g 14.06 ± 0.22ef 1.09 ± 0.02de 0.016 ± 0.001i

Drought 10.65 ± 0.26c 13.25 ± 0.44f 2.62 ± 0.01c 0.080 ± 0.003a

Drought + T. ornate 12.58 ± 0.29a 15.31 ± 0.37bc 3.56 ± 0.10b 0.033 ± 0.008e

Drought + G. oblongata 11.27 ± 0.30b 14.93 ± 0.17de 3.76 ± 0.10b 0.028 ± 0.003f

Giza 179 Well-watered 7.55 ± 0.03e 12.75 ± 0.10g 0.89 ± 0.008def 0.031 ± 0.003e

T. ornate 3.34 ± 0.06h 13.75 ± 0.22fg 0.71 ± 0.01ef 0.028 ± 0.003f

G. oblongata 3.70 ± 0.06h 15.62 ± 0.31cd 0.65 ± 0.005f 0.022 ± 0.003h

Drought 11.48 ± 0.16b 14.93 ± 0.07d 2.95 ± 0.08c 0.048 ± 0.003b

Drought + T. ornate 13.64 ± 0.14a 16.56 ± 0.22b 4.10 ± 0.26a 0.025 ± 0.003g

Drought + G. oblongata 13.50 ± 0.28a 17.68 ± 0.24a 4.32 ± 0.16a 0.036 ± 0.001d

LSD at 0.05% 0.263 0.344 0.144 0.0009
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(2018) for spinach and strawberry plants, respectively; they 
reported that seaweeds enhanced the edible quality of plants 
by stimulating the accumulation of total soluble proteins. 
The algal extract may have a potential role in diminishing 
the injurious effects of drought stress on plant productivity. 
This is due to the rich seaweed, which has vital compo-
nents that participate in mitigating the adversarial effects 
of drought stress (El-Sayed et al. 2015; Fouda et al. 2022).

Proline is an amino acid with many functions; it per-
forms as a signaling compound, an osmoprotectant, and 
a stress-tolerance marker (Ahmad et al. 2009; Liu et al. 
2011). It adjusts the cells’ osmotic pressure; limits the pro-
tein denaturation, membrane constancy, and stabilization 
of enzymes; protects cells against stress and ROS-triggered 
damage; and maintains the balance of nutrients via water 
transport (Kartashov et al. 2008; Ivanov et al. 2013). In the 
current study, the imposition of drought stress stimulated the 
buildup of proline in the two investigated rice cultivars. The 
proline level in the Giza 177 stressed seedlings was higher 
than that in the Giza 179 stressed seedlings. Soil amend-
ment with G. oblongata or T. ornate stimulated an enor-
mous augmentation of proline. The overexpression of pro-
line was determined by its metabolism and transport through 
cells, as well as diverse cellular compartments (Szabados 
and Savoure 2010). Moreover, the massive upregulation of 
proline biosynthesis under drought conditions was due to 
the genes involved in this process (Armengaud et al. 2004). 
The tolerance mechanism was also associated with osmotic 
adjustment and turgor maintenance. This mechanism led 
to the upregulation of some osmolytes such as proline, 
which caused a decline in the cellular osmotic potential and 
affected the increase of leaf turgor (Armengaud et al. 2004; 
Trovato et al. 2008), scavenging of ROS, stabilization of 
protein, and maintenance of membrane integrity (Ashraf and 
Foolad 2007; Liu et al. 2011). The overproduction of pro-
line in stressed plants was correlated with the plant’s stress 
tolerance (Anjum et al. 2011). The high levels of proline in 
stressed rice plants grown in soil amended with G. oblon-
gata or T. ornate caused the plants to be more tolerant than 
the plants grown in untreated soil (see Table 6). Previous 
studies reported an enhancement in the accumulation of pro-
line content in seaweed-treated plants grown under drought 
conditions, thus might be due to the lipophilic components 
(LPC) existing in seaweeds, as these could enhance the pro-
line content (Sangha et al. 2014). Previous studies reported 
that the application of A. nodosum algae caused an increase 
in proline levels in drought-stressed bean plants (Renuka and 
Rathinavel 2006; Carvalho et al. 2018).

Notably, drought stimulated the liberation of ROS as 
hydrogen peroxide, as well as the superoxide radical, so 
it was able to first attack the phospholipids of the plasma 
membrane and deactivate the enzymes of the SH group. 
In response to drought conditions, the generation of ROS 

exceeded the capacity of the antioxidant defense system and 
caused a loss of membrane stability; this was allied with 
an intensification in permeability and an injury of integ-
rity (Blokhina et al. 2003). Therefore, the capability of 
plasma membranes to regulate the rates of entry and egress 
of ions in and out of a cell was considered a sign of mem-
brane injury. The results of this investigation, as shown in 
Table 6, showed that drought stress induced a significant 
intensification in the lipid peroxidation product malondi-
aldehyde (MDA) in Giza 177 and Giza 179. The increase 
in MDA levels was parallel with the increase in hydrogen 
peroxide  (H2O2) levels in the two rice cultivars, and this 
resulted in increased membrane fluidity and, consequently, 
enhanced membrane permeability (Reddy et al. 2004; Zhou 
et al. 2007). Cultivar Giza 177 exhibited greater increases in 
MDA and  H2O2 content than cultivar Giza 179; this could 
be evidence of a greater degree of membrane damage and, 
thereby, a high susceptibility of Giza 177 to drought com-
pared with Giza 179 (see Table 6 and Fig. 1). The reduction 
in membrane damage in both rice cultivars when grown in 
soil amended with G. oblongata or T. ornate, as evident by 
the lower values of MDA and  H2O2, could be due to the high 
activity of antioxidant enzymes in stressed rice seedlings. 
An increase in the activities of antioxidant enzymes imposed 
by drought stress might buffer the increased generation of 
ROS and enhance the protective strategy for eliminating 
the oxidative damage generated by drought stress (Gunes 
et al. 2007). The fact that the  H2O2 level was reduced in 
the drought-stressed seedlings of both rice cultivars sug-
gested that the higher activities of scavengers such as CAT, 
POX, and APX were sufficient to eliminate  H2O2 (Bray et al. 
2000). The data in this study were in agreement with those 
of Jacomassi et al. (2022), who reported that the MDA con-
centration was reduced in sugarcane plants grown in soil 
amended with seaweed extract.

Changes in the Activities of Some Antioxidant Enzymes

Plants have enzymatic and nonenzymatic antioxidants which 
can serve as an effective defense system. It can attenuate 
the augmented production of ROS and build up a protective 
mechanism to eliminate the damage inflicted by oxidative 
stress (Diaz et al. 2001). The enzymatic antioxidants assayed 
in this work were peroxidase (POX), catalase (CAT), and 
ascorbate peroxidase (APX), and the nonenzymatic com-
pounds assayed included ascorbic acid, total phenols, and 
flavonoids. In plants, there is a balance between antioxi-
dant enzymes and ROS that extremely alterations, hinder-
ing plant growth in stressful conditions and reducing plant 
homeostasis; decline in ROS accumulation in plants treated 
with seaweeds (Dutot et al. 2012). The activities of CAT, 
POX, and APX in the present study were markedly increased 
in the stressed rice cultivars grown in soil amended with 
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G. oblongata or T. ornate (Table 7). The application of G. 
oblongata or T. ornate caused increases in the activities of 
CAT and POX in stressed rice seedlings, and this was asso-
ciated with a significant reduction in the  H2O2 level. Fur-
thermore, antioxidant enzyme activities improved with the 
application of seaweeds, which mitigate ROS damage and 
return cellular homeostasis in plants (Elansary et al. 2017). 
The increase in the enzyme activities of CAT, POX, and 
APX under conditions of abiotic stress reduces the risk of 
membrane damage and returns plants to homeostasis (Gill 

et al. 2002). The present results showed increased activities 
of APX, CAT, and POX in rice plants grown in soil amended 
with our investigated seaweeds (Table 7). The results were 
in accordance with the results of Sujata et al. (2023), who 
showed that seaweeds were responsible for increased anti-
oxidant enzymes in Brassica juncea (L.). This increase 
might be attributed to the potential for seaweed extracts to 
upregulate the activities of the antioxidant enzymes APX, 
CAT, and POX; this would be related to their endogenous 
bioactive components (O’Sullivan et al. 2011). The results 

Fig. 1  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on hydrogen peroxide  (H2O2) 
content of the two rice cultivars 
Giza 177 and Giza 179 grown 
under drought conditions. 
Results are shown as a mean of 
three replicates; the bars on the 
column show ± SE
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Table 7  Influence of amended soil with either Turbenaria ornate or Galaxaura oblongata on catalase (CAT), peroxidase (POX), and ascorbate 
peroxidase (APX) activities of the two rice cultivars Giza 177 and Giza 179 grown under drought condition

Results are shown as a mean of three replicates ± SE. The values with the same letters in the same column are non-significant

Cultivar Parameters/treatments CAT (mM of  H2O2  g−1 
FW  min−1)

POX (amount of Quinon  g−1 
FW  min−1)

APX (mM of ascorbate 
oxidized  g−1 FW  min−1)

Giza 177 Control 0.19 ± 0.003hi 2.12 ± 0.01g 8.78 ± 0.04e

T. ornata 0.29 ± 0.023f 2.53 ± 0.02f 7.92 ± 0.01g

G. oblongata 0.33 ± 0.003de 2.80 ± 0.02e 8.41 ± 0.006f

Drought 0.24 ± 0.008gh 2.74 ± 0.008e 9.02 ± 0.005d

Drought + T. ornate 0.60 ± 0.005a 3.12 ± 0.04d 10.48 ± 0.07a

Drought + G. oblongata 0.55 ± 0.003b 3.41 ± 0.07c 9.83 ± 0.05b

Giza 179 Well-watered 0.16 ± 0.003i 0.61 ± 0.02i 5.65 ± 0.005k

T. ornata 0.33 ± 0.030c 1.45 ± 0.003h 6.65 ± 0.21i

G. oblongata 0.30 ± 0.008e 1.55 ± 0.02h 6.19 ± 0.006j

Drought 0.26 ± 0.015fg 2.32 ± 0.07f 7.71 ± 0.02h

Drought + T. ornate 0.36 ± 0.005cd 4.95 ± 0.09b 9.35 ± 0.04c

Drought + G. oblongata 0.38 ± 0.003c 6.08 ± 0.01a 10.46 ± 0.08a

LSD at 0.05% 0.018 0.062 0.104
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in this study agreed with the findings of Mansori et al. 
(2015), who reported that when the seaweeds Ulva rigida 
and Fucus spiralis were applied to bean plants exposed to 
drought conditions, the result was the activation of the anti-
oxidant enzymatic system, including CAT and APX, and an 
increase in total phenolic compounds, which led to improved 
protection of the plants against peroxidation triggered by 
drought stress.

Changes in Levels of Nonenzymatic Antioxidant 
Compounds such as Ascorbic Acid (AsA), Total Phenolic 
Compounds, and Flavonoids

Abiotic stresses such as drought, salinity, and temperature 
extremes can enhance the assembly of secondary metabolites 
such as phenols (Çirak et al. 2007). In this study, the content 
of total phenols and flavonoids showed a significant increase 
in both rice cultivars under investigation exposed to drought 
stress compared with fully irrigated plants (Figs. 2 and 3). 
Polyphenols are considered the most important secondary 
metabolite class of antioxidants, and they efficiently inhibit 
lipid peroxidation products by scavenging ROS; therefore, 
the polyphenols increase the adaptation to abiotic oxidative 
stress (Pandey and Rizvi 2009; Krol et al. 2014; Stagnari 
et al. 2016). Other studies showed an accumulation of phe-
nolic compounds in response to drought in Spanish (Xu and 
Leskovar 2015), tomatoes (Patanè et al. 2021), and wheat 
(Ali et al. 2022). In addition, algal treatments of soil with 
either G. oblongata or T. ornate induced further accumula-
tions of total phenols and flavonoids in both stressed rice 
cultivars (Fig. 2). This accumulation might be the cause of 

the strong effect of algal extracts in increasing the polyphe-
nol content, especially the content of flavonoids, in stressed 
plants. Also, due to the accumulation of some enzymes such 
as phenyl ammonia lyase (PAL) as well as chalcone synthase 
(Naikoo et al. 2019). Mansori et al. (2015) mentioned that 
the application of the seaweeds U. rigida and F. spiralis 
induced the accumulation of total phenols in bean plants.

The nonenzymatic antioxidant ascorbic acid (AsA) was 
measured in both the investigated rice cultivars exposed to 
drought stress (Fig. 4). A more pronounced increase was 
observed in Giza 179, which was 73.6% over the control 
value. Our results supported the findings of Pourghasem-
ian et al. (2020) for sesame plants exposed to water deficit 
conditions. These findings may be attributed to the highly 
significant antioxidant capacity of AsA to detoxify ROS, 
minimize MDA levels, and mitigate other types of physi-
ological deterioration in plants; it is considered one of the 
defense mechanisms plants employ for drought tolerance 
(Miller et al. 2010; Xu et al. 2010). Moreover, soil amended 
with either G. oblongata or T. ornate led to increased AsA 
levels in the two investigated rice cultivars (see Fig. 4).

In this study, the total antioxidant capacity of rice seed-
lings and the evaluation of drought tolerance in rice plants 
were determined by fluorescence recovery by photobleach-
ing (FRAP) and the DPPH assay for screening plants for 
stress tolerance (Rekika et al. 2005; Ozgen et al. 2006a, 
b). FRAP found that the antioxidant capacity markedly 
increased in both rice cultivars under drought stress com-
pared with the fully irrigated plants (Fig. 5). Moreover, 
the application of G. oblongata or T. ornate extract to soil 
increased the total antioxidant capacity levels in both the 

Fig. 2  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on total phenol content of the 
two rice cultivars Giza 177 and 
Giza 179 grown under drought 
conditions. Results are shown as 
a mean of three replicates; the 
bars on the column show ± SE
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investigated stressed rice cultivars. This finding may be 
because the seaweeds preserved the highest antioxidant 
activity in rice plants by forming a protective barrier on the 
surface of the plants and inhibiting the reduction in anti-
oxidant activity. On the other hand, the evaluation of the 
total antioxidant capacity by the DPPH scavenging method 
showed an opposite trend to that of the FRAP method in 
both rice cultivars grown under drought stress compared 
with their corresponding controls (see Figs. 5 and 6).

Gene Expression by RT‑PCR

Plants have numerous types of aquaporin proteins, and  
they participate in the tolerance of and maintain the water 
balance of stressed plants (Hu et  al. 2012; Ayadi et  al.  
2019). The plasma membrane intrinsic proteins (PIPs) 
belong to the AQP family and have a potential role in  
transporting water through the plasma membranes in many 
types of plants (Martre et al. 2002; Tyerman et al. 2002). 

Fig. 3  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on flavonoid content of the two 
rice cultivars Giza 177 and 
Giza 179 grown under drought 
conditions. Results are shown as 
a mean of three replicates; the 
bars on the column show ± SE

i

f

h

d

a a

h
g

h

e

c
b

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
g/

g 
Fw

t

Treatments

Giza 177

Giza 179

Fig. 4  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on ascorbic acid (AsA) contents 
of the two rice cultivars Giza 
177 and Giza 179 grown under 
drought conditions. Results are 
shown as a mean of three rep-
licates; the bars on the column 
show ± SE
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In the present study, the results obtained from real-time 
polymerase chain reaction (RT-PCR) analysis revealed that 
drought stress induced a downregulation of PIP1;4 and 
PIP2;7 expression. Our results were in accordance with 
those of Porcel et al. (2006), who studied PIPs in Glycine 
max and Lactuca sativa plants. This downregulation was 
accompanied by overexpression of the PIP1;4 and PIP2;7 
genes in stressed rice plants grown in soil amended with 
G. oblongata or T. ornate (Fig. 7a and b) compared with 
their corresponding controls. This overexpression might 
have had a main role in retarding the growth of seedlings 

in response to drought conditions (Jang et al. 2007). The 
most pronounced downregulated gene expression value  
was observed in the PIP2;7 genes of Giza 179. In addition,  
the NCDE5 gene related to abscisic acid biosynthesis 
showed downregulation under drought stress in the Giza 
179 cultivar; however, a reverse pattern was significantly 
observed in the rice-sensitive cultivar Giza 177 (see Fig. 7c). 
The soil amended with either G. oblongata or T. ornate 
enhanced the overexpression of the NCDE5 gene in the 
two stressed rice cultivars compared with the controls (see 
Fig. 7c). This might be due to stimulation by the PIP1;4 

Fig. 5  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on total antioxidant capacity 
(TAC) content of the two rice 
cultivars Giza 177 and Giza 179 
grown under drought condi-
tions. Results are shown as a 
mean of three replicates; the 
bars on the column show ± SE

Fig. 6  Influence of amended 
soil with either Turbenaria 
ornate or Galaxaura oblongata 
on DPPH percentage of the 
two rice cultivars Giza 177 and 
Giza 179 grown under drought 
conditions. Results are shown as 
a mean of three replicates; the 
bars on the column show ± SE
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and PIP2;7genes of the synthesis of ABA in stressed plants, 
which played an efficient role in the tolerance of plants 
exposed to drought (Li et al. 2015). In the present study, 
the application of investigated seaweeds induced a partial 
stomatal closure, associated with changes in the expression 
levels of genes involved in ABA-responsive and antioxidant 
systems in response to drought stress to eliminate ROS and 
improve the drought tolerance of rice plants. Our results 
are in alliance with the findings of Ali et al. (2022) on ork 
plants. The maximum overexpression of the NCDE5 gene 
was noticeable in Giza 177; it reached an approximately 
16-fold change. Transcription factors (TFs) are considered 
to be common regulators of many vital processes of plants, 
beginning during development and continuing with defense 
mechanisms. MYB is one TF that can play a crucial role 
in the maintenance of a plant’s tolerance to environmental 
stresses (Erpen et al. 2018). As the data in Fig. 7d show, 

the downregulation of Myb-R1gene expression in both Giza 
177 and Giza 179 was observed under drought conditions. 
The amendment of soil by either G. oblongata or T. ornate 
improved the overexpression of the Myb-R1gene in the 
two stressed rice cultivars compared with the controls (see 
Fig. 7d). Chauhan et al. (2020) like us, found a significant 
difference in the overexpression of the OsMyb-R1 gene in 
rice plants grown in treated soil. Our results suggested that 
the overexpression of the OsMyb-R1gene, when triggered 
by drought stress, could be a main factor in the control of 
the physiological, biochemical, and molecular responses to 
stresses (Zhang et al. 2014).

Finally, to summarize the comparisons between groups, 
the interrelationships among the investigated variables in 
terms of Pearson’s correlation test were plotted as a heat-
map (Fig. 8). The blue boxes in Fig. 8 indicate a positive 
correlation between variables, and the red boxes indicate 

(A) (B)

(C) (D)

Fig. 7  Influence of amended soil with either Turbenaria ornate or 
Galaxaura oblongata on the relative mRNA gene expression fold 
change, which A represented PIP1;4, B PIP2;7, C NCDE 5; and D 

OsMyb-R1 of the two rice cultivars Giza 177 and Giza 179 grown 
under drought condition. Results are shown as a mean of three repli-
cates; the bars on the column show ± SE
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a negative correlation. The principle component analysis 
(PCA) summarized the similarities and arranged the dif-
ferent samples in four groups: group 1 consisted of sam-
ples 11, 12, 5, and 6; group 2 of samples 8, 9, 3, and 2; 
group 3 of samples 10 and 4; and group 4 of samples 1 
and 7 (Fig. 9).

Conclusions

In this finding, we examined and studied the mechanism of 
drought as well as the relative effect of seaweeds G. oblon-
gata and T. ornate incorporated soil as biostimulant on two 
rice cultivars’ growth and crop productivity by determin-
ing some physiological and biochemical analyses as well as 
molecular aspects. Rice plants grown in algal-enriched soil 
under drought conditions presented adaption by accumulat-
ing some compatible solutes such as proline and soluble 
sugar to regulate cellular turgor and produce antioxidants 
like phenolic compounds and AsA accompanied with dimin-
ished the levels of MDA and  H2O2 to counter oxidative dam-
age. They also upregulation PIP1;4, PIP2;7, NCDE5, and 
Myb-R1 drought-responsive genes, improving rice tolerance 
and stress resilience. We found that this mechanism of tol-
erance worked better in the drought-resistant cultivar Giza 
179 than in the drought-sensitive cultivar Giza 177. Further 
research is needed for comprehensive insights.
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