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Abstract
Tea plant (Camellia sinensis) has very long history of cultivation and abundant germplasm resources in China. Purple bud 
is a characteristic variety, which has attracted the attention of breeding researchers because it accumulated a large number of 
anthocyanins naturally. In many species, R2R3-MYB transcription factors (TFs) were proved to be involved in the regulation 
of anthocyanin biosynthesis. Research on anthocyanin metabolism has been relatively clear in some species, but that needs 
to be further elucidated in tea plants. In this research, an R2R3-MYB transcription factor CsMYB113 related to the antho-
cyanin accumulation regulation was identified from tea plants. Spatial and temporal expression analysis revealed differential 
expression of CsMYB113 among different tissues and organs, with highest expression occurring in the roots. Subcellular 
localization assays showed that CsMYB113 localized in the nucleus. Ectopic expression of CsMYB113 increased pigmen-
tation and anthocyanin contents by the upregulation of the expression levels of genes in anthocyanin biosynthesis pathway 
among different tissues of Arabidopsis. Moreover, transient overexpression of 35S::CsMYB113 in tea plant increased the 
anthocyanin contents in the leaves. Our results indicated that CsMYB113 plays important role in the anthocyanin biosyn-
thesis regulation in tea plants. It will also provide useful candidate gene for the modification of anthocyanin metabolism by 
genetic engineering in plants.
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Introduction

Anthocyanin, which is classified to the sub-class of flavo-
noids, is one of the most important metabolites existing in 
horticultural crops (Sun et al. 2016). Anthocyanin has been 
proved to participate in plant multiple biological and physi-
ological processes including pigmentation, pollen trans-
mission, seed dispersal, UV radiation protection, cold tem-
peratures resistance, drought stress response, and pathogen 
defense (Karageorgou and Manetas 2006; Liu et al. 2018a; 
Stuurman et al. 2004; Castellarin et al. 2007; Christie et al. 
1994). Moreover, anthocyanin also exhibits biological activi-
ties in humans, such as anticancer, antioxidant, and cardio-
vascular diseases protection (He and Giusti 2010; Clifford 
et al. 2015). Due to these benefits, the high anthocyanin con-
tent (purple pigmentation) has become one of important traits 
for the breeders in tea plant (Maritim et al. 2021).

Almost all the pathway genes related to anthocyanin metab-
olism were identified to date, and these genes are showing 
higher similarity between many species including tea (Xi et al. 
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2019; Matsui et al. 2008; Wei et al. 2019). The pathway is 
catalyzed stepwise by a series of biosynthetic enzymes, such 
as cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), 
chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), 
flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase 
(F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyani-
din synthase (ANS), anthocyanin O-methyltransferase gene 
(AOMT), UDP glucose: flavonoid 3-glucosyltransferase 
(UFGT), anthocyanidin-3-glucoside rhamnosyltransferase 
(3RT), and methyltransferase (MT) (Jaakola 2013; Perez-Diaz 
et al. 2016). It is generally demonstrated that the structural 
genes directly involved in anthocyanin metabolism are acti-
vated by numerous regulators, comprising MYB, basic helix-
loop-helix (bHLH), and WD-repeat proteins (WDR) (Xu et al. 
2015; Peng et al. 2019; Qi et al. 2020; Deng et al. 2021). These 
transcription factors (TFs) could independently or combine 
with cofactors to function as regulators in anthocyanin metabo-
lism (Baudry et al. 2004; Quattrocchio et al. 2006). In most 
species, the MYB TFs superfamily is known as the one of larg-
est families. Based on the number of MYB domain repeats, the 
MYB family can be divided into four classes, including single 
repeat (1R-MYB), two repeats (R2R3-MYB), three repeats 
(3R-MYB), and four repeats (4R-MYB) (Dubos et al. 2010). 
So far, a lot of R2R3-MYB TFs related to the anthocyanin 
biosynthesis regulation have been identified in many plants, 
including AtMYB75/PAP1 in Arabidopsis (Baudry et al. 
2004), MdMYB10 in apple (Espley et al. 2007), IbMYB1a 
in sweet potato (Chu et al. 2013), SmMYB1 in eggplant 
(Docimo et al. 2016), FvMYB10 in strawberry (Zhang et al. 
2017), PpMYB15 in peach (Cao et al. 2019), and PpMYB140 
in pear (Ni et al. 2021).

Tea (Camellia sinensis) as one of the oldest (since 3000 
BC) commercial crops and most popular nonalcoholic bev-
erage is widely cultivated in over 50 countries and regions 
(Fang et al. 2012; Mondal et al. 2004). The popularity of 
tea is not only attributed to its specific aroma and taste, but 
also owing to the health benefits for human body. These 
medicinal properties derived from the various secondary 
metabolites in tea plants, such as catechins, anthocyanins, 
and theanine (Shi et al. 2011). However, anthocyanins were 
trace amount detected in most of the tea varieties (He et al. 
2018). In recent years, purple foliage has attracted a lot of 
attention by the tea plant breeding programmers. Many 
purple strains have been reported in different tea growing 
countries (Hsu et al. 2012; Kerio et al. 2012; Kilel et al. 
2013; Jiang et al. 2013). With the great efforts of many 
researchers, some R2R3-MYB TFs related to the anthocya-
nin pathway regulation have been identified from tea plants. 
The R2R3-MYB TFs CsAN1 could combine with CsGL3 
and CsTTG1 and activate the expression of genes involve in 
anthocyanin biosynthesis (Sun et al. 2016). In ectopic trans-
genic tobacco plant leaves, CHS and 3GT were activated by 
the CsMYB6A which result in the significantly increment of 

anthocyanins (He et al. 2018). In transgenic tobacco lines, 
CsMYB5a and CsMYB5e were reported to play important 
role in the regulation of anthocyanins and proanthocyanidins 
(Jiang et al. 2018). The PAP1-like MYB gene was proposed 
as a key regulator in controlling anthocyanin metabolism 
(He et al. 2018; Wei et al. 2016). CsMYB75 promoted the 
biosynthesis of catechins and anthocyanins by upregulat-
ing the expression of CsGSTF1 in transgenic tobacco (Wei 
et al. 2019). Recently, a collection of 122 R2R3-MYB TFs 
have been identified in the chromosome level genome from 
Camellia sinensis (Chen et al. 2021). Therefore, R2R3-MYB 
TFs related to anthocyanin metabolism regulation still need 
to be explored fatherly in tea plants.

In this research, the biological function of the MYB TF 
CsMYB113 which related to anthocyanin metabolism was 
studied. The phylogenetic and localization study indicated 
CsMYB113 belonging to R2R3-MYB TF family. Ectopic 
expression of CsMYB113 in Arabidopsis led to significantly 
increased pigmentation and production of anthocyanins in 
roots, seeds, stems, and leaves. The real-time quantitative 
PCR (qRT-PCR) analyses revealed that CsMYB113 activates 
the expression of anthocyanin-related structural genes in 
35S::CsMYB113 Arabidopsis transgenic plants. Moreover, 
the transient expression assays were carried out in the leaves 
of tea plant for functional verification. This study advances 
our knowledge related to the anthocyanin metabolism regu-
lation for tea plant.

Materials and Methods

Plant Materials

Five-year-old tea plant cultivars [Camellia sinensis (L.) 
O. Kuntze cv. “Fudingdabai,” “Yingshuang,” and “Wuni-
uzao”] were planted in the Tea Germplasm Resources Nurs-
ery, Huazhong Agricultural University (HAZU, Wuhan, 
China). Nicotiana benthamiana was used for subcellular 
localization analysis and Arabidopsis thaliana ecotype 
Columbia was used for gene overexpression experiments. 
These two plant materials were planted in growth chamber 
with a 16-h light/8-h dark photoperiod under illumination of 
10,000 lx (normal intensity). The growth temperature was 
set to 22/19 °C (light/dark). All the collected samples were 
rapidly snap-frozen in liquid nitrogen, and then transferred 
to − 80 °C for the further processing.

Total RNA Extraction and cDNA Synthesis

The RN09-EASYspin plant RNA kit (Aidlab, Beijing, 
China) was used to isolate total RNA for all the sampled 
materials. One percent agarose gel electrophoresis was 
employed to assess the quality for all the extracted RNA. 
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RNA concentrations and integrity were checked by the Qubit 
RNA Assay Kit in a Qubit 2.0 Fluorometer (Life Technolo-
gies, USA). The single strand cDNA was synthesized from 
1 μg of each total RNA using the TRUEscript RT Kit with 
gDNA Eraser (Aidlab, Beijing, China).

Isolation of CsMYB113 Gene and the Sequence 
Analysis

The predicted nucleic acid sequences of CsMYB113 genes 
have been screened out from C. sinensis genome database 
and our transcriptomic data (Guo et al. 2017; Wei et al. 
2018). The open reading frame (ORF) of CsMYB113 was 
cloned by using 2 × Ultra-Pfu Master Mix (Dye Plus) (Aid-
lab, Beijing, China) with gene-specific primers (forward 
primer: 5′-ATG GAA GGT GTT CCT TTA GGAG-3′; reverse 
primer: 5′-TCA AAG ATC CCA AAG GTC CAT-3′). PCR 
products was ligated into pTOPO-Blunt Simple vector 
(Aidlab, Beijing, China) and checked through sequencing 
(TSINGKE, Beijing, China). ProtComp 9.0 of softberry 
(http:// linux1. softb erry. com) was used to predict the sub-
cellular localization signal of CsMYB113. ProtParam tool 
(http:// web. expasy. org/ protp aram/) was used to calculate the 
theoretical molecular weight and isoelectronic point (pI). 
The ScanProsite (Expasy; SIB Swiss Institute of Bioinfor-
matics, Switzerland) was used to analyze conserved motifs 
of CsMYB113 proteins. DNAMAN version 6.0 was utilized 
to multiple sequence alignment analysis.

Based on the neighbor-joining (NJ) method with 1000 boot-
strap replications, molecular Evolutionary Genetics Analysis 
(MEGA) version 7.0 was used to construct phylogenetic tree. 
The sequences of R2R3-MYB family from ten plants including 
tea were downloaded from the BLAST of NCBI (https:// blast. 
ncbi. nlm. nih. gov/ Blast. cgi). These above gene accession IDs are 
as follows: CsAN1 (KU745295), AcMYB110a (AHY00342), 
MdMYB1 (ADQ27443.1), MdMYB3 (AEX08668), MdMYB10 
(ACQ45201.1), MdMYB110a (BAM84362.1), AtMYB90/PAP2 
(75,338,996), AtMYB75/PAP1 (75,333,682), AtMYB123/TT2 
(27,151,707), AtMYB113 (Q9FNV9), AtMYB114(Q9FNV8.1), 
VvMYBA1 (BAD18977), PcMYB10.6 (AKV89252.1), 
PcMYB10.1 (AKV89247.1), MrMYB1 (ADG21957), 
MrMYB2 (ADG21958), TaMYB14 (AFJ53059), FaMYB11 
(AFL02461), VvMYBPA1 (NP_001268160), VvMYBPA2 
(ACK56131), ZmMYBP (NP_001278607), CsMYB5a 
(ATC41981.1), CsMYB5e (ATC41985.1), and CsMYB6A 
(AQW35194.1).

Gene Expression Analysis

The gene expression was detected by the real-time quantitative 
PCR (qRT-PCR) with the Applied Biosystems StepOne Plus™ 

Real-Time PCR System (ABI, Foster City, USA). According to 
the manufacturer’s instructions of 2 × SYBR Green qPCR Mix 
(Aidlab, Beijing, China), the amplification program consisted 
of one cycle at 94 °C for 3 min, followed by forty cycles at 
94 °C for 10 s, 60 °C for 34 s, and then finally 60 °C for 1 h. 
The expression level of genes was calculated using the  2−∆∆Ct 
method (Livak and Schmittgen 2001); CsGAPDH (Camellia 
sinensis) and AtACTIN2 (Arabidopsis) were employed as the 
internal reference genes to monitor gene expression. Each bio-
logical sample was examined with three technical replicates. 
The gene-specific oligonucleotide primers utilized for qRT-
PCR are shown in Supplementary Table S1.

Subcellular Localization Analysis

To determine the subcellular localization, the ORF of 
CsMYB113 (without the stop codon) was sub-cloned into 
the BamHI and XbaI site of pCAMBIA2300-GFP vector 
(Wang et al. 2014) to fuse with GFP by using One Step 
Cloning Kit (Vazyme, Nanjing, China). Transient expres-
sion in tobacco (Nicotiana benthamiana) leaves was per-
formed as described previously (Sparkes et al. 2006). With 
the empty vector as a control, Agrobacterium tumefaciens 
(GV3101) harboring 35S::CsMYB113-GFP and nucleus 
co-localization marker CBLn-RFP (red) were infiltrated 
into 4-week-old tobacco epidermal cells together. The GFP 
fluorescence in transformed cells was detected under a con-
focal microscope (SP8, Leica, Wetzlar, Germany) within 
36–48 h. All transient expression experiments were repeated 
independently more than three times.

Transformation of Arabidopsis with CsMYB113

The plant expression vectors were constructed by using the 
Gateway Cloning System (Invitrogen, New York, USA). The 
completed ORF of CsMYB113 was cloned into pDONR221 
by BP reaction, and then inserted into a pH2GW7 vector 
by LR reaction. The expression vector (35S::CsMYB113-
pH2GW7) was transferred into Agrobacterium tumefaciens 
(strain GV3101). The Arabidopsis transgene lines were sub-
sequently conducted using the floral-dip method described 
previously (Clough and Bent 1998). Transgenic plants 
were chosen according to their resistance of hygromycin 
(Hyg). Putative transgenic Arabidopsis plants were selected 
on the Murashige and Skoog (MS) solid medium adding 
Hyg (50 mg/L). The positive transgenic plants were fur-
ther checked by genomic PCR and qRT-PCR analysis. The 
homozygous  T3 transgene lines were collected for antho-
cyanin content and qRT-PCR analysis.

http://linux1.softberry.com
http://web.expasy.org/protparam/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Transient Overexpression of CsMYB113 in the Leaves 
of Tea Plant

Transient expression assays in the leaves of tea plant were 
conducted as reported by Mo et al. (Mo et al. 2015), with 
some modification. Agrobacterium tumefaciens (strain 
GV3101) harboring empty vector and 35S::CsMYB113 
was cultured overnight in 50 ml LB liquid medium with 
rifampicin (50 mg/L) and spectinomycin (100 mg/L), respec-
tively. After being centrifuged, re-suspended, and incubated, 
the suspensions of Agrobacterium tumefaciens harboring 
empty vector and 35S::CsMYB113 were injected into the 
different sides of the same leaf using a 1-ml plastic syringe, 
respectively. Ten days after infiltration, different leaves were 
collected for the anthocyanin biosynthesis analysis.

Anthocyanin Extraction and Measurement

Anthocyanin in leaves of tea plant was extracted as described 
previously (Sun et al. 2016). After extracted, the absorb-
ance level of supernatant was detected in two absorbencies 
(535 nm and 650 nm), and the contents of anthocyanin were 
described as  A535–A650  g−1 fresh weight (FW). Each sample 
was calculated from three repeats. Anthocyanin in different 
tissues of A. thaliana was measured according to (Chen et al. 
2018). The supernatant was measured in two absorbencies 
(530 nm and 657 nm), and the contents of anthocyanin were 

described as  A530 − 0.25  A657. Each sample was calculated 
from three repeats.

Statistical Analysis

All data were expressed as a mean value from three tech-
nical replicates with error bars indicating ± SD. The one-
way ANOVA analysis of variance was used for identifica-
tion of significant difference. The results were considered 
statistically significant and indicated with asterisks when 
P < 0.01. Different letters indicate significant differences 
when α = 0.05 by using the multiple comparisons.

Results

Cloning and Sequence Analysis of CsMYB113

The CsMYB113 gene was cloned from the tea plant cultivar 
“Fudingdabai” by RT-PCR. The complete ORF sequence 
is 726 bp (Fig. 1) which encodes for a polypeptide of 241 
amino acids. The isoelectric point (pI) and molecular weight 
(MW) were 9.88 and 27.96 kDa, respectively. The gene 
sequence BLASTx against the Arabidopsis showed the high-
est similar with AtMYB113, and then, this gene was named 
as CsMYB113. Sequence analysis via the ScanProsite pro-
gram revealed that the CsMYB113 protein contained two 

Fig. 1  Identification and cloning of CsMYB113 gene from tea plants. A The predicted full-length of CsMYB113 gene; B gel map of amplification 
products; C nucleotides and amino acids sequences of CsMYB113 
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myb-type HTH (helix-turn-helix) DNA-binding domain pro-
files at N-terminus. Furthermore, the amino acid sequences 
similar with CsMYB113 were selected in other species, and 
multiple sequence alignment was performed. The result sug-
gested that the R2 and R3 domains were highly conserved in 
these species. Moreover, 13th, 33rd, and 53rd positions of 
the R2 domain encoded the same tryptophan residues, which 
were conducive to keep the stability of the “helix-turn-
helix” configuration of the MYB protein domain (Figs. 1 
and 2). Phylogenetic analysis indicated that CsMYB113 
was divided into subgroup 6 (S6) and similar with MYBs 
involved in anthocyanin biosynthesis regulation, suggesting 
that CsMYB113 may play important role in the anthocya-
nin metabolism regulation. CsMYB113 shared the highest 
amino acid sequence identity with tea plant CsAN1 (62%) 
and kiwifruit AcMYB110 (57.5%), respectively.

Relative Gene Expression Analysis of CsMYB113 
and the Subcellular Localization of Its Protein

To investigate the expression patterns of CsMYB113 gene 
in various tissues, qRT-PCR analysis was conducted to 
evaluate mRNA expression levels separated from ten tis-
sues of “Fudingdabai.” As shown in Fig. 3A, CsMYB113 
transcripts accumulated in all analyzed tissues. Overall, the 
transcript levels of CsMYB113 were the highest in the root, 
and decreased in the first leaf (FL). Second leaf (SL) showed 

the lowest expression level, which had no significant differ-
ence with other tissues, including the seed, bud, third leaf 
(TL), mature leaf (ML), old leaf (OL), stem, and flower.

To determine the subcellular localization of CsMYB113, 
the full-length ORF was fused in pCAMBIA2300 vector 
with the GFP reporter gene driven by the CaMV 35S pro-
moter. Then, the construct was transformed into Agrobacte-
rium and then infiltrated into tobacco epidermal cells. The 
results showed that GFP fluorescence in control (pCAM-
BIA2300-GFP) was ubiquitous distribution throughout the 
cell, while the GFP signal of CsMYB113-GFP overlaps with 
the nucleus co-localization fluorescence signal (as shown 
in pseudo colors green and red, respectively) (Fig. 3B). It is 
clearly indicated that CsMYB113 is exclusively localized in 
the nucleus of plant cell, which is similar with the CsAN1 
(Sun et al. 2016). These results indicated that CsMYB113 
is a transcription activator.

Overexpression of CsMYB113 Increased 
the Anthocyanin Contents in Transgenic Arabidopsis

To determine the potential role of CsMYB113 in the regula-
tion of anthocyanin biosynthetic pathway, the 35S::CsMYB113 
construct was employed to ectopically activate CsMYB113 
expression into Arabidopsis (Col-0). There was visible phe-
notypic difference between Col-0 (wide type) plants and 
the transgenic lines after growing in a 16/8-h (light/dark) 

Fig. 2  Conserved motif and phylogenetic analysis of amino acid 
sequences of CsMYB113 and anthocyanin-associated R2R3-MYB 
transcription factors in other species. A Conserved motifs analysis 
of CsMYB113. B Multiple sequence alignment of CsMYB113 and 
reported anthocyanin associated R2R3-MYB transcription factors 

in other species. C Phylogenetic tree of CsMYB113 and reported 
anthocyanin-associated R2R3-MYB transcription factors in tea and 
other plants. The green horizontal lines represent R2 domain and R3 
domain; the red arrows represent three tryptophan (w) residues
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photoperiod under illumination of 10,000 lx in growth cham-
ber. The overexpression of CsMYB113 resulted in the accu-
mulation of anthocyanins in hypocotyl, veins, stems, seeds, 
and roots (Fig. 4A–G). And the anthocyanin contents in four 
tissues were significantly increased in transgenic Arabidopsis 
compared with wild type (Figs. 4H and 5A).

Further research showed that in transgenic lines, the 
anthocyanin contents in leaf, stem, root, and seed increased 
by 6.7-, 41.7-, 29.0-, and 4.5-fold compared with the wild 
type (average of the three lines), respectively. It indicated 
that the relative anthocyanin contents had significant dif-
ferences in four tissues (Fig. 5). In order to verify whether 
the phenomenon is caused by the differential expression 

of CsMYB113, we detected the expression levels of 
CsMYB113 gene in four tissues of wild type (WT) and three 
overexpressing homozygous lines. The results showed that 
the successive decreasing order of the expression levels 
was tender stem, root, leaf, and seed (average of the three 
lines), which had the same trend as the increase folds of 
anthocyanin contents (Fig. 5). Therefore, we supposed that 
the differential expression of the CsMYB113 gene in four 
tissues leads to the differences in the anthocyanin contents. 
At the same time, combined with the results of CsMYB113 
is root-specific expression in C. sinensis, which could fur-
ther prove that the expression of CsMYB113 gene has obvi-
ous organizational differences.

Fig. 3  Expression profile analysis of CsMYB113. A The expression 
profile of CsMYB113 genes in different tissues and organs of “Fud-
ing dabai.” Data (error bars) are means (± SD) obtained from three 
technical replicates. Different letters indicate significant differences 

(α = 0.05). B Subcellular localization analysis of CsMYB113 in 
tobacco epidermal cells. Scale bar is 25 μm in the first row, 10 μm in 
the second row
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Overexpression of CsMYB113 Increased 
the Expression Levels of Anthocyanin Biosynthetic 
Genes

R2R3-MYB TFs play important roles in activating structural 
genes involved in the anthocyanin biosynthesis. To further 
study the regulation of CsMYB113 gene, the expression lev-
els of eight structural genes (AtPAL, AtCHS, AtCHI, AtF3H, 

AtF3’H, AtDFR, AtLDOX, AtUF3G) were detected between 
four tissues of wild-type and transgenic lines, respectively. 
In general, compared with the wild type, overexpressing of 
CsMYB113 could strongly increase the expression levels of 
AtCHI, AtF3H, AtDFR, AtLDOX, and AtUF3G (Fig. 6). In 
four tissues, the expression level of F3H gene was the most 
significantly upregulated by 5.5-fold in leaves (Fig. 6A), 
whereas the expression levels of CHI, F3H, and UF3G in 

Fig. 4  Phenotypes and antho-
cyanin contents of transgenic 
lines and wild type in Arabidop-
sis. A Phenotypes at hypocotyls 
of Arabidopsis seedlings. B 
Phenotypes of growing period. 
C Phenotypes of veins in the 
adult plants. D Phenotypes of 
stems in the adult plants. E 
Phenotypes of seeds. G Colors 
of tube during extracting antho-
cyanins from different tissues. F 
Phenotypes of roots

Fig. 5  Relative anthocyanin contents and expression level of 
CsMYB113 in different tissues of Arabidopsis. A Increase of antho-
cyanin contents in different tissues of Arabidopsis. B Relative expres-
sion of CsMYB113 in different tissues of Arabidopsis. Data (error 

bars) are means (± SD) obtained from three technical replicates. 
With wild type as control, asterisks indicate significant differences 
(P < 0.01)
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stems were increased by 13-, 39-, and 114-fold, respec-
tively (Fig. 6B). F3H, DFR, and UF3G genes in roots were 
upregulated by 42-, 20-, and 40-fold, respectively (Fig. 6C). 
The expression of each gene in seeds is less than fourfold 
(Fig. 6D). These results indicate that CsMYB113 can pro-
mote the expression levels of anthocyanin biosynthetic 
genes, thereby regulating the synthesis and accumulation of 
anthocyanin. However, the regulation profile has a certain 
difference, as CsMYB113 gene mainly upregulated different 
structural genes in the four tissues.

Transient Overexpression of CsMYB113 Stimulated 
Anthocyanin Accumulations in the Leaves of Tea 
Plant

With the development of research, transient transformation 
system has been established in many plants. It has the char-
acteristics of high efficiency, short cycle, and fast realization 
of gene function verification, and has been widely used in 
herbs (tobacco, tomato, Arabidopsis, rice) and woody plants 
(citrus, poplar). Therefore, we further analyzed the function 
of CsMYB113 gene by using the transient expression system. 
We determine the content of anthocyanin and the expression 

level of CsMYB113 gene in leaves (Fig. 7). Leaves trans-
formed with empty vector pK7WG2D (a) and target gene 
CsMYB113 (b) were collected, respectively. Control was set 
as the non-transformed leaves (ck). The results showed that 
the whole leaves grew well and were only slightly damaged 
near the injection hole. Moreover, phenotypic differences 
were observed among different treatments. Transformed with 
target gene CsMYB113 (b) appeared slight purple spots in 
leaves of “Fudingdabai” and “Wuniuzao” (Fig. 7A–C). The 
anthocyanin contents were significantly increased in leaves 
transformed with CsMYB113 gene (Fig. 7D). There was an 
almost twofold increase in leaves of three cultivars (P < 0.01).

Meanwhile, qRT-PCR analysis showed that there was a 
significant increased in the expression level of CsMYB113 
gene in transformed leaves (Fig. 7E). Compared with the 
non-transformed leaves (ck), the expression level increased 
almost 4.5 times in “Fudingdabai,” and almost 2 times in 
“Wuniuzao” and “Yingshuang.” The expression effect in 
“Fudingdabai” was better than that in the other two varieties. 
These results above further evidence that the CsMYB113 
gene could transient expression in leaves of tea plant and 
the existence of CsMYB113 could accelerate the synthesis 
of anthocyanin in tea leaves to a certain extent.

Fig. 6  Expression of structural genes of anthocyanin synthesis in different tissues of Arabidopsis. A Leaf. B Stem. C Root. D Seed. Data (error 
bars) are means (± SD) obtained from three technical replicates. With wild type as control, asterisks indicate significant differences (P < 0.01)
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Discussion

As a large subclass of MYB family, the R2R3-MYB tran-
scription factor genes play important roles in anthocyanin 
metabolism regulation. In this research, an R2R3-MYB 
TF named CsMYB113 was successfully cloned from tea 
plant leaves. According to domain organization and phylo-
genetic analysis, CsMYB113 belongs to the S6 subgroup, 
which is important for the anthocyanin metabolism regula-
tion (Liu et al. 2015). The protein sequence of CsMYB113 
showed highest similarity with the CsAN1 protein (62%) 
from Camellia sinensis. In the “Zijuan” tea, the activation 
CsAN1 has been proved specifically unregulated anthocya-
nin biosynthesis genes to cause abnormal anthocyanin accu-
mulation (Sun et al. 2016). A subcellular localization study 
showed that CsMYB113 is located in the nucleus (Fig. 3B), 
and indicated that CsMYB113 may act as a transcription 
factor. Taken as a whole, it indicates that CsMYB113 may 
function as transcription activating factor involved in the 
anthocyanin metabolism regulation in tea plants.

Further ectopic transgenic studies were implemented by 
overexpression of CsMYB113 in Arabidopsis plants. As 
compared to the wild-type Arabidopsis, the overexpressed 
lines were obviously turned to purple in the  T3 homozygous 
plants, which was in accordance with obviously increased 
anthocyanin contents (Figs. 4 and 5). This finding is con-
sistent with the exogenous gene expression patterns seen 
in Arabidopsis of other R2R3-MYB anthocyanin activator 

genes, such as MdMYB1 from apple (Takos et al. 2006), 
PUPRLE from cauliflower (Chiu et al. 2010), PyMYB10 
from pear (Feng et al. 2010), EsMYBA1 from Herba epi-
medii (Huang et al. 2013a), MrMYB1 from Chinese bay-
berry (Huang et al. 2013b), BrMYB2 from Chinese cabbage 
(He et al. 2020), and FhPAP1 from Freesia hybrid (Li et al. 
2020). Through tissue-specific analysis, it is found that the 
expression level of CsMYB113 in roots is the highest in all 
tissues. While there were little anthocyanins synthesized in 
the roots of “Fudingdabai.” Among the 124 R2R3-MYB 
transcription factors that have been discovered in Arabi-
dopsis, AtMYB75, AtMYB90, AtMYB113, and AtMYB114 
belong to the sixth subgroup. They usually form MBW 
complexes with bHLH and WD40, which positively regu-
late the structure of the late anthocyanin synthesis genes. 
Four belong to the fourth subfamily (AtMYB3, AtMYB4, 
AtMYB7, and AtMYB32) which acts as transcriptional 
repressors for upstream structural genes in the phenylpro-
pane pathway of anthocyanin metabolism (Matsui et al. 
2008). At present, studies have shown that CsMYB4-5 and 
CsMYB4-6 belong to such transcriptional repressors in tea 
plants, and they also have high expression levels in roots. 
They inhibit anthocyanin synthesis by downregulating the 
expression of C4H and 4CL (Gong et al. 2014). Therefore, 
we speculate that there are two opposite mechanisms of 
action in tea roots, positive regulators of CsMYB113 and 
negative regulators of CsMYB4-5 and CsMYB4-6, which 
work together to regulate anthocyanin content in tea roots.

Fig. 7  Relative anthocyanin 
contents and expression level 
of CsMYB113 in the transient 
transfection of tea plant leaves. 
A–C Phenotypes and differ-
ent colors during extracting 
anthocyanins with different 
treatments of “FD,” “YS,” 
and “WNZ.” D Anthocyanin 
contents of “FD,” “WNZ,” and 
“YS” with different treatments; 
E: Relative expression of 
CsMYB113 of “FD,” “WNZ,” 
and “YS” with different treat-
ments. ck: Non-transformed 
leaves; a: Transformed 
leaves with pK7WG2D; b: 
Transformed leaves with 
35S::CsMYB113-GFP. Data 
(error bars) are means (± SD) 
obtained from three technical 
replicates. With ck as control, 
asterisks indicate significant 
differences (P < 0.01). “Fuding-
dabai,” FD; “Yingshuang,” YS; 
“Wuniuzao,” WNZ
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The R2R3-MYB TFs, which regulate the synthesis of 
anthocyanin, are playing different roles in the various tissues 
of plants. In corn, the C1 gene regulates the biosynthesis 
of anthocyanin in aleurone (Cone et al. 1986). In GMYB10 
overexpression transgenic tobacco plants (Nicotiana taba-
cum), the leaves, stems, and reproductive tissues turned to 
purple while no significantly anthocyanin accumulation in 
petal (Elomaa et al. 2003). Compared with the wild type, the 
MdMYBA overexpressing transgenic tobacco plants showed 
obviously increased anthocyanin in the reproductive tissues 
(Ban et al. 2007). In the MdMYB3 overexpression tobacco 
lines, the significantly increased anthocyanin pigmenta-
tion was observed in various tissues (Vimolmangkang et al. 
2013). When ectopic expressed PyMYB10 in Arabidopsis,  
the anthocyanin content was significantly increased in 
immature seeds (Feng et al. 2010). In tea plants, the R2R3-
MYB TFs showed abundant expression patterns, such  
as CsMYB4a expression was significantly higher in mature 
leaves, CsMYB42 is specifically expressed in pollen tubes, 
and CsMYB47 and CsMYB17 have the highest expression 
levels in leaves and buds (Li et al. 2017b; Wang et al. 2019; 
Chen et al. 2021). In this research, the contents of anthocya-
nin were determined in various tissues of transgenic Arabi-
dopsis. It is worth noting that there were obvious differences 
in the level of accumulation of the anthocyanin in the differ-
ent tissues (leaves, stem, roots, and seeds). The increments 
of anthocyanin in stem and roots were much higher than that 
in leaves and seeds (Fig. 5). The leave veins were obviously 
turned to purple while the mesophyll cells showed green 
color. We conclude that the CsMYB113 may play different 
roles in regulating the synthesis of anthocyanin among vari-
ous tissues.

It is well known that MYB can promote gene expression 
levels of anthocyanin biosynthesis to active the anthocyanin 
accumulation. In transgenic cauliflower plants, upregula-
tion of Purple (Pr) gene specifically activated three genes 
involved in anthocyanin biosynthesis which encodes F3’H, 
DFR, and LDOX (Chiu et al. 2010). In 35S::LfMYB113 
transgenic Nicotiana tabacum plants, the expression lev-
els of anthocyanin biosynthetic pathway genes were sig-
nificantly increased including CHS, CHI, F3H, F3’H, 
DFR, ANS, and UFGT (Wen and Chu 2017). When ectopic 
expressed GhMYB1a in tobacco, the expression levels of 
CHS and F3H were significantly up-regulated than other 
genes related to the anthocyanin biosynthesis (Zhong et al. 
2020). In the present study, the genes (AtPAL, AtCHS, 
AtCHI, AtF3H, AtF3’H, AtDFR, AtLDOX, AtUF3G) related 
to anthocyanin biosynthesis were significantly increased in 
transgenic Arabidopsis (stem, root, and seed) overexpress-
ing CsMYB113. The relative expression levels increased 
in stem and root was much higher than that in the seed. 
There are only five genes (CHI, F3H, DFR, LDOX, UF3G) 
that were significantly increased in the leaves of transgenic 

Arabidopsis lines. These changes are highly consistent with 
the anthocyanin contents in the different tissues of transgenic 
lines. MYB TFs have been proved to regulate anthocyanin 
metabolism by combining with bHLH TFs in many plants 
(Gonzalez et al. 2008; Liu et al. 2018b; Li et al. 2017a). We 
conclude that CsMYB113 can integrate with tissue-specific 
bHLH to increase the transcription levels of anthocyanin 
biosynthesis, and lead to the anthocyanin content increment 
in different tissues.

In tea plants, the application of stable genetic transfor-
mation was limited by the problems of low transformation 
efficiency and difficulty in vitro regeneration (Mondal et al. 
2004). Transient transformation system has many advan-
tages compared to stable transformation, such as short 
period (the expression levels of genes could be analysis 
less than 12 h after transformation), high efficiency, easy to 
operation, and wide range of acceptor materials. Therefore, 
it has been frequently used for the gene function study in 
strawberry (Hoffmann et al. 2006), grape (Urso et al. 2013), 
orange (Jia and Wang 2014), persimmon (Mo et al. 2015), 
and other woody plants. In order to identify the possible 
function of CsMYB113 gene in tea plants, the homologous 
transient expression system was applied in this study. Tran-
sient transfection of tea plant leaves with the CsMYB113 
overexpression caused the abnormal anthocyanin incre-
ment in three cultivars (“Fudingdabai,” “YingShuang,” and 
“Wuniuzao”) (Fig. 7), which is consistent with the result in 
Arabidopsis. It proved that CsMYB113 plays a vital role in 
the anthocyanin regulation in tea plants.

Conclusions

In the research, a R2R3-MYB TF CsMYB113 related to the 
regulation of anthocyanin biosynthesis was evaluated from 
tea plants. CsMYB113 was proved to localize in nucleus. 
Compared with wild type, some tissues (leaves, stems, roots, 
and seeds) were observed increased anthocyanin pigmen-
tation inconsistent with the higher anthocyanin content in 
the CsMYB113 overexpression Arabidopsis plants. The 
ectopic expressed CsMYB113 in different tissues of trans-
genic Arabidopsis showed that the expression levels of 
genes related to anthocyanin biosynthesis were significantly 
enhanced. A distinguished anthocyanin content increment 
was detected in tea plant transient overexpression leaves. 
These results indicated that CsMYB113 plays a vital role in 
the regulation of anthocyanin metabolism.
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