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Abstract Rauvolfia serpentina has been known to produce
therapeutically important indole alkaloids used in treatment
of various diseases. Despite its medicinal importance, com-
plete understanding of its secondary metabolism is challeng-
ing due to complex interplay among various transcription fac-
tors (TFs) and genes. However, weighted co-expression anal-
ysis of transcriptome along with integration of metabolomics
data has proficiency to elucidate topological properties of
complex regulatory interactions in secondary metabolism.
We aimed to implement an integrative strategy using B-omics^
data to identify TFs of Bunknown function^ and exemplify
their role in regulation of valuable metabolites as well as met-
abolic traits. A total of 69 TFs were identified through signif-
icant thresholds and removal of false positives based on cis-
regulatory motif analysis. Network-biology inspired analysis
of co-expression network lead to generation of four statistical-
ly significant and biologically robust modules. Similar to
known regulatory roles of WRKYand AP2-EREBP TF fam-
ilies in Catharanthus roseus, this study presented them to
regulate synthesis of alkaloids in R. serpentina as well.

Moreover, TFs in module 4 were observed to be regu-
lating connecting steps between primary and secondary
metabolic pathways in the synthesis of terpenoid indole
alkaloids. Integration of metabolomics data further high-
light the significance of module 1 since it was statisti-
cally predicted to be involved in synthesis of specialized
metabolites, and associated genes may physically clus-
tered on genome. Importantly, putative TFs in module 1
may modulate the major indole alkaloids synthesis in
response to various environmental stimuli. The method-
ology implemented herein may provide a better refer-
ence to identify and explore functions of transcriptional
regulators.
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Introduction

Gene expression is a complex phenomenon which is regulated
by set of proteins, called transcription factors (TFs), that acti-
vate or repress various genes (Mitsuda and Ohme-Takagi
2009). In plants, TFs regulate genes involved in many impor-
tant biological processes such as growth and development
(Ramachandran et al. 1994), defense against pathogens and
environmental stress (Singh et al. 2002), seed maturation and
flower development (Jakoby et al. 2002), light-regulated
mechanisms (Jiao et al. 2007), and secondary metabolism
(Vom Endt et al. 2002). These TFs regulate genes by a set of
highly coordinated internal/external signals, and some even
interact with other TFs (Yang et al. 2012a). Secondary metab-
olites have long been used in pharmaceuticals, agrochemicals,
fragrance ingredients, food additives, and pesticides, and are
therefore of industrial importance. These metabolites do not
participate directly in plant growth, development, and repro-
duction (Fraenkel 1959; Chae et al. 2014). However, they
often play an important role in various processes including
defense against pathogens, herbivores, and other interspecies
defenses (Samuni-Blank et al. 2012). Also, these specialized
metabolites and their associated pathways provide unique
adaptive strategies for various organisms under harsh and dy-
namic environmental conditions (Weng and Noel 2012).
Transcriptional regulation of secondary metabolite synthesis
is highly controlled by a complex network of multiple TFs.
Several TFs involved in the regulation of metabolic pathway
genes have been studied in model plants like Arabidopsis
thaliana (D’Auria and Gershenzon 2005). With advance-
ments in developmental and molecular biology techniques
for analyzing alkaloid biosynthesis, various genes have been
identified to be involved in formation of metabolites like
tropane (Shoji et al. 2000; Herbert 2003), benzylisoquinoline
(Herbert 2003; Ziegler and Facchini 2008), and terpenoid in-
dole alkaloids (TIAs) (Eichinger 1999; Ruppert et al. 2005).
Since various studies have reported genes related to metabo-
lite synthesis, further attempt should also be made to identify
key regulators associated with their complex pathways (De
Luca and St Pierre 2000; Oudin et al. 2007). Since gene ex-
pression is highly regulated by specific TFs, various biologi-
cal functions get influenced by any modification in their ac-
tivity, which in turn dynamically alters transcriptome profile
leading to metabolic and/or phenotypic changes (Mitsuda and
Ohme-Takagi 2009). Therefore, to elucidate molecular mech-
anisms associated to plant secondary metabolism, a prerequi-
site is to identify candidate regulatory TFs through a produc-
tive and precise searching procedure (Haynes et al. 2013).

Rauvolfia serpentina is an important medicinal plant of
family Apocynaceae, commonly known as BIndian snake-
root,^ endemic to Indian subcontinent and South-East Asian
countries. It is also found in the Himalayan mountain ranges
distributed over the foothills up to elevations of 1300–1400 m

(Dey and De 2011). The major phytochemical constituents of
this plant are indole alkaloids (Pathania et al. 2013). Its roots
are also known to produce therapeutically important alkaloids
which are used in the treatment of various diseases such as
ventricular arrhythmias, hypertension, and diabetes (Vakil
1955; Locket 1955; Dey and De 2011; Azmi and Qureshi
2012). Reserpine is the principle component of R. serpentina
used to treat hypertension (Hutcheon 1971; Nammi et al.
2005), tachycardia (Jerie 2007), and allergy (Lelek and
Furedi Szabo 1961). Other compounds such as ajmaline
(Bazika 1969; Köppel et al. 1989), serpentine (Beljanski and
Beljanski 1982), rescinnamine (Hutcheon 1971; Nammi et al.
2005), and yohimbine (Singh et al. 2004) have also been re-
ported in treatment of various diseases. Despite their broad
pharmacological properties, limited information is available
about regulatory factors involved in the synthesis of second-
ary metabolites (Chou and Kutchan 1998; Wink 2010) which
further affect the yield and spectrum of such pharmacological-
ly important compounds (De Luca and St Pierre 2000; Vom
Endt et al. 2002).Catharanthus roseus has been considered as
model plant to understand TIA pathway (Facchini and De
Luca 2008; Pani and Mahapatra 2013), and TF families such
as WRKY (Suttipanta et al 2011; Schluttenhofer et al 2014)
and AP2EREBP have been reported to regulate metabolite
synthesis (van der Fits and Memelink 2000; Li et al. 2013).
Also, bHLH and MYB-like TFs are reported to be highly
expressed under jasmonate response but needs to be con-
firmed for their regulatory role in TIA pathway (Memelink
and Gantet 2007). Therefore, identification of transcriptional
regulators and their target genes, involved in the synthesis of
suchmetabolites, is crucial to understand associatedmetabolic
pathways.

Advances in molecular and bioinformatics techniques have
already made the availability of high-throughput biological
data for various model plants. Fortunately, the large-scale tran-
scriptomics data for various medicinally important plants, in-
cluding R. serpentina, is also available at Medicinal Plant
Genomics resource (MPGR, http://medicinalplantgenomics.
msu.edu/) (Gongora-Castillo et al. 2012). Availability of this
high-throughput data allowed us to conceive a hypothesis for
complex regulatory insights in R. serpentina, specifically as-
sociated to secondary metabolism. Various traditional and re-
cently developed methods are available to perform functional
annotation of TFs (Mitsuda and Ohme-Takagi 2009), but as
far as our knowledge, no reports are available for omics- and
network-based analysis in R. serpentina. Integration of graph
theoretical based methods and B-omics^ data facilitates
systems-level analysis of underlying molecular mechanisms
and unravel various complex biological processes (Aoki et al.
2007; Mao et al. 2009; Naika et al. 2013). Moreover, network
analyses using gene co-expression data has been proposed to
explain biological systems since it models and decipher inter-
actions of real biological networks (Aoki et al. 2007; Ma et al.
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2013). Such analyses assist to identify functionally important
regulators from a large set of genes with unknown function,
and may provide information of associated pathways (Lee and
Tzou 2009; Srivastava et al. 2010). Instead of performing
analysis for tens of thousands of gene comparisons, a
module-based analysis limits the analysis on only few orders
of magnitudes for comparisons. The module represents a set
of genes with very similar expression patterns that corre-
sponds to specific pathway, therefore focusing on this
amounts to a biologically meaningful data reduction scheme.
Utility of such analyses has uncovered gene regulatory mech-
anisms based on their expression profiles (Hartwell et al.
1999; Ihmels et al. 2004). Hence, advances in network biolo-
gy have made it possible to fill the gap of understanding as-
sociation of individual genes by systematically investigating
their association.

In this study, we have aimed to establish an integrative
genome- and systems-wide framework to identify TFs, as well
as to elucidate their complex regulatory behavior, associated
with synthesis of secondary metabolites in R. serpentina.
Gene co-expression network analysis was implemented to
identify functionality of TFs, which were not annotated
through simple annotation methods. Modules were obtained
from co-expression network and enrichment analysis was per-
formed to identify highly significant modules. Genes present
in each of significant module was enriched with similar onto-
logical terms and tissue-specific expression emphasizing their
robustness. These modules were associated with hormone- or
elicitor-mediated synthesis of indole alkaloids, epigenetic reg-
ulations, reproductive system, and upstream of TIA pathway,
respectively. Interestingly, one module was found to regulate
synthesis of specialized indole alkaloids known to be present
in roots under hormone- or elicitor-mediated response, and do
not have any shared metabolite with the remaining three mod-
ules. The identification of such regulatory factors may aid to
improve quantity and diversity of secondary metabolites, and
methodology presented herein can possibly assist their exper-
imental studies. This graph theoretical approach may provide
a better reference for other non-model plants to improve the
established strategies for TF identification.

Materials and Methods

Toward our goal of identification of TFs and associated mod-
ules in secondary metabolism, the following procedures were
implemented: (1) annotation of R. serpentina transcriptome,
(2) calculation of Pearson correlation coefficient, (3) transcrip-
tion factor binding site analysis, (4) construction of weighted
co-expression network, (5) enrichment analysis and module
detection, (6) reference-based enrichment of significant mod-
ules, and (7) integration of metabolomics data.

Annotation of R. serpentina Transcriptome

Transcriptomic sequences and expression profile data of var-
ious R. serpentina tissues were retrieved from the Medicinal
Plant Genomics Resource database (MPGR, http://
medicinalplantgenomics.msu.edu/) (Gongora-Castillo et al.
2012). All transcripts were annotated by performing
BLASTX (Altschul et al. 1997) search against the reference
Arabidopsis proteome (TAIR10, http://Arabidopsis.org). An e
value cutoff of 1e-05 was considered to identify homologous
genes, and annotations of associated top hits were preserved
for further analysis. In order to identify TFs, transcripts with
unknown primary annotation were also searched independent-
ly against Plant Transcription Factor Database (PlnTFDB;
http://plntfdb.bio.uni-potsdam.de/v3.0/) (Riaño-Pachón et al.
2007) using BLASTX with the same specifications of hit
selection. To describe the functional annotation of
transcripts, gene ontology (GO) (Dimmer et al 2008) analysis
for all three biological domains (biological processes (BP),
molecular functions (MF), and cellular components (CC))
was performed. Annot8r (Schmid and Blaxter 2008) was used
to obtain GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway annotation for assembled transcripts based
on similarity search against annotated subsets of the UniProt
database (The UniProt Consortium 2007). This annotation
was performed with an e value threshold of 10-01, and top hits
were retained based on highest significant e value as well as
bit score.

Calculation of Pearson Correlation Coefficient

In order to construct TF-gene regulatory network, Pearson
correlation coefficient (PCC) (Eisen et al. 1998) between iden-
tified TFs and all transcripts were calculated from expression
data in the form of FPKM (fragments per kilobase of transcript
per million fragments mapped), available for different tissues
(mature leaf, young leaves, upper stem, young roots, mature
roots, red stem, flower, and woody stem), using customized
in-house written PERL script. PERL code has been provided
at GitHub (https://github.com/ShivalikaP/Perl-script-to-
calculate-Pearson-correlation-coefficient). PCC was
computed based on the following equation:

PCC ¼
X

x−x
� �

y−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y−y
� �r 2

Where x and y denotes the corresponding expression pro-
files of TF and transcripts, respectively, and x and y represents
their mean. Mean of expression profile depends upon sample
size which is different for both TFs and transcripts.

Plant Mol Biol Rep (2016) 34:283–302 285

http://medicinalplantgenomics.msu.edu/
http://medicinalplantgenomics.msu.edu/
http://arabidopsis.org/
http://plntfdb.bio.uni-potsdam.de/v3.0/
https://github.com/ShivalikaP/Perl-script-to-calculate-Pearson-correlation-coefficient
https://github.com/ShivalikaP/Perl-script-to-calculate-Pearson-correlation-coefficient


Network density (ND) helps in determining biologically
important PCC threshold (Aoki et al. 2007). ND was mea-
sured as follows:

ND ¼ 2E

K K−1ð Þ

Where E and K K−1ð Þ
2 specify the number of actual links and

possible links of non-singleton nodes, respectively.
The Bt test^ was implemented to select significant TF-gene

pairs with p value ≤0.05 (McCluskey and Lalkhen 2007), and
further subjected to multiple testing correction using false dis-
covery rate (FDR) (Benjamini and Hochberg 1995) method
through Bstats^ library of R statistical package (http://www.r-
project.org/). Shortlisted pairs were compared against TF-gene
connectivity data (Misra and Sriram 2013), downloaded from
the Arabidopsis Gene Regulatory Information Server (AGRIS;
http://Arabidopsis.med.ohio-state.edu/) (Davuluri et al. 2003),
to verify their regulatory relationship based on prior knowledge
available for corresponding orthologs in A. thaliana.

Transcription Factor Binding Site Analysis

Transcription factor binding sites (TFBS) were identified
using pPromotif tool (Jha and Shankar 2014) for those TF-
gene pairs which did not have any match to already verified
TF-gene connectivity data. In order to identify TFBS, 5 kb
upstream region of orthologous Arabidopsis genes of corre-
sponding transcripts were retrieved from BioMart of Ensembl
Plants database (http://plants.ensembl.org/biomart/martview)
(Kinsella et al. 2011). These upstream regions were further
analyzed to identify TFBS based on a position weight matrix
generated using the Gibbs Motif Sampler. Furthermore, pairs
were selected based on comparison of TF families assigned to
TFs against all possible binding sites obtained. These selected
pairs were further complemented by manual literature search.
Accuracy of identified TFBS was statistically validated using
Z-score for orthologous Arabidopsis genes. For calculating Z-
score, pPromotif was implemented on 5 kb upstream se-
quences of Arabidopsis (as null model/control), and mean as
well as standard deviation was calculated from score obtained
fromTFBS hits of 13 TF families. Z-score (Sundar et al. 2008)
was computed using the following equation:

Z�score ¼ x−Mean

SD

Where x is the pPromotif score for each TF hit obtained for
orthologous Arabidopsis genes. Mean and SD are the average
and standard deviation of pPromotif scores, respectively, for
all control genes of 13 TF families.

A two-tailed p value statistics, corresponding to Z-score,
was further calculated using Bstats^ library of R package.

Construction of Weighted Co-expression Network

Weighted co-expression network was constructed from TF-
gene pairs obtained during successive filtering steps. An
assessment-based co-expression network was attained since
edges connecting nodes at significant PCC threshold and p-
values were kept. Cytoscape v 3.1.0 (Shannon et al 2003)
program was used for network construction and visualization
purpose. TFs obtained in resultant co-expression network
were classified into different families based on BLASTsearch
against PlnTFDB. PCC values were used as edge weights to
construct network, where weights represent the strength of
connections or co-expression. Random network with same
number of nodes and edges, as of weighted co-expression
network, was generated using Bigraph^ (Csardi and Nepusz
2006) library in R package. Network topology parameters of
both networks were determined to compare their topological
properties.

Enrichment Analysis and Module Detection

Enrichment analysis of all transcripts corresponding to each
TF family was carried out with singular enrichment analysis
(SEA) of agriGO web-based tool (http://bioinfo.cau.edu.cn/
agriGO/index.php) (Du et al. 2010), and significantly
enriched GO terms were determined in all comparative
conditions by comparing it against background reference.
Hypergeometric test (Shimizu et al. 2014) with Bonferroni
correction (Simes 1986) was applied for selecting these statis-
tically significant terms. In search of comparatively smaller
and functionally important gene modules, Markov cluster
(MCL) (Van Dongen 2008) algorithm, a systematic graph
clustering method, was used to fragmentize the network.
This algorithm is based on the Brandom walks^ which states
that starting with a node randomly travel to connected nodes
will make to stay within a cluster than travel between, i.e.,
flow is easier within dense regions than across sparse bound-
aries. MCL algorithm, with default inflation value of 2.5, was
implemented using clusterMaker2 (Morris et al. 2011) plugin
of Cytoscape. Enrichment analysis of all modules was also
performed independently. Expression data was used to gener-
ate heat maps using Bgplots^ library of R package.
BVennerable^ library from same package was used to obtain
venn diagram of common target genes among TFs in each
significant module.

Reference-Based Enrichment of Significant Modules

In order to perform reference-based enrichment analysis,
clueGO (Bindea et al. 2009) plugin of Cytoscape was used
against model plant A. thaliana. Enrichment analysis was per-
formed using a two-sided (enrichment/depletion) tests based
on hypergeometric distribution with Bonferroni (Simes 1986)
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p value correction method. Besides functional enrichment, it
also creates an annotation network of functionally grouped
non-redundant biological pathways associated with enriched
GO terms for visualization. Kappa statistics (Sim and Wright
2005) is used by clueGO to link similar terms in a network that
provides a measure of accordance from a range between 0 and
1, where 0 and 1 indicates no and almost perfect accordance,
respectively. In this analysis, a kappaScore threshold of 0.4
was considered.

Integration of Metabolomics Data

To assess quality of significant modules and to determine the
involvement of TFs in regulation of secondary metabolism,
metabolome data of R. serpentina was included. Correlation
data of metabolome, available at the Plant and Microbial
Metabolomics Resource (PMR; http://metnetdb.org/PMR/),
of corresponding transcriptome was obtained using PMR
metabolomic-transcriptomic co-analysis tool at selected PCC
threshold and significant p value (≤0.05). TFs present in sig-
nificant modules were searched against correlation data to
determine module-specific regulation of metabolite synthesis.
BVennerable^ library was used to obtain venn diagram of
shared metabolites in different modules. Significance of mod-
ules associated with synthesis of specialized metabolites was
also statistically verified using BMann-Whitney test^ from
Bstats^ library of R package.

Results

An integrative approach was established to identify TFs and
their role in regulation of valuable metabolites and metabolic
traits (Fig. 1) in R. serpentina. Initially, TFs from the tran-
scripts of unknown function were identified which were fur-
ther analyzed to determine their complex regulatory mecha-
nism using graph theoretical approach.

Identification of Transcription Factors

A. thaliana has been widely used as a reference model for
annotation of various plants including C. roseus, a member
of Apocynaceae family (Schluttenhofer et al. 2014). Similarly,
annotation of complete R. serpentina transcripts was also car-
ried out against Arabidopsis proteome that returned 80,829
significant hits. A total of 12,670 transcript entries without
primary annotation were retrieved, and 342 hits were consid-
ered as putative TFs while annotating against PlnTFDB.

GO- and KEGG-based functional analysis was performed
to functionally annotate complete transcriptome using
annot8r, and output has been provided as separate spread-
sheets at GitHub (https://github.com/ShivalikaP/R_
serpentina_transcriptome_annotation). Annot8r has been

widely used to functionally annotate transcriptomes of
various plants including Citrus sinensis (Yang et al. 2013)
and Euphorbia fischeriana (Barrero et al. 2011). This analysis
returned functional annotation for ∼71 and ∼43 % transcripts
covering a broad range of GO and KEGG categories, respec-
tively, of R. serpentina transcriptome. The most abundant BP
categories were metabolic process (∼26 %), response to stim-
ulus (∼14 %), and regulation of biological process (∼13 %)
revealing that the majority of transcripts were participating in
metabolic activities under response to stimulus (Fig. S1a).
Most abundant GO categories such as binding (∼44 %), trans-
ferase activity (∼15 %), and catalytic activity (∼13 %) terms
were determined under MF category (Fig. S1b). Similarly,
major GO categories identified under CC categories included
intracellular (∼68%) andmembrane (∼27%) (Fig. S2a) terms.
A total of 260 KEGG pathways were retrieved for whole
trancriptome sequences, and the top 20 of them were associ-
ated with plant hormone signal transduction (∼5 %), plant-
pathogen interaction (∼4 %), ribosome (∼3 %), and
spliceosome (∼3 %) (Fig. S2b).

Threshold Selection Based on Network Topology

Since simple annotation was unable to annotate biological
processes associated with 190 TFs (Table S1), these TFs were
annotated based on their interacting transcripts. In order to
determine congruity of putative TFs and associated

Fig. 1 Strategy implemented for identification of transcription factors
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transcripts, expression profiles among eight different tissues
were used to compute PCC. This number of samples is suffi-
cient to carry out co-expression analysis as evident from var-
ious studies to identify new candidate genes (Gongora-
Castillo et al. 2012; Paul et al. 2014; Schluttenhofer et al.
2014). PCC is used to construct a correlation matrix of gene
expression from which weighted co-expression network is
generated (Eisen et al. 1998). A total of 4,504,588 TF-gene
pairs were obtained for unique 342 TFs and 19,333 tran-
scripts, and pairs with positive correlation were retained to
analyze biological processes up-regulated by these TFs. ND
demonstrates how sparse or dense a graph is according to the
number of connections per node set, and has been used for
choosing a statistically relevant threshold since at this cutoff,
biologically significant modules are expected (Aoki et al.
2007; Mao et al. 2009). To characterize the PCC threshold,
change in number of nodes, edges, and network density, as a
function of various PCC cutoff values, were examined. As the
cutoff value increased, node and edge number, as well as the
actual number of edges and all possible edges were decreased.
However, as the cutoff reached at a relatively high value,
decreasing rate of edges became slower than that of all possi-
ble edges (Fig. S3a) and nodes (Fig. S3b), which leads to an
increase in ND. ND was at its minimum at 0.84 cutoff
(Fig. 2a), and PCC corresponding to this minimal ND was
considered as threshold. TF-gene pairs at and above this
threshold were analyzed to obtain biologically significant
modules. Conversely, threshold was adjusted at 0.80, instead
of 0.84, in order to retain a relatively large number of connec-
tions and prevent the loss of significant information in net-
work construction. Although, PCC can be used to measure the
congruity, yet it is difficult to determine its statistical signifi-
cance more than expected by chance. All TF-gene pairs (151,
504) at and above the threshold of 0.80 were found to be
statistically significant (p value ≤0.05) (Table S2), and the
number of these pairs were further reduced to 82,635 based
on availability of Arabidopsis orthologs for corresponding
transcript of R. serpentina in TF-gene connectivity data from
AGRIS (Davuluri et al 2003). Regulatory information of these
TF-gene pairs was further complemented by comparing them
against this TF-gene connectivity data, and 7066 connections
among all these pairs were retained, whereas the remaining
75,569 were discarded due to unavailability of the TF-gene
interactions. This selection criterion helps to strengthen TF-
gene pairs regularity information based on prior validated in-
formation that ensure minimum number of false positives.

Identification of Transcription Factor Binding Sites

Since PCC of discarded TF-gene pairs were found to be sta-
tistically significant, transcripts were analyzed for possible
TFBS to match coinciding TF in each pair. Promoter se-
quences are often conserved between diverse plant species

(Fauteux and Strömvik 2009); (Koch et al. 2001) that allow
the use of A. thaliana as reference to perform TFBS analysis.
Upstream sequences of orthologous Arabidopsis genes, corre-
sponding to 9676 transcripts, were processed to identify
TFBS. A total of 13,439 TF-gene pairs were selected by com-
paring them against pPromotif output, and the rest were
discarded in further studies. In order to predict accuracy of
TFBS prediction, hits obtained for orthologous Arabidopsis
genes were compared against TFs from AGRIS (control) to
compute Z-score. Z-score explains the direction as well as
measure of deviation of number of TFBS occurrences from
background distribution’s mean. Null hypothesis states that
there was no significant difference in scores between
orthologous Arabidopsis genes and control. It was found that
for ABI3VP1, 10,829 out of 10,829 (100 %) number of sites
had insignificant p value (>0.05). Similarly, the percentage of
hits obtained for other TF families such as AP2EREBP, ARF,
bHLH, bZIP, CCAAT, C2C2-GATA, HB, MYB, MYB-relat-
ed, MADS, SBP, and WRKY were 93.59 % (9385/10,028),
79.24 % (8067/10,180), 100 % (10,758/10,758), 96.11 % (10,
408/10,829), 99.88 % (10,816/10,829), 99.90 % (10,819/10,
829), 94.99 % (6632/6982), 92.85 % (10,055/10,829),
98.29 % (10,644/10,829), 96.63 % (9651/9987), 100 %
(1087/1087), and 94.78 % (10,132/10,690), respectively.
Since p value was found to be insignificant, null hypothesis
was accepted which further signifies the accuracy of TFBS
prediction. These selected pairs were further augmented by
critical manual literature search for TFs regulating either cor-
responding orthologous Arabidopsis genes or orthologs of
orthologous Arabidopsis genes in some other plant species.
The search was carried out for 290 TF-gene pairs randomly
selected at different cutoffs in order to cover a wide range of
PCC (0.8–1.0). Interestingly, ∼94 % of TF-gene pairs were
observed to be supported in different literature studies
(Table S3) which further enhanced the confidence of output
obtained. Importantly, this analysis enhances number of con-
nections by identifying TF-gene pair regulatory relationship
left in earlier step which was supported by expression data.

Construction of Weighted Co-expression Network

Weighted co-expression network was constructed for
deciphering systematic involvement of identified TFs in reg-
ulation of various biological processes. Such co-expression
networks often utilizes measured PCC as weights, and has
been widely used to determine biologically important mod-
ules in a variety of organisms (Aoki et al. 2007; Mao et al.
2009; Ruan et al. 2010; Gongora-Castillo et al. 2012;
Fukushima et al. 2012). Co-expression network constituted
of nodes and edges representing genes and connections be-
tween them, respectively. The network had 7304 nodes (in-
cluding unique 69 TFs and 7235 target genes) with 20,505
edges. All identified 69 TF genes were classified into 13 TF
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families (Table S4, Fig. 3) based on the BLAST search
against PlnTFDB. PCC values obtained in former step were
used as edge attribute where these numeric attributes quan-
tifies strength of connections among nodes, which again en-
hanced the method of module detection. Real networks are
often compared with random networks to decipher scale-free
nature of networks and to distinguish their topological prop-
erties (Alon 2006; Raval and Ray 2013). Aweighted random
network was constructed with same number of nodes, as of
actual co-expression network, by creating random connection
among edges for 2000 iterations. Compared to bell-shaped
distribution of random network (Fig. 2b), the degree distribu-
tion (DD) of co-expression network was highly skewed indi-
cating that majority of nodes had a degree, close to average
degree in random graphs and thereby satisfies properties of

biological networks (Albert 2005). DD of co-expression net-
work also satisfied the power law (Fig. S4) since there
was no peak around average degree. Graph rather
sloped steeply downwards with increase in degree dem-
onstrating the presence of a large number of nodes with
very few connections dominated by some extremely
well-connected ones. This revealed that co-expression
network had scale-free behavior and robust against ran-
dom perturbations since such networks are most likely
to hit a node with only few neighbors, and therefore
disrupt only a small portion (Emmert-streib and
Dehmer 2008). Negative value of assortativity (−0.68)
also augmented the scale-free nature of co-expression
network as compared to random network (0.0014)
(Johnson et al 2010).

Fig. 2 Topological analysis of co-expression network

Fig. 3 Co-expression network
constituted of transcription factors
and associated genes
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Functional Annotation and Enrichment
(Over-Representation) Analysis

GO terms of target transcripts, corresponding to each putative
TF family, were used as background to perform enrichment
analysis through agriGO. Analysis of each TF family revealed
that several transcripts were observed to be significantly over-
represented (p value ≤0.05) to participate in more than one
biological process. TF families such as ABI3VP1, bHLH,
HB, MYB, MYB-related, and WRKY (Figs. S5–S10) were
significantly enriched with terms related to plant reproductive
system. Major significant terms obtained among these TFs
included floral whorl development, stamen development, flo-
ral organ development, pollination, pollen tube growth, and
androecium development. TF families (ABI3VP1, AP2-
EREBP, MYB-related, and WRKY) (Figs. S5, S11, S9, and
S10) were enriched for terms such as response to hormone
stimulus, response to endogenous stimulus, response to organ-
ic substance, and response to defense response presented their
direct involvement in response to environmental conditions.
HB (Fig. S7) and bZIP (Fig. S12) were observed to be signif-
icantly enriched with terms related to cell cycle such as cell
cycle process and microtubule-based process, while cell divi-
sion AP2-EREBP (Fig. S11) and bHLH (Fig. S6) were signif-
icantly over-represented with terms photosynthesis and pho-
tosynthesis, light reaction. Interestingly, some TF families
were perceived to be enriched with terms associated with spe-
cific process such as ABI3VP1 (Fig. S5) (polarity specifica-
tion of adaxial/abaxial axis and specification of axis polarity)
to axis or pattern formation, AP2-EREBP (Fig. S11) (pentose-
phosphate shunt, NADPH regeneration, and NADPmetabolic
process) to primary metabolic pathway as well as upstream of
TIA pathway (Dubey et al. 2003), HB (Fig. S7) (chloroplast
RNA processing, DNA alkylation, and DNA methylation) to
post-translational modifications via ubiquitin-dependent pro-
teolytic pathway, and MADS (Fig. S13) (multicellular organ-
ismal development) to organ development. TF families ARF,
CCAAT, C2C2-GATA, and SBP were not found to be
enriched with any significant term.

Detection of Functional Modules

Gene-enrichment analysis demonstrated that multiple biolog-
ical pathways were under regulation of one TF family that did
not specify pathway regulated by each TF of given family.
Therefore, module-based analysis was performed to identify
the TFs that may function in an integrative manner to regulate
specific pathway. The identification of modules is a better
choice to understand the coordinated behavior of TFs of dif-
ferent families since eachmodule occupies certain set of genes
shared by TFs present in it. Top-down approach (or non-
targeted approach) (Aoki et al. 2007) can be applied to frag-
mentize network into modular structures through graph

clustering algorithms based on the topology of connections
(Mao et al. 2009). MCL algorithm has successfully been im-
plemented for module detection in many biological networks
(Mao et al. 2009). It sub-divided the large network, to simplify
the analysis of weighted co-expression network, into 42 mod-
ules (Fig. S14) ranging from 1251 (largest) to 4 (smallest)
nodes at default inflation value. These modules were referred
to by their number henceforth, as a standard practice. The first
five modules (1–5) were largest in size with 1,251, 995,
762, 750, and 417 nodes including 9, 5, 7, 5, and 4 regu-
latory TF genes, respectively. Modules from 6–10, 11–16,
17–28, 29–37, and 38–42 fragmented in ranges from 201
to 290, 101 to 150, 51 to 100, 20 to 45, and 4 to 15 nodes,
respectively, whereas modules 6–42, except 7 and 18 (2
TFs), had only 1 TF.

Enrichment Analysis of Modules

Enrichment analysis was performed for all 42 modules, and
only few (1–4, 6, 8–11, 13–15, 20, 21) were characterized
with at least one significant enriched GO term. The first four
modules (Fig. 4) were considered as significant modules since
each of them presented maximum number of enriched terms
with similar biological processes, and implicated in down-
stream analysis. A number of earlier reports have presented
considering only significant modules (Childs et al. 2011;
Chou et al. 2014). Transcript identifiers of all TF families in
significant modules are provided in Table 1. Most transcripts
present in each module were enriched with similar ontological
terms indicating the robustness of modules. GO and KEGG
pathways annotation for all transcripts present in these signif-
icant modules (1–4) is provided in Tables S5–S8. Details of
significant modules are provided as follows:

Module 1 Module 1 was associated with defense response
and indole alkaloid synthesis (Fig. 5) as majority
of significant terms included response to stimulus
(GO:0050896; 1.02e-08), response to endoge-
nous stimulus (GO:0009719; 7.45e-07), defense
response (GO:0006952; 2.52e-06), abscisic acid-
mediated signaling pathway (GO:0009738;
0.00306), indole derivative biosynthetic process
(GO:0042435; 0.0208), indole derivative meta-
bolic process (GO:0042434; 0.0239), and re-
sponse to jasmonic acid stimulus (GO:0009753;
0.0427). Intentness of abscisic acid and
jasmonate-mediated signaling response for major
indole alkaloids synthesis has already been re-
ported in R. verticillata (Fernandez and de Luca
1994) and C. roseus (Schluttenhofer et al. 2014),
closely related plants to R. serpentina, respective-
ly. It has already been reported that diverse meta-
bolic pathways are induced under various stress
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responses (Naika et al. 2013). Therefore, all these
major ontological terms may reveal possible role
of module 1 in defense response (Wei et al. 2014;
Zarate et al. 2007) and indole alkaloid synthesis
(Fernandez and de Luca 1994; Schluttenhofer
et al. 2014). Also, TF families (ABI3VP1, AP2-
EREBP, MYB-related, SBP, and WRKY)
(Fig. 6a) and their targets (Fig. S15a) had com-
paratively higher expression in roots further
complementing earlier reports of synthesis of ma-
jor alkaloids in roots. Most significant pathways,
like plant-pathogen interaction and plant hormone
signal transduction, were also found to be associ-
ated with defense response and response to stim-
ulus (Fig. S16a).

Module 2 Module 2 was observed to be involved in epige-
netic regulations as majority of enriched terms
(Fig. S17) were related to chloroplast RNA

processing (GO:0031425; 5.85e-07), cell cycle
process (GO:0022402; 0.000235), embryonic de-
v e l opmen t e nd i ng i n s e ed do rmancy
(GO:0009793; 0.00182), fruit development
(GO:0010154; 0.00237), fruit development
(GO:0010154; 0.00237), seed development
(GO:0048316; 0.00158), and post-embryonic de-
velopment (GO:0009791; 0.0247). Most signifi-
cant chloroplast RNA processing term present an
important regulatory step of post-translational
modification via ubiquitin-dependent proteolytic
pathway, and involves in stabilization of primary
chloroplast transcripts (Schuster and Gruissem
1991). This ontology term also emphasized on
localization of upstream of TIA pathway in chlo-
roplast (Ershov et al. 2002; Flügge and Gao 2005;
Herrmann and Weaver 1999; Schmid and
Amrhein 1995). TIA pathway (Fernandez and

Fig. 4 Four significant modules and their associated functions

Plant Mol Biol Rep (2016) 34:283–302 291



Table 1 TFs with their transcript
identifier as well as TF family
present in the four significant
modules (1–4)

S. No. Transcript ID TF family Color assigned
to TF family

Module 1

1. rsa_locus_48554_iso_2_len_551_ver_2 ABI3VP1 Red

2. rsa_locus_51237_iso_4_len_1210_ver_2 ABI3VP1 Red

3. rsa_locus_21934_iso_1_len_1068_ver_2 AP2-EREBP Green

4. rsa_locus_35905_iso_1_len_331_ver_2 AP2-EREBP Green

5. rsa_locus_10146_iso_1_len_1548_ver_2 MYB-related Pink

6. rsa_locus_1528_iso_6_len_1802_ver_2 MYB-related Pink

7. rsa_locus_16673_iso_1_len_1763_ver_2 SBP Sea green

8. rsa_locus_4625_iso_2_len_1756_ver_2 SBP Sea green

9. rsa_locus_51475_iso_1_len_508_ver_2 WRKY Blue

Module 2

10. rsa_locus_10225_iso_3_len_880_ver_2 ABI3VP1 Red

11. rsa_locus_18415_iso_7_len_1695_ver_2 ABI3VP1 Red

12. rsa_locus_100416_iso_1_len_479_ver_2 AP2-EREBP Green

13. rsa_locus_23717_iso_1_len_435_ver_2 bHLH Magenta

14. rsa_locus_25743_iso_1_len_451_ver_2 HB Purple

Module 3

15. rsa_locus_18469_iso_1_len_1117_ver_2 ABI3VP1 Red

16. rsa_locus_39107_iso_1_len_292_ver_2 ABI3VP1 Red

17. rsa_locus_17374_iso_4_len_964_ver_2 bHLH Magenta

18. rsa_locus_3695_iso_1_len_1596_ver_2 MYB-related Pink

19. rsa_locus_8201_iso_1_len_438_ver_2 MYB Maroon

20. rsa_locus_14622_iso_10_len_2213_ver_2 SBP Sea green

21. rsa_locus_43674_iso_1_len_299_ver_2 WRKY Blue

Module 4

22. rsa_locus_10231_iso_7_len_1524_ver_2 AP2-EREBP Green

23. rsa_locus_1294_iso_6_len_1186_ver_2 bHLH Magenta

24. rsa_locus_659_iso_8_len_2254_ver_2 SBP Sea green

25. rsa_locus_19102_iso_4_len_875_ver_2 WRKY Blue

26. rsa_locus_2765_iso_5_len_1553_ver_2 WRKY Blue

Fig. 5 Gene ontology enrichment analysis of module 1
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de Luca 1994; Shukla et al. 2006) and jasmonic
acid-mediated activation of ORCA (AP2-like) TF
(VomEndt et al. 2002) have already been reported
to be regulated by post-translational modifica-
tions under ubiquitin-dependent proteolysis.
Also, TF families (ABI3VP1, bHLH, HB, and
AP2-EREBP) presented were found to be highly
expressed in young leaves (Fig. 6b), and may ne-
cessitate chloroplast localized synthesis of precur-
sors under epigenetic regulation. Interestingly, en-
richment analysis of HB TF family was also
enrichedwith few similar enriched terms signified
its involvement in epigenetic regulations.
Moreover, HB TF present in flowering
wageningen (FWA) gene has already been

reported to be involved in RNA-directed DNA
methylation in A. thaliana (Matzke et al. 2007).
This highlighted the involvement of HB TF fam-
ily in epigenetic regulations and may contribute to
growth, development, and consequently plant
evolution (Grafi and Ohad 2013). Significance
of module was also augmented by the involve-
ment of cell cycle process (Perianez-Rodriguez
et al. 2014), chromatin modifications/remodeling
in seed development (Baroux et al. 2007), embry-
onic development ending in seed dormancy (Ríos
et al. 2014), and post-embryonic development (de
Vega-Bartol et al. 2013; Perianez-Rodriguez et al.
2014). Similarly, most significant pathways for
this module comprised of processes such as cell

Fig. 6 Heat maps of expression profiles of significant modules
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cycle, spliceosome, mismatch repair, and RNA
degradation complementing GO terms assigned,
and its involvement in epigenetic regulations
(Fig. S16b).

Module 3 Module 3 was associated with reproductive sys-
tem since significantly enriched terms (Fig. S18)
were found to be related to reproductive process
(GO:0022414; 2.18e-06) , reproduct ion
(GO:0000003; 4.3e-06), pollen tube growth
(GO:0009860; 2.4e-05), stamen development
(GO:0048443; 3.73e-05), androecium develop-
ment (GO:0048466; 3.73e-05), and pollination
(GO:0009856; 4 .18e-05) . TF fami l i es
ABI3VP1, bHLH, MYB, MYB-related, SBP,
and WRKY were found to be expressed mainly
in flower (Fig. 6c) which further complement the
enrichment results and highlights robustness of
module. Pathway annotation of module was sig-
nificantly over-represented with terms like flavo-
noid biosynthesis and phenylalanine metabolism
(Fig. S16c) that may be associated to synthesis of
anthocyanins and thereby represent its involve-
ment in pollination (Mol et al. 1998).

Module 4 Module 4 was related to primary metabolic path-
way, and upstream of TIA pathway as significant
GO terms (Fig. S19) presented were plastid local-
ization (GO:0051644; 1.45e-08), chloroplast relo-
cation (GO:0009902; 1.45e-08), photosynthesis,
light reaction (GO:0019684; 3.72e-07), pentose-
phosphate shunt (GO:0006098; 1.23e-06), NADP
H regeneration (GO:0006740; 1.28e-06), NADP
H metabolic process (GO:0006739; 1.76e-06),
oxidoreduction coenzyme metabolic process
(GO:0006733; 3.04e-05), and generation of pre-
cursor metabolites and energy (GO:0006091;
0.000863). Pentose-phosphate cycle is known to
be a direct precursor for isoprenoid synthesis
(Ershov et al. 2002; Flügge and Gao 2005) and
shikimate pathway that are involved in the release
of various aromatic amino acids localized inside
the chloroplast (Herrmann and Weaver 1999).
Similarly, isoprenoid biosynthesis utilizes NADP
H which is a byproduct of methylerythritol phos-
phate (MEP) pathway localized in chloroplast/
plastid (Dubey et al. 2003; Seemann et al.
2006). Since upstream of TIA pathway utilizes
NADPH, the presence of significantly enriched
terms together like NADPH regeneration,
NADPH metabolic process, plastid localization,
and chloroplast relocation intimated the involve-
ment of this module in synthesis of precursor me-
tabolites through MEP pathway (El-Sayed and
Verpoorte 2007). Enrichment analysis of AP2-

EREBP TF family was also enriched with similar
t e rm s l i k e p e n t o s e - p h o s p h a t e s h un t
(GO:0006098; 0.0179), NADPH regeneration
(GO:0006740; 0.0186), NADPmetabolic process
(GO:0006739; 0.0251), photosynthesis
(GO:0015979), and photosynthesis, light reaction
(GO:0019684 ) (F ig . S11) . Moreove r,
AP2EREBP TF family has also been reported to
regulate primary and secondary metabolism in
C. roseus (Van der Fits and Memelink 2000) that
may possibly regulate identical processes in mod-
ule 2. Other co-expressed TF families (bHLH,
WRKY, and SBP) may correspond to unknown
TFs, as revealed in the study by Oudin et al.
(2007), regulating upstream of TIA pathway.
Tissue-specific expression of these TF families
in mature leaves also (Fig. 6d) emphasized chlo-
roplast localized regulation of precursor synthe-
sis. Similarly, most significant pathways such as
photosynthesis and glycolysis/gluconeogenesis
(Fig. S16d) also augmented its involvement in
regulating primary metabolic pathways as well
as synthesis of precursors in upstream of TIA
pathway (Aniszewski 2007; Glenn et al. 2013).
It has also been stated earlier that the initial com-
mitted steps in secondary metabolite synthesis are
recruited from primary metabolic pathways
(Aharoni and Galili 2011; Chu et al. 2011).
Interestingly, these results revealed that this mod-
ule may act as connecting link between primary
and secondary metabolic pathways, and TFs pre-
sented may regulate connecting steps between
them.

Putative TFs have been found to work in a highly coordi-
nated manner to perform important biological functions since
38 % of them were highly clustered only in the first four
modules. A total of 39, 123, 50, and 2 common transcripts
(Fig. 7), among all TF families, were obtained for significant
modules (1–4), respectively, and were associated with repre-
sentative pathways. This analysis represented that TFs do not
perform their functions independently but in a highly coordi-
nated manner as composite/co-regulatory modules (CRMs)
where more than one TF families work together to facilitate
regulation of gene expression (Jha et al. 2011; Matys et al.
2006). This further indicated the interdependence and com-
plex coordinated behavior among all TF families to regulate
specific biological pathways.

Enrichment Analysis Against Reference Model

Networks obtained from reference-based enrichment
consisted of significant GO terms as nodes and shared genes
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among these terms as edges. In all significant modules, vari-
ous biological pathways were distinctly clustered by iterative
merging of initially defined groups based on kappa score
threshold. A total of 605 transcripts were enriched in module
1 with majority of significant terms being hormone-mediated
signaling pathway, defense response, and secondary metabol-
ic process (Fig. S20). All these terms were similar to agriGO
enrichment which further highlights its involvement in indole
alkaloids synthesis (Chang et al. 2013; Schluttenhofer et al.
2014). Similarly, a total of 472, 242, and 389 transcripts in
module 2, 3, and 4, respectively, were over-represented with
significant GO terms. In module 2 (Fig. S21), significant
terms like chromatin organization and RNA processing repre-
sented its participation in epigenetic regulations that may be
associated with TIA pathway (Fernandez and de Luca 1994;
Shukla et al. 2006; Siberil 2002; Vom Endt et al. 2002). In

module 3 (Fig. S22), pathways represented by significant GO
terms such as external encapsulating structure organization,
stamen development, and pollen exine formation were also
related to reproductive system. Similarly, module 4 was rep-
resented with significant terms such as photosynthesis, thyla-
koid membrane organization, and plastid organization
(Fig. S23). Conclusively, this reference-based enrichment
analysis also complements agriGO enrichments, and thereby
highlighting robustness and quality of significant modules.

Module-Specific Regulation of Secondary Metabolites

Integration of transcriptome and metabolome data has been
successfully implemented to determine TFs involved in regu-
lation of specific metabolic pathways in the earlier reports
(Hirai et al. 2005; Yonekura-Sakakibara et al. 2008). TFs

Fig. 7 Venn diagram of transcripts shared by transcription factors of each significant module
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present in significant modules were compared against corre-
lation data (40 metabolites), and significant modules (1–4)
were found to regulate 43.59, 17.94, 17.94, and 7.69 %, re-
spectively, of all secondary metabolites (39) except
tetraphyllicine. Module 1 (Table 2) was observed to regulate
major indole alkaloids known to be synthesized in roots, and
did not even share any metabolite with the rest of the signif-
icant modules (Fig. 8). Interestingly, major root indole alka-
loids such as ajmaline, ajmalicine, reserpine, sarpagine, and
serpentine (O’Connor and Maresh 2006) were present only in
module 1. Therefore, transcripts in module 1 may indicate a
complex interaction among them to regulate synthesis of these
important indole alkaloids. Similarly, our findings were also
supported by an earlier study that presented hormonal- or
elicitor-mediated signaling pathways (e.g.,WRKYTF family)
to regulate major indole alkaloids, such as ajmalicine and
serpentine, in C. roseus (Schluttenhofer et al. 2014). All these
important findings, along with specifically high expression of
module 1 transcripts in roots (Fig. S15a), determined the qual-
ity of identified modules as well as the protocol implemented
for identification of key regulators. Modules 2–4 (Fig. 8,
Table S9) shared few common as well as similar isomers of
precursor metabolites (tryptamine, vellosimine, strictosidine,
kaempferol hexoside dirhamnoside isomer 2, and kaempferol
hexoside dirhamnoside isomer 1) that may reveal their intra-
and inter-cellular trafficking of biosynthetic intermediates

throughout the course of associated biosynthetic pathways
(Kutchan 2005; O’Connor and Maresh 2006). Based on func-
tional annotation and enrichment analysis, these modules
were represented with significant representative processes like
epigenetic regulations, reproductive system, and precursor’s
biosynthesis with majority of expression in young roots,
young leaves, flower, and mature leaves, respectively
(Fig. S15b–d). Modules 2 and 4 were found to be expressed
in leaves (young and mature, respectively), and may be
grouped according to their representative functions viz., epi-
genetic regulations and photosynthesis associated synthesis of
precursors. Module 3 was found to be regulating metabolites,
mainly flavonoids and its derivatives, involved in pollination
which also complemented enrichment results (Mol et al. 1998;
Borevitz 2000). Importantly, integration of metabolomics and
transcriptomics data had strengthened the reliability of signif-
icant modules due to module-specific regulation of various
secondary metabolites (Fig. 8, Tables 2 and S9).

Significance of Gene Clustering in Module 1

Module 1 was observed to be involved in the synthesis of
ajmaline/sarpagine-type alkaloids (O’Connor and Maresh
2006) of the last few steps of TIA pathway, under response
of hormone- or elicitor-mediated signals (Leménager et al.
2005). Genes regulating synthesis of specialized molecules,

Table 2 Secondary metabolites found to be highly correlated with TFs of module 1 at the PCC threshold (≥0.80), obtained from metabolomics data

Transcripts Identifier TF family Secondary metabolites (PCC, p value)

rsa_locus_10146_iso_1_len_1548_ver_2 MYB-related NA

rsa_locus_1528_iso_6_len_1802_ver_2 MYB-related Ajmalicine (0.82, 0.046263), Ajmaline (0.93, 0.006659), Dehydrorescinnamine
(0.83, 0.042602), Dehydroreserpine (0.87, 0.025661), Deserpidine (0.87,
0.02561), Rescinnamine (0.81, 0.051648), Reserpine (0.80, 0.055935),
Vomilenene (0.80, 0.055499), 12-Hydroxyajmaline (0.94, 0.005697),
17-O-Acetylajmaline (0.91, 0.012820), 18-Hydroxyepialloyohimbine
(0.87, 0.025113)

rsa_locus_51475_iso_1_len_508_ver_2 WRKY Ajmalicine (0.81, 0.049438), Ajmaline (0.88, 0.020401), Dehydrorescinnamine
(0.85, 0.030301), Dehydroreserpine (0.92, 0.009178), Deserpidine (0.93,
0.006432), Rescinnamine (0.89, 0.018245), Reserpine (0.95, 0.004063),
Serpentine (0.83, 0.042584), 12-Hydroxyajmaline (0.96, 0.002182)

rsa_locus_21934_iso_1_len_1068_ver_2 AP2-EREBP Ajmalicine (0.87, 0.023464), Ajmaline (0.88, 0.021295), Dehydrorescinnamine
(0.84, 0.034198), Dehydroreserpine (0.85, 0.031636), Deserpidine (0.91,
0.011433), Rescinnamine (0.82, 0.044973), Reserpine (0.88, 0.020536),
12-Hydroxyajmaline (0.90, 0.013188)

rsa_locus_35905_iso_1_len_331_ver_2 AP2-EREBP Vomilenene (0.92, 0.009399)

rsa_locus_48554_iso_2_len_551_ver_2 ABI3VP1 Vomilenene (0.82, 0.047687)

rsa_locus_51237_iso_4_len_1210_ver_2 ABI3VP1 Ajmaline (0.92, 0.009187), Dehydroreserpine (0.87, 0.022638), Sarpagine (0.95,
0.003383), Vellosiminol (0.91, 0.011949), Yohimbine isomer (0.84, 0.035046),
12-Hydroxyajmaline (0.86, 0.028479)

rsa_locus_4625_iso_2_len_1756_ver_2 SBP NA

rsa_locus_16673_iso_1_len_1763_ver_2 SBP Arginine (0.86, 0.029667), Sarpagine (0.83, 0.042874), Yohimbine (0.84,
0.038023), 17-O-Acetylajmaline (0.88, 0.020013), 18-Hydroxyepialloyohimbine
(0.86, 0.026904)

NA represents the no hit obtained for secondary metabolites for corresponding TF
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under various environmental stresses, have been reported to
physically clustered (Ehrlich and Raven 1964; Nützmann and
Osbourn 2014) and represents biased clustering against non-
specialized metabolites (Chae et al. 2014). In order to statisti-
cally verify biased nature of modules related to synthesis of
specialized metabolites, Mann-Whitney test was implemented
on co-expression values of all modules which had at least one
specific alkaloid expressed only in roots (18) against remain-
ing modules (24). Null hypothesis states that there was no
significant preference of metabolic pathways genes in mod-
ules of specialized metabolites as compared to remaining
modules. Mean co-expression value of specialized metabo-
lites containing modules (0.88) was significantly higher than
the remaining modules (0.87), and it was found that modules
of specialized metabolites had significant preference for their
synthesis over non-specialized metabolites (p value=4.651e-
16). It has been concluded that module 1 is statistically found
to be most significant, and mainly under the control of diverse
environmental conditions associated with specialized metab-
olites synthesis. Similarly, TFs present in this module may
contribute into the diversity of major indole alkaloids in
R. serpentina in response to various internal/external stimuli.

Discussion

R. serpentina has been widely used in Ayurvedic medicinal
preparations and tribal ethnomedical systems for thousands of
years (Dey and De 2011), and roots of this plant are well
known to produce medicinally important alkaloids used in
treatment of various diseases (Azmi and Qureshi 2012; Dey
and De 2011; Locket 1955; Vakil 1955). In a previous study,

we have been able to computationally identify inhibitors
against aldose reductase from a repository of natural com-
pounds compiled from the same plant (Pathania et al. 2013).
Despite its medicinal importance, few studies have reported
regulation of secondary metabolite synthesis in R. serpentina
(W. M. Chou and Kutchan 1998; Wink 2010). The limited
information of regulators that control the production of these
molecules inhibit biotechnological application which may af-
fect yield and spectrum of these pharmacologically important
compounds (De Luca and St Pierre 2000; Vom Endt et al.
2002). Therefore, identification of transcriptional regulators
as well as their target genes is crucial to understand metabolic
pathways that lead to synthesis of such molecules. In recent
years, gene co-expression networks have been used to unravel
important biological processes and their regulatory mecha-
nisms. There has been a growing trend in using large-scale
protein-protein interaction (PPI) networks in plant systems
(Yang et al. 2012b); however, the datasets cover only a limited
range of PPI data. Furthermore, PPI networks are not static but
dynamic entity and expression of protein is intrinsically con-
trolled by different regulatory mechanisms (Liang and Li
2007). With an exponential growth of gene expression data,
most of the current research has been shifted toward systems
biology that largely include co-expression networks of tran-
scriptome data (Yonekura-Sakakibara et al. 2008; Zhang et al.
2012).

Identification and annotation of TFs at genome scale are
the first step toward understanding the mechanism of gene
expression and its regulation. Though various genome-wide
experimental studies have reported candidate TFs hitherto (Hu
et al. 2014; Wang et al. 2010; Zhu et al. 2012), not much
systems-level work has been done to assimilate the data.
With increase in high-throughput proteomic/genomic studies
and computational facilities, identification and annotation of
TFs at genome scale are now being used to understand the
regulation of biological mechanism (He et al. 2010; Pani and
Mahapatra 2013). Although TFs are initially identified by
computational approaches, they have also been validated by
experimental approaches (Van Dijk et al. 2010) presenting the
strength of computational protocols. In this study, an integra-
tive approach has been implemented that involves computa-
tional identification of TFs, and their regulatory mechanisms
in tissue-specific synthesis of secondary metabolite in
R. serpentina. Co-expression network was constructed, with
relatively stringent PCC threshold, from statistically signifi-
cant TF-gene pairs. It has been augmented that genes of inter-
est are co-expressed if their PCC is more than 0.80 and is
generally preferred (Chien et al. 2014). However, choosing a
strict threshold may lead to loss of significant gene pairs.
Therefore, ND offers a reliable measure for choosing calibrat-
ed thresholds since at this cutoff, biologically significant mod-
ules are expected to be found (Aoki et al. 2007; Mao et al.
2009). Moreover, our approach includes identification of

Fig. 8 Venn diagram of shared metabolites among significant modules
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possible TFBS that enhanced the quality and enlarged the
dataset used for network analysis. These stringent criteria
were used to reduce weak connections followed by false pos-
itives among TF-gene pairs by comparing against TF-gene
connectivity data and TFBS.

Gene co-expression network analysis has been successfully
applied for identifying functional clusters of highly correlated
genes in a variety of organisms (Aoki et al. 2007; Mao et al.
2009; Ruan et al. 2010; Gongora-Castillo et al. 2012;
Fukushima et al. 2012). Gene-enrichment analysis demon-
strated that various biological pathways were under regulation
of multiple TF families. To determine functions of TFs, those
were not annotated by simple annotation (Table S1), a
module-based analysis was performed to annotate them based
on interacting transcripts. Identification and characterization
of modules is a better choice to understand the coordinated
behavior of TFs since each module may occupy certain genes
representing specific pathways with similar GO terms. Four
statistically and biologically significant modules (1–4) were
obtained with similar enrichments that were broadly catego-
rized into functional classes viz., defense response, epigenetic
regulations, reproductive system, and upstream of TIA path-
way, respectively. Moreover, these modules have shown
tissue-specific expression (Fig. S15) that further signifies
tissue-specific synthesis and accumulation of metabolites.
Functional annotation has identified AP2-EREBP TF family
to be involved in regulation of primary metabolic pathway and
precursors of TIA pathway, similar to ORCA3, which has
been previously reported to regulate these pathways in
C. roseus (Van der Fits and Memelink 2000). Additionally,
WRKY TF family was also observed to regulate ajmalicine
and serpentine synthesis that has been previously reported in
C. roseus (Schluttenhofer et al. 2014). Few putative TFs (e.g.,
SBP) identified, which were not functionally annotated
through simple annotation and TF family enrichment analysis,
have been inferred based on high degree of transcriptional
connectivity using module-based analysis. Therefore, graph
theoretical approach implemented presented utility to func-
tionally annotate TFs based on their interacting partners.

TFs were found to work in a highly coordinated manner to
perform important biological functions since 38 % of them
were highly clustered only in the first four modules. Shared
genes among significant modules were found to be associated
with representative pathways also highlight coordinated and
complex behavior of TF families in each module. This analy-
sis shows that TFs do not perform their functions independent-
ly but act as composite regulatory modules (CRMs) where
more than one TF family work together to facilitate regulation
of gene expression (Matys et al. 2006; Jha et al. 2011). TFs
present in modules 1 and 4 were found to be associated with
regulation of major indole alkaloids and primary metabolic
pathway as well as upstream of TIA pathway with high ex-
pression in roots and mature leaves, respectively (Figs. 6 and

S15). Similar to known regulatory roles of WRKYand AP2-
EREBP TF families in C. roseus, this study has also been
proposed to regulate the synthesis of indole alkaloids in
R. serpentina.

Various studies have reported the integration of gene ex-
pression data with metabolomics data that contributes to iden-
tifying significant biological processes and molecular mecha-
nisms more precisely (Hirai et al 2005; Yonekura-Sakakibara
et al 2008; Meyer et al 2014). In our analysis, inclusion of
metabolomics data has also strengthened the reliability of sig-
nificant modules because of module-specific regulation of
various secondary metabolites (Fig. 8). Statistical analysis in-
ferred that transcripts present in module 1 may be close
enough on chromosome to form small physical clusters to
regulate synthesis of specialized metabolites as supported
from previous studies (Frey et al. 2003; Nützmann and
Osbourn 2014). Formation of such functional gene set has
already proven to be involved in mainly defense response
and expedite parallel activation of genes from physically
linked genes (Chu et al. 2011) through genomic rearrange-
ments that accelerate the expression of genes in specific path-
way. Similarly, TFs present in module 1 may contribute into
the diversity of major indole alkaloids in R. serpentina in
response to various internal/external stimuli. Significant mod-
ules obtained were biologically conceivable with similar en-
richments for transcripts in a particular functional classes and
their tissue-specific expression may correlate to synthesis as
well as accumulation of secondary metabolites. While limited
gene expression data was available for this analysis, further
experimental studies would be required to ascertain specific
role(s) of putative TFs in R. serpentina.

Conclusion

The study presented herein provides an integrative approach
constituting of genome- and system-wide analysis to identify
regulatory TFs and associated modules involved in
R. serpentina secondary metabolism. Integration of metabolo-
mics data provided an advantage to further filter out the puta-
tive TFs involved in module-specific regulation of secondary
metabolites. Of all four significant modules, module 1 was the
most significant since it was found to be statistically associat-
ed with synthesis of specialized indole alkaloids, and tran-
scripts contributing to module may be physically clustered
on the genome to involve in their synthesis. TF families in
modules 1 and 4 may coordinately regulate synthesis of spe-
cializedmetabolites under response to stimulus and precursors
of TIA pathway, respectively. Moreover, module 4 also acts as
connecting link between primary and secondary metabolic
pathways. Similar to known regulatory roles of WRKY and
AP2-EREBP TF families in C. roseus, the present study also
proposed them to regulate the synthesis of major indole
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alkaloids in R. serpentina. As far as our knowledge, we pres-
ent the first in silico study to identify TFs and their regulatory
role in R. serpentina secondary metabolism. Conclusively, the
methodology implemented could help to better understand
TF-mediated regulation of genes related to TIAs synthesis.
Furthermore, this study may assist to identify and explore
functions of transcriptional regulators which in turn may aid
to improve quantity and diversity of secondary metabolites,
and also provide a reference to other non-model plant systems.
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