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Abstract MicroRNAs (miRNAs) are small ∼20–24 nt spe-
cies of non-coding RNAs that modulate plant gene expression
by means of gene silencing through sequence-specific inhibi-
tion of target mRNAs. MiRNAs derive from pol-II transcrip-
tion of non-coding genes that are precisely processed in nu-
clear Dicing bodies by a microprocessor complex (dicer-
like1–serrate–hyponastic leaves 1: DCL1-SE-HYL1), which
recognizes stem-loop secondary-structure features of primary
precursor miRNA transcripts (pri-miRNA). The proper pro-
cessing of the pri-miRNAs results in a double-stranded small
RNA that will eventually exit the nucleus and be loaded
predominantly onto the effector complex Argonaute1
(Ago1). The single-stranded mature miRNA will guide
AGO1, leading to cleavage or translational arrest of comple-
mentary mRNAs. MiRNA steady-state levels and activity are
regulated not only by transcription rate of precursor tran-
scripts, but also by direct degradation mediated by small
RNA degrading nuclease1 (SDN1). miRNAs are retailored
by 3′ editing through 2-O-methylation, uridylation and
adenlylation, involving Hua enhancer1 (HEN1), HEN1 sup-
pressor1 (HESO1) and probably the exosome—a phenome-
non that has been elucidated only scarcely to date in
Arabidopsis. MiRNA activity is involved not only in plant
development, but also in signaling, abiotic stresses such as
drought, heat and metal toxicity, pathogen interaction and
symbiotic relationship regulation, among others. The engi-
neering of miRNAs is paving the way to next-generation plant
biotechnology by means of over-expression of natural
miRNAs, generation of artificial microRNAs and inhibition
of miRNA activity by target mimicry. This review highlights

the importance of miRNAs in plant sciences by describing the
latest updates in this research field.
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Introduction

Plant miRNA biology has flourished during the last decade.
The first discoveries in the field described a role for miRNAs
in plant development through the inhibition of transcription
factors (TF) (Rhoades et al. 2002; Park et al. 2002; Palatnik
et al. 2003). In turn, the spectrum of action of these regulatory
molecules expanded to abiotic stress and pathogen interaction
(Jones-Rhoades et al. 2006; Rajagopalan et al. 2006). While
the biogenesis of miRNAs has been explored in detail, the
relevance of miRNA turnover is only starting to be elucidated.
In recent years there has been a burst of publications in
miRNA biology. This review, albeit discussing several semi-
nal reports, focuses mainly on the most recent publications in
the field, highlighting innovative advances and introducing
future challenges in next-generation plant miRNA research.

MIRNA Gene Structure and Biogenesis

There is evidence that the miRNA pathway evolved before
multicellularity. The unicellular alga Chlamydomonas
reinhardtii generates miRNAs with similar characteristics to
those of higher plants (Molnár et al. 2007). There are highly
conserved miRNAs in the plant kingdom that emerged very
early in plant evolution. The current model suggests that
miRNAs arise from the inverted duplication of their target
genes, which would generate perfect hairpin RNAs.
Eventually, site-mutation leads to imperfect stem-loops,
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which are recognizable by the specialized dicer-like1 (DCL1)
enzyme complex (Axtell and Bowman 2008). Transposable
elements may have been responsible for the amplification of
MIRNA genes during evolution. There is a link between the
accumulation of miRNA-like hairpins and long terminal re-
peat retrotransposons (LTR-RT), suggesting that a selective
pressure of the miRNA pathway may influence LTR-RTs
directly by inhibiting their activity. LTR-RTs subject to muta-
tion could generate miRNA-like hairpins that would eventu-
ally become MIRNA genes, and in turn would regulate LTR-
RTactivity (Zhou et al. 2013a). Plant genomes are paved with
miRNA transcriptional units.

MIRNA genes usually encode an independent transcription-
al unit and are transcribed by RNA polymerase II (Pol II).
Primary miRNA transcripts (pri-miRNA) are 5′-capped and
polyadenylated and contain imperfect foldback structures (Xie
et al. 2005). Three features differentiate MIRNA genes from
protein-coding genes at the promoter level. First, although
with a binding peak at the transcription start site (TSS) for
high transcription, the decline of the pol II signal is more
intense downstream, at approximately 500 bp from the TSS
in MIRNA genes. Second, the free energy change occurring
between the immediate upstream and downstream of the TSS
is much milder than in protein-coding genes, which is consis-
tent with omission of translation. Third, the composition of the
cis-elements of the promoter differs in frequency and compo-
sition of motifs; the TATA box is more enriched in MIRNA
genes, and the G-Box is over-represented (Zhao et al. 2013).
Although MIRNA genes often encode a unique RNA tran-
script, there are a few documented polycistronic miRNAs in
plants—a phenomenon that is much more common in ani-
mals. For example, two functionally related miRNAs,
miR842 and miR846 targeting jacalins, have been described
as arising from the same transcriptional unit. With the addition
of a new layer of regulation, its processing may result in three
isoforms. miRNA 846 is expressed only in one isoform,
whereas in the other forms a part of miR846 is included in
an intron that is regulated by ABA. Alternative splicing of the
intron results in a disruption of the mature miR846 and a loss
of functionality of these isoforms (Jia and Rock 2013).

Transcription of MIRNA genes is dependent on the forma-
tion of a pre-initiation complex, in which Pol II binds to
Mediator, recruits cyclin H-dependent CDKD kinases and
basal TF IIH (Fig. 1). The CDKD and CAK-activating kinases
phosporylate the carboxy-terminal domain of Pol II (CTD) at
a Ser5 position, which is required for proper capping of
nascent precursor RNA and recruitment of CBP80/ABA
Hypersensitive1 and the CBP20 cap-binding complex
(CBC). NOT2 interacts with CBC, Pol II, SE, and the
Piwi/Ago/Zwille domain of DCL1 to promote the transcrip-
tion of MIRNAgenes and facilitates efficient DCL1 recruit-
ment (Wang et al. 2013). The dicer-like1–serrate–hyponastic
leaves 1 (DCL1–SE–HYL1) complex recognizes the stem-

loop conformation of the precursor while interacting with the
CBC (Hajheidari et al. 2013). With the help of SE, HYL1 is
dephosphorylated by C-terminal domain phosphatase-like-1
(CPL1) and probably CPL2, which are required for accurate
activity of HYL1. In the absence of CPL1, accurate processing
and strand selection from miRNA duplexes are compromised
(Manavella et al. 2012a).

The activity of DCL1 is modulated by its helicase domain,
which confers dependence of the pre-miRNA processing on
ATP. This attenuation in DCL1 functioning is needed for
precise processing of certain substrates, such as ath-pre-
miR166b (Liu et al. 2012). This miRNA family has been
explored to elucidate how defined secondary structures of
precursors affect miRNA abundance. Multibranched terminal
loops in some pre-miR166 species suppress miRNA accumu-
lation considerably. The reason for this phenomenon is that,
although DCL1 processes these pre-miRNAs “canonically”
(at ∼15 bp from a loop region), in terminal branched precur-
sors it is able to process the pre-miRNA from base-to-loop, or
from loop-to-base—the latter generating an abortive miRNA
(Zhu et al. 2013). DCL1 has two dsRNA-binding domains
(dsRNA-BD), D1 and D2. D1, the N-terminal dsRNA-BD,
plays a major role in binding to precursor miRNA, whereas
the C-terminal dsRNA-BD, D2, is involved in protein–protein
interactions with HYL1. Pri-miRNAs are recruited to dicing
bodies, where DCL1 and HYL1 colocalize for accurate pro-
cessing (Liu et al. 2013). The recently discovered MOS2 is a
nuclear protein with G-patch and KOW RNA-binding do-
mains that interacts with pri-miRNAs. MOS2 does not local-
ize in dicing bodies nor does it interact with the DCL1-SE-
HYL1 complex, although its impairment results in a reduced
HYL1 activity and localization at the D-bodies (Wu et al.
2013b). The RNA-binding protein Tough (TGH) also coop-
erates with the DCL1-SE-HYL1 complex by binding to pri
and pre-miRNAs and contributing to pri-miRNA HYL1 in-
teraction (Ren et al. 2012b). A pre-mRNA processing factor,
stabilized1 (STA1) indirectly affects DCL1 transcript levels
and directly regulates the accumulation of intron-containing
miRNAs by modulating splicing (Chaabane et al. 2013). SE
induces DCL1 activity in an ionic strength-dependent scenario
by its N-terminal binding domain interacting with RNA and
the ZnF domain interacting with DCL1. When DCL1 binds to
pre-miRNAs, its interaction with SE is no longer needed, and
DCL1 proceeds with the cleavage of pri-miRNAs (Iwata et al.
2013). The interaction between DCL1 and SE is fundamental
for the efficient enzymatic activity of DCL1. Scaffold proteins
(Rack1) interact with SE, influencing the accumulation and
processing of several miRNAs. Rack1 is also part of the
AGO1 effector complex, with absence of Rack1 leading to
over-accumulation of miRNA targets due to a deteriorated
processing of pri-miRNAs (Speth et al. 2013). The structural
constraints of the single-stranded secondary structure nature
and requirements of pri-miRNAs have been studied
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extensively. In terms of conformational flexibility at the ther-
mal equilibrium of the molecule, pri-miRNAs are character-
ized by plasticity and not by robustness (Rodrigo and Elena
2013).

Whilst the pathways from most pri-miRNA to mature
miRNA, whether evolutionary ancient or young, involve the
same proteins, the processing mechanism of precursors may
differ. There are specific structural determinants in the precur-
sor sequence that lead to divergence in the processing event
even in miRNAs of the same family or alternative miRNAs
from the same precursor. These processing mechanisms can
be divided into four non-mutually exclusive categories: (1) a
loop-to-base mechanism (Fig. 2a), guided by an upper stem
releasing the mature miRNA after two consecutive cuts, in
precursors with a conserved terminal region length of ∼42 nt
and a small loop. (2) A long loop-to-base pathway (Fig. 2b),
where the mature miRNA is released after four sequential cuts
in pre-miRNAs with long conserved stems segments that can
generate multiple sRNAs. (3) A pathway where the process-
ing progress from base-to-loop via the recognition of a bulge
followed by a cut at ∼15 nt from the lower stem (Fig. 2c), in
precursors with a sharp transition from single-stranded RNA
to lower stem. (4) Finally, a long base-to-loop pathway
(Fig. 2d), similar to the latter, but in which the first cut is
followed by two or three slices until the miRNA is released,

and which might generate alternative small RNAs at low
levels (Bologna et al. 2013).

After exiting the nucleus, miRNA duplexes composed of a
miRNA guide strand and a miRNA passenger strand
(miRNA*) are recruited preferentially to AGO1, which favors
5′ terminal uridine, the most typical in plant miRNAs, whereas
AGO2 and AGO4 recruit mainly sRNAs with a 5′ terminal
adenosine and AGO5 mostly 5′ cytosine harboring sRNAs
(Mi et al. 2008). It has been suggested that additional positions
within the miRNA and sequence combinations may influence
AGO sorting. Positions 2, 6, 9 and 13, as well as uracil bases
in certain positions for AGO2 and AGO5, have been proposed
(Thieme et al. 2012). After miRNA loading, highly
complementary target transcripts are often silenced through
direct cleavage (slicing), destabilization or translational re-
pression (Jones-Rhoades et al. 2006; Brodersen et al. 2008).
The most typical plant miRNA interaction with targets results
in cleavage. This fact is consistent with a recent study
reporting that the Arabidopsis mutant ago1-25 requires the
catalytic residues of AGO1 to complement morphological and
functional defects, supporting the consensus idea that the
slicer activity is critical for AGO1 function (Carbonell et al.
2012).

Mature miRNAs may present length or sequence variants,
generally named isomiRs. There is growing consensus about

Fig. 1 Biogenesis of plant microRNAs: Pol II binds toMediator, recruits
CDKD kinases and basal TF IIH. CDKD and CDKF phosporylate Pol II
for proper capping of nascent precursor RNA and recruiting of CBP80
and CBP20. NOT2 interacts with CBC, Pol II, SE, and DCL1.The dicer-
like1–serrate–hyponastic leaves 1 (DCL1–SE–HYL1) complex recog-
nizes the stem-loop. HYL1 is dephosphorylated by CPL1 and probably
CPL2. Pre-miRNAs are recruited to dicing bodies. Tough (TGH) also
cooperates with the DCL1-SE-HYL1 complex. When DCL1 binds to

pre-miRNAs, its interaction with SE is no longer needed, and DCL1
proceeds with the cleavage of pri-miRNAs. miRNA duplexes composed
of a miRNA guide and a miRNA passenger strand are protected byHEN1
methylation. After exiting the nucleus, miRNA duplexes are recruited to
an AGO1 effector complex and miRNA* is degraded. After miRNA
loading, target transcripts are often silenced through direct cleavage or
translational repression
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the importance of these miRNA versions (Jeong et al. 2011;
Neilsen et al. 2012). These variants have also been described
to be incorporated actively into RISC, and to regulate mRNA
targets in mammals (Cloonan et al. 2011). In plants, a recent
report has complemented isomiR identification with parallel
analysis of RNA ends (PARE) data, revealing that predicted
targets are regulated differently by certain isomiR variants.
Notably, ath-miR161.1 and ath-miR161.3, two isoforms with
only 1 nt shift, were predicted to regulate four PPR genes.
However, the PARE data showed that two genes had cleavage
intermediates arising only from ath-miR161.3, indicating that
almost identical miRNA variants can regulate target genes
distinctively (Jeong et al. 2013). Given the growing impor-
tance of miRNA variants, several pipelines have just been
generated to address and standardize the identification of
isomiRs from multiple high-throughput small RNA sequenc-
ing libraries (de Oliveira et al. 2013; Sablok et al. 2013).

Natural variants at the miRNA* sequence can also affect
miRNA accumulation. A polymorphism in the ath-miR164a
gene has been depicted, where a single base substitution in the
miRNA* sequence results in reduced miR164 accumulation,
probably by interfering in the precursor processing and affect-
ing leaf shape and shoot architecture in a natural Arabidopsis
strain. In that report, by exploring multiple A. thaliana acces-
sions, the authors suggest that this is not an exceptional
phenomenon but a common contributor to phenotypic varia-
tion in plants (Todesco et al. 2012). As a whole, it is the
different expression levels, distinctive processing pathways,

potential AGO loading, as well as the length and sequence
variation that determine the resulting functional specification
of miRNAs (Jeong et al. 2013).

MiRNA Editing and Turnover

The enzyme responsible for miRNA degradation is the
exoribonuclease SDN1 (Ramachandran and Chen 2008). 3′
end modification of miRNAs influences abundance via stabi-
lization and by directing their degradation. 2-O-methyl incor-
poration to the miRNA/miRNA* duplex terminal 3′ nucleo-
tides, performed by the nuclear HEN1, protects miRNAs from
degradation by exonucleases (Yu et al. 2005). Without meth-
ylation, miRNAs may undergo uridylation, promoting their
degradation. Uridylation of miRNAs is performed byHESO1,
a nontemplated terminal nucleotidyl transferase, which is
inhibited completely by 2′-O-methylation (Ren et al. 2012a;
Zhao et al. 2012b). After being uridylated, miRNAs are de-
graded; the enzyme responsible for this process has not been
elucidated, but the involvement of the nuclear exosome sub-
unit RRP6, a processive nuclease, has been suggested (Rogers
and Chen 2012). This phenomenon has been documented in
the alga Chlamydomonas reinhardtii, in which RRP6 is re-
sponsible for 3′–5′ degradation of uridylated miRNAs
(Ibrahim et al. 2010). Two other types of miRNA editing have
been described, 3′ adenylation and 3′ cytidine incorporation.
3′ adenlylation is proposed as promoting stabilization of

Fig. 2a–d Processing pathways
of plant miRNA precursors. a
Short loop-to-base pathway,
guided by an upper stem releasing
the mature miRNA after two
consecutive cuts in precursors
with a conserved terminal region
length of ∼42 nt and a small loop.
b Long loop-to-base pathway,
where the mature miRNA is
released after four sequential cuts
in pre-miRNAs with long
conserved stem segments that can
generate multiple sRNAs. c Short
base-to-loop pathway where the
processing progresses from base-
to-loop via the recognition of a
bulge followed by a cut at ∼15 nt
from the lower stem. d Long
base-to-loop pathway, similar to
the latter, but in which the first cut
is followed by two or three slices
until the miRNA is released
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miRNAs, consisting of one or a small number of post-
transcriptionally added adenylic-acid residues that are differ-
ent in length from the polyadenylate tail added to plant RNAs
for exosome-mediated degradation (Lu et al. 2009). Cytidine
incorporation at 3′ ends might promote miRNA degradation
(Zhang et al. 2013a). The importance of these miRNA editing
enzymes is reflected in, for example, the increased abundance
of miRNAs in the heso1-2 mutants, the augmentation of
truncated miRNA forms in the heso1-2 hen1 double mutants,
and the reduction of miRNA abundance concomitant with
vast accumulation of morphological defects of HESO1 over-
expression in the hen1 background (Ren et al. 2012a).
Moreover, the conservation of this attribute of HEN1 was
determined by sequencing small RNAs (sRNA) of hen1mu-
tants from Arabidopsis, rice (Oryza sativa), and maize (Zea
mays), in which a widespread 3′ truncation prior to tailing was
observed, along with AGO1-bound miRNAs being actively
truncated and tailed (Zhai et al. 2013).

MiRNATarget Acquisition

The sequence-specific nature of miRNA is bent by affinity to
target mRNAs. The efficiency of miRNA-guided target inhi-
bition can bemodulated by the strength of the affinity between
miRNA and target mRNA. For instance, ath-miRNA396 in-
teracts with a target gene GRF2 TF with a bulge within
positions 7–8 of the miRNA. This bulge modulates the re-
pression induced by miR396 and shapes the precise spatio-
temporal pattern of GRF2 expression (Debernardi et al. 2012).
The acquisition of novel targets by conserved miRNAs might
be biologically relevant in different backgrounds. ath-miR396
was also found to regulate bHLH transcription factors
(Debernardi et al. 2012), and it was reported recently that
Medicago truncatula plants over-expressing miR396b
showed reduced growth and mycorrhizal associations, con-
comitant with repression of MtGRFs and bHLH-like genes
(Bazin et al. 2013). Moreover, sunflower plants exposed to
heat stress exhibit an induction of miR396, followed by a
repression of a validated targeted WRKY TF. This miRNA,
previously mentioned to be strongly involved in plant devel-
opment, has acquired a new role in sunflower, regulating early
response to heat-stress by gaining a new target, the
HaWRKY6 TF (Giacomelli et al. 2012).

Firstly associated mainly with animals, miRNA-guided
translational arrest of target mRNA is widespread in plants.
The sub-cellular confinement of this process is dependent on
Altered Meristem Program1(AMP1)—an integral membrane
protein associated with AGO1 and the endoplasmic reticulum
(ER). A recruitment of miRNA target transcripts to membrane
fractions has been observed, as well as the induction of trans-
lational arrest of target mRNA on the ER bymiRNAs (Li et al.
2013b).

Since the introduction of next generation sequencing
(NGS) to miRNA biology, the anecdotic high accumulation
of miRNA passenger strands in several sRNA genome-wide
profiles has raised attention. Although the functionality of
miRNA* was suggested, the first report showing biological
significance and activity of a miRNA* was demonstrated by
active association of AGO1 with ath-miRNA171a* and load-
ing onto RISC, triggering the tissue-specific silencing of a
member of the large SET domain protein family, SUVH8
(Manavella et al. 2013).

MiRNAs and Plant Development

Plant development is influenced strongly by miRNAs (Rubio-
Somoza and Weigel 2011; Chen 2012a; Jin et al. 2013). The
juvenile phase is determined by miR156 regulation of target
Squamosa Promoter-Binding Protein-Like(SPL) genes (Wang
et al. 2009; Wu et al. 2009). HYL1 controls expression levels
of miR156-targeted SPL genes, probably by ensuring proper
processing of pri-miR156. In hyl1-2 mutants, the juvenile
phase is compromised (Li et al. 2012b). Both miR156 and
SPL genes are expressed in the developing gynoecium, con-
trolling its patterning through interference with signaling and
auxin homeostasis, and therefore directing the development of
the female reproductive tract in Arabidopsis (Xing et al.
2013).

Flower maturation in Arabidopsis requires the coordinated
activity of miR159, miR319 and miR167. miR159 regulates
MYB and miR319, TCP TF. MYB33 and TCP4 induce
miR167a transcription, which inhibits ARF6/8 TF, affecting
auxins, gibberellic acid and jasmonic acid. This highly coor-
dinated cross-regulation, including cis- and trans-interactions,
modulates successive steps required for consecutive hormone-
dependent transitions, leading to floral development (Rubio-
Somoza and Weigel 2013). The influence of miR319 on
flower maturation might be conserved among plants. A recent
report indicates that tomato plants over-expressing miR319
flower with fewer leaves, suggesting tomato flowering delay
through inhibition of miR319-sensitive TCPs, like Lanceolata
(Burko et al. 2013).Flowering of the herbaceous biennial plant
Cardamine flexuosa requires an age-dependent vernalization
by exposure to cold. miR156 and miR172 control the timing
of sensitivity to vernalization through modulation of the
flower-promoting MADS-box gene CfSOC1, and in turn
cueing flowering (Zhou et al. 2013b). The same signaling
network has been observed in Arabis alpine, the perennial
relative of A. thaliana. Before vernalization, miR172 levels
are low, and its target Apetala2 represses flowering.
Simultaneously, miR156 levels decline chronically, resulting
in an increased abundance of SPLs, which are associated with
flowering in response to cold. This process can be altered by
maneuvering the levels of miR156, which is the main
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controller of time-dependent flowering in response to vernal-
ization (Bergonzi et al. 2013). The influence of miR156 on
vegetative phase change may be altered by its abundance.
miR156 levels augment by reduced photosynthesis and de-
crease by exogenous sugar exposition. The outcome of these
changes in miR156 loads is attributable primarily to the sen-
sitive MIR156a and MIR156c genes (Yang et al. 2013). In the
unicellular moss Physcomitrella patens, miR156 also influ-
ences phase change in an opposite direction to that in
flowering plants, by promoting a developmental switch from
young filamentous protonemata to leafy gametophores (Cho
et al. 2012).

Another miRNA related to development is the conserved
miR408, targeting copper protein encoding genes. miR408 is
required for vegetative development in Arabidopsis and is
altered by several environmental conditions, including copper
deficiency (Cd). During Cd, SPL7 binds and induces the
MIR408 promoter. The constitutive expression of miR408
increases growth of A. thaliana seedlings (Zhang and Li
2013). Mobile miRNAs have also been described as modula-
tors of plant development. ArabidopsismiR394 inhibits F box
protein Leaf Curling Responsiveness (LCR). MiR394 is tran-
scribed at the protoderm and exerts its action in the distal
meristem, potentiating signaling from underneath the stem
cells by the TF Wuschel and thus maintaining stem cell
pluripotency. This interaction restricts the dynamic meristem
area, giving the surface layer area a role as a stable reference
point of meristem development (Knauer et al. 2013).

MiRNAs and Abiotic Stress

Drought stress alters a wide range of miRNAs. For instance,
miR474 has been shown to be sensitive to regulation of
osmolyte production by proline dehydrogenase inhibition.
MiR528 and miR398 fine-tune antioxidant production by
repressing peroxidase and copper-zinc superoxide dismutases
(CSD), respectively. MiR159, miR169, miR160 and miR167
calibrate ABA response by MYB, a subunit of the nuclear
factor Y (NFYA) and auxin response factors (ARFs) TFs
regulation. In addition, miR160, miR390 andmiR393mediate
auxin signaling and cross talk by repressing ARF and trans-
port inhibitor response TFs (reviewed in Ding et al. 2013).

Metal toxicity modifies several miRNAs. After cadmiun
exposure, a downregulation of miR160 and miR164b was
observed (targeting ARFS and NAC domain containing pro-
teins such as cup-shaped cotyledon CUC, respectively), as
well as an upregulation of miR393 targeting F-box proteins
and bHLH TFs. This latter response of miR393 has also been
described recently in radish (Raphanus sativus L.), suggesting
that the outcome to cadmiun exposure might be conserved
during evolution (Xu et al. 2013). During manganese toxicity,
Arabidopsis miR166, miR319, miR393 and miR398 levels

are altered. Increased expression of miR408, miR528 and
miR397b, and a downregulation of miR1318 have been ob-
served in Arabidopsis plants exposed to aluminum stress
(reviewed in Gupta et al. 2014). During N starvation, an
increment in the expression of miR160 miR780, miR826,
miR842, and miR846 and a repression of miR169, miR171,
miR395, miR397, miR398, miR399, miR408, miR827, and
miR857 have been detected in Arabidopsis (Liang et al.
2012). This response does not appear to be conserved among
plants. In maize, miR160 is repressed during N starvation
(Zhao et al. 2012a).

Furthermore, miRNAs may be regulated by heat stress.
Ath-miR400 is an intronic miRNA from the At1g32583 gene
transcriptional unit. In Arabidopsis plants, heat exposure in-
duces the intron where miR400 is located, and an alternative
splicing event excises a portion of pri-miR400, resulting in
accumulation of precursor transcripts and a decrease of the
mature miR400 forms (Yan et al. 2012b). MiR400 gene
targets are members of the pentatricopeptide repeat-
containing proteins (PPR). Although this family has been
studied extensively, the specific impacts of miR400 abun-
dance on its gene targets under heat stress have not been
explored. A rapid induction of miR398 levels has also been
observed under heat, concomitant with inhibition of mRNA
abundance of its target genes CSD 1 and 2 and a copper
chaperone for the CSDs (CCS). This modulation is orches-
trated under a regulatory circuit derived from the inhibition of
miR398 levels under oxidative stress, preventing the impair-
ment of CSD2 inhibition to cope with ROS species (Guan
et al. 2013). However, an over-accumulation of this miRNA
under oxidative stress was observed during late virus infection
(Manacorda et al. 2013), indicating that the regulation of
miR398 levels is not restricted only to ROS detection, and is
more complex than expected.

In addition, plant miRNAs response to cold stress has been
described for a thermosensitive male-sterile wheat line (Tang
et al. 2012), Chinese white poplar Populus tomentosa (Chen
et al. 2012b) and in an inter-fertile relative of citrus trifoliate
orange Poncirus trifoliata known to be freezing-tolerant
(Zhang et al. 2014). Several miRNAs were found to be altered
differently during cold conditions, suggesting plant-specific
pathways to co-opt this stress response. However, miR167,
controlling ARF TFs, and miR396, regulating GRF TFs,
both related to developmental process, were commonly
induced as a response to cold exposure in these unre-
lated plants.

Finally, in Arabidopsis seedlings, growth arrest is a typical
osmotic stress aftermath, as a strategy to survive this
disturbing condition. MiR172b actively represses the AP2-
like gene Schnarchzapfen(SNZ). This gene controls the ABI3
(B3 type)/ABI5 (bZIP type) TFs pathway, which switches
plant metabolism leading from the heterotrophic to an auto-
trophic state. During osmotic stress, ABA signaling represses
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miR172b, compromising SNZ regulation of cotyledon green-
ing during seedling growth (Zou et al. 2013).

MiRNAs and Biotic Stress

Not long ago, the modification of several miRNAs during
viral infection was reported for the first time. This alteration
during Tobamoviridae, Potyviridae, andPotexviridae infec-
tion was correlated to viral symptoms and a developmental
shift (Bazzini et al. 2007). There is increasing evidence sug-
gesting that this phenomenon might be a general response of
the host plant to virus infection. Whether this alteration is a
side-effect of the host miRNA pathway saturation by viral
transcripts or a coordinated response of the plant to co-opt
with viruses is under debate (reviewed in Zvereva and Poogin
2012; Balmer and Mauch-Mani 2013). Nevertheless, the in-
teraction between viruses and the RNAi pathway is far more
complex and multidimensional. It has been proposed that,
although the overlapping responses against viruses might be
studied and analyzed in detail in the short-term, in the long-
term there is a need to fit together the various responses in
order to generate a unified theory of plant–virus interactions
(Palukaitis et al. 2013).

It is widely known that RNA silencing protects plants
against most viruses and that successful infection depends
on suppression and evasion of antiviral silencing, based most-
ly on the action of viral silencing suppressors (VSR) as a
mechanism to hijack the host defense response (reviewed in
Pumplin and Voinnet 2013). VSR are structurally and func-
tionally diverse. Several VSR have been described to inhibit
or alter the miRNA pathway (Chapman et al. 2004). For
instance, the tombusvirus P19 protein is able to bind and
sequester most 21 nt sRNA species, preventing them from
being incorporated into the silencing pathway. Strikingly,
miR168 does not bind efficiently to p19, and tombusviruses
induce MIR168 expression. This miRNA is loaded onto
AGO1, targeting AGO1 mRNA precisely in a feedback loop.
As a net result, AGO1 levels are strongly reduced, therefore
inhibiting the miRNA pathway (Varallyay et al. 2010;
Varallyay and Havelda 2013).

A different type of interaction has been elucidatedrecently
in relation to virus infection, involving the modulation of plant
immune receptors through miRNAs. nta-miR6019 and nta-
miR6020 target and inhibit the Toll and Interleukin-1 immune
receptor NB-LRR (N) from tobacco that confers resistance to
tobacco mosaic virus (TMV). The cleavage of N by nta-
miR6019 and nta-miR6020 triggers the RdRD6- and DCL4-
dependent generation of multiple secondary siRNAs, suggest-
ing that, in turn, several related immune receptors might be
regulated in a coordinated response. Nta-miR6019 and nta-
miR6020 are repressed and N is induced during pathogen
response, indicating that this mechanism controls and restricts

costly production of immune receptors only when required by
a pathogen-induced interaction (Li et al. 2012a). This mech-
anismwas shown to be conserved in tomato, in whichmiR482
and miR2118 target cleavage of mRNA sequences also for
NB-LRRs disease resistance proteins with coiled-coil do-
mains at their N terminus (Shivaprasad et al. 2012). In addi-
tion, a miRNA identified from apple,Md-miRLn11, targets an
NB-LRRs coding gene (Md-NBS), in particular during patho-
gen infection (Ma et al. 2014). Moreover, in a new study
describing the sRNA profile of spruce, grape and poplar, a
large fraction of 21 nt siRNAs was originated fromNBS-LRR
receptors, further suggesting to be originated by phased pro-
cessing of miRNA cleaved NBS-LRR transcripts (Källman
et al. 2013). In rice, miR7695 is regulated by elicitors from the
blast fungusMagnaporthe oryzae and inhibits an alternatively
spliced transcript, Natural resistance-associated macrophage
protein 6 (OsNramp6). Over-expression of miR7695 results in
resistance to the blast fungus (Campo et al. 2013). miRNAs
have also been involved in defense pathways against insect
pests. Myzus persicae produces less progeny in Arabidopsis
plants deficient in the miRNA pathway. This miRNA com-
promised plants, when exposed to aphid infestation, increas-
ing production of camalexin and therefore inhibiting the pro-
duction of aphid progeny (Kettles et al. 2013). Finally, there is
evidence that miRNAs might be involved in soybean nodula-
tion. Over-expression of gma-miR172 increases the expres-
sion of symbiotic leghemoglobin and non-symbiotic hemo-
globin and boosts nodule number in a complex regulatory
circuit, linking miR156 regulation of miR172 expression
and the level of AP2 TF (Yan et al. 2013).

MiRNAs and Phased Small RNAs

The nature of the mechanism encompassing the production of
secondary phased siRNAs (phasiRNA) derived frommiRNA-
guided cleavage of intermediary transcripts has been studied
extensively in recent years. PhasiRNAs are triggered by 22 nt
long miRNAs (Cuperus et al. 2010; Chen et al. 2010), or by
the presence of asymmetrically positioned bulged bases in the
miRNA:miRNA* duplex. PhasiRNA production is pro-
grammed during the early steps of miRNA loading onto
AGO1, before disassembly of the RNA duplex and selection
of the miRNA guide strand (Manavella et al. 2012b). A subset
of this secondary siRNAs, denominated tasiRNAs, are loaded
onto AGO effectors and direct the cleavage in trans of mRNA
targets with complementary sequences (Peragine et al. 2005;
Vazquez et al. 2004; Allen et al. 2005).

The presence of phasiRNA generating miRNAs is highly
dynamic and widespread in eudicots. A new report infers that
these types of miRNAs might have originated by diversifica-
tion of a widely conserved ancient miR390. miR390-
dependent phasiRNA production does not rely on length or
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duplex asymmetry, but on a “two-hit trigger” strategy,
resulting in secondary siRNAs arising from regions flanked
by dual miR390 target sites (Axtell et al 2006). miR390 would
have originated the miR7122 super family, which has pro-
nounced identity with miR173, the first described 22 nt
miRNA that generates phasiRNAs derived from PPR target
genes. This scenario is supported by the fact that even though
the diverse miRNA target transcripts present high sequence
divergence among eudicots, the MIR173-like genes, such as
miR7122, miR1509, and fve-PPRtri1/2, show pronounced
identity (Xia et al. 2013). The evolutionary pathway of
miRNAs and phasiRNAs presents intriguing aspects of con-
vergence and divergence in the plant kingdom. As an exam-
ple, a unique role of the ancient miR156 has been observed in
Physcomitrella patens but not in flowering plants. In the moss,
miR156 induces the accumulation of particular phasiRNAs
reliant on the conserved miR390, by targeting a phasiRNA
primary transcript (Cho et al. 2012).

Target Mimicry

Since the discovery of miRNAs, due to its active induction of
target inhibition, it has been widely postulated that miRNAs
are indeed regulators of messenger RNAs. An opposite hy-
pothesis postulating that miRNA targets regulate miRNA
availability, termed “target mimicry”, is supported strongly
by a class of long non-coding RNAs discovered in
Arabidopsis. Induced by Phosphate Starvation 1 (IPS1) is
targeted by ath-miR399, the miRNA-target pair presents a site
that contains a central bulge protecting IPS1 from cleavage.
IPS1 thereby reduces the amount of miR399 available to
repress its target mRNA PHOSPHATE 2—an E2 ubiquitin
conjugase-related protein that negatively affects shoot Pi con-
tent and Pi remobilization (Franco-Zorrilla et al. 2007). In
recent years this hypothesis has been expanded to animals
and humans, holding that target mRNAs are not only mere
inert substrates of miRNA action, but dynamic regulators of
miRNA availability, and proposing mRNAs, transcribed
pseudo-genes, and long non-coding RNAs as competing en-
dogenous RNA(ceRNA) communicating to each other using
microRNA as response elements (Salmena et al. 2011). This
inverse rationale offers a novel mode of miRNA regulation
and a redefinition of the rules governing miRNA biology,
reinstallingmRNAs at the central stage of regulatory networks
(Cesana and Daley 2013). It is worth noting that the intrinsic
concept at the core of this expanded hypothesis was anticipat-
ed in the target mimicry principle (Rubio-Somoza et al. 2011).

Target mimicry (Fig. 3) as a natural phenomenon, has been
extensively validated by a novel study reporting the existence
of several widespread long non-coding RNAs that are target
mimics in plants. Twenty conserved endogenous miRNA
target mimics (eTMs) were found in Arabidopsis and rice,

with marked sequence conservation along the target binding
site. Among them, two eTMs of miR160 and miR166 were
proven to be functional target mimics regulating plant devel-
opment (Wu et al. 2013a). Target mimic has been exploited for
the generation of knock-down libraries of Arabidopsis
miRNAs, by emulating natural long-noncoding RNAs such
as IPS1. Strong morphological defects were observed when
several conserved miRNA families were inhibited. Milder
effects observed when young miRNAs were inhibited suggest
that they do not influence basic developmental processes
(Todesco et al. 2010). An improvement of this technology
comprises the expression of a short tandem target mimic
(STTM), composed of two miRNA target sites with a CTA
tri-nucleotide bulge corresponding to positions 10 and 11 from
the 5′mature miRNAs to avoid cleavage, and separated by an
optimal 48–88 nt size spacer. This STTM results in an in-
creased inhibition of miRNAs (Yan et al. 2012a).

Engineering miRNAs

Different molecular engineering approaches have been devel-
oped to exploit plant miRNA biology. Artificial miRNAs
(amiRNAs), in which plant pri-miRNAs are modified at the
miRNA/miRNA* duplex to re-direct their action to silencing
of newly defined target genes (Fig. 3b; Schwab et al. 2005),
are perhaps the most representative case. One of the first
reported uses of amiRNAs was the generation of virus-
resistant transgenic plants targeting viral silencing suppressors
(Niu et al. 2006). A concern with this strategy related to virus
escape to amiRNAs during mixed infections was raised re-
cently. In amiRNA-mediated turnip mosaic virus (TuMV)
resistant plants, pre-infection with another virus has been
found to jeopardize the resistance phenotype to TuMV
(Martínez et al. 2013). To circumvent this problem, a design
solution that improves resistance by combining several
amiRNAs targeting highly conserved viral genomic regions
to successfully maintain the resistance phenotype has been
suggested (Lafforgue et al. 2013). Recently, for research pur-
poses, a genome-wide family-specific amiRNA library was
generated, encompassing 22,000 amiRNAs targeting defined
functional protein classes for genetic screens of the function-
ality of the complete gene landscape in Arabidopsis (Hauser
et al. 2013). To improve the screening of amiRNA target
inhibition, an epitope-tagged protein-based amiRNA platform
(ETPamir) has been developed. When ETPamir are co-
expressed in protoplasts with amiRNA candidates, it permits
the parallel quantification of target genes and proteins as a
measure of amiRNA efficacy (Li et al. 2013a).

A different strategy has been deployed by exploiting the
generation of phasiRNAs of target genes by 22 nt miRNA-
guided cleavage of gene target transcripts fused to an upstream
miR173 target site. This target site is sufficient to efficiently
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trigger silencing of endogenous genes; it may be used to target
multiple genes and can be applied to other plant species
besides Arabidopsis by co-expressing ath-miR173 (de
Felippes et al. 2012). A version of this strategy was evaluated
and compared to different silencing approaches based on
expression of hairpin RNA constructs (hpRNA) and regular
21 nt amiRNAs. The 22 nt phasiRNA-triggering miRNAs
were successful in silencing every tissue, including roots and
seed coats—two regions where silencing efficiency of regular
amiRNAs and hpRNA is compromised (McHale et al. 2013).

First used to understand miRNA function, over-expression
of natural miRNAs (Fig. 3c) has now been re-oriented to the
generation of biotechnologically relevant traits in plants. In
switchgrass (Panicum virgatum L.)—a perennial warm season
bunchgrass used primarily for soil conservation and
forage production, over-expression of miR156 and a strong
silencing of its SPL gene targets result in several morpholog-
ical alterations leading to enhanced biomass production (Fu
et al. 2012). The popular ornamental tuberous gloxinia
(Sinningia speciosa) has been engineered to over-express
miR159, which resulted in a delayed flowering state concom-
itant with a repression of its MYB TF gene target
(SsGAMYB).WhenmiR159was inhibited bymeans of target
mimicry, gloxinia plants presented an early flowering pheno-
type (Li et al. 2013c). Over-expression of osa-miR397 in rice
induced a substantial depletion of its laccase-like gene target
(OsLAC) involved in sensitivity to brassinosteroids. Rice

over-expresser lines increased grain size and promoted panicle
branching, resulting in improved yield (Zhang et al. 2013b).
Despite the lack of reports related to miRNA engineering to
reduce the amount of N-based fertilizer, it has been suggested
that such reduction could be attained by expression ofMIRNA
genes upregulated during N starvation, such as miR156, along
with inhibition of repressed miRNAs amid N starvation, such
as miR827. This might reduce production costs and environ-
mental damages (Fischer et al. 2013). Manipulation of
miR160 can alter nodule primordium formation in soybean.
When miR160 is over-expressed in soy, silencing of ARF
TFs, hyposensitivity to cytokinin, and hypersensitivity to
auxin in roots are observed, which reduces nodule develop-
ment (Turner et al. 2013).

Concluding Remarks and Future Challenges

In the miRNA biogenesis sphere, several important new
players, such as CPL1, THG, MOS2 and STA1, have been
discovered in recent years. In addition, the elucidation of a
much more complex than previously thought panorama in the
processing pathway of pri-miRNAs in the elegant report of
Bologna et al. (2013) is worth mentioning.

One notable future challenge is the elucidation of the miRNA
degradation process during biotic or abiotic stress. Even though
SDNs were described in Ramachandran and Chen (2008), there

Fig. 3 Engineering of plant miRNAs. a Natural miRNAs (e.g. miRX)
originate by processing of a gene precursor miRNA (pre-miRX), resulting
in a duplex RNA (miRX/miRX*) that will be incorporated into AGO1
and induce cleavage of complementary targets (mRNA-X). b Artificial
miRNAs (e.g., amiRX) consist of modified natural miRNA precursors
(pre-amiRX) that redirect miRNA silencing activity to newly defined

targets (mRNA-Y). c Over-expression of natural miRNAs is based on
the transformation of plants with strong promoters directing transcription
of miRNA units (e.g., 35S:pre-miRX), resulting in over-accumulation of
miRNAs and depletion of target mRNA. d Target mimicry consists of the
expression of artificial targets of natural miRNAs (mim-X) that sequester
miRNAs and prevent natural targets (mRNA-X) from degradation
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is not a single report detailing SDN1 steady-state levels or
alterations during plant development, pathogen interaction or
environmental stress. It is also not clear if any protein member
of the exosome contributes directly to miRNA degradation. It is
interesting to point out that we know a lot more about miRNA
biogenesis than about turnover.

Regarding miRNA target acquisition, there is an important
question that has not yet been conclusively addressed. In animals,
miRNAs regulate gene targets by “seed” binding, which targets
only the first 8 nt of the mature miRNA. Thus, the typical
interaction in animal miRNAs and its numerous targets results
in a mild modulation of multiple mRNAs. In plants, most of the
experimentally validated targets share extended sequence com-
plementary to the miRNA (Jones-Rhoades and Bartel 2004;
Schwab et al. 2005). Thus, in general, plant miRNAs regulate
only a few targets via a strong interaction (Ding et al. 2012). The
extended complementarities and typical straightforward valida-
tion by mRNA accumulation may have biased the identification
of more subtle modulated targets. In a recent report, this animal-
like interaction has been analyzed by a transient sensor system at
both the RNA and protein levels, and has been ruled out for
several conserved miRNAs in plants (Liu et al. 2014).
Nevertheless, a new study of the same group describes the
discovery and validation of a non-canonical target harboring a
6 nt bulge at the 5′ complementary region of the miRNA
(Brousse et al. 2014). This completely unconventional and un-
expected target highlights that it is not yet definitely shown if
new types of interaction between miRNAs and targets are pos-
sible in plants, and, more importantly, if they could be biologi-
cally relevant.

Every biotechnology breakthrough derived from miRNA
engineering will be subjected to restrictions before an important
question is answered: what are the biosafety and environmental
risks associated with the use of small RNAs for plant genetic
improvement? (reviewed in Auer and Frederick 2009; Auer
2011). This concern has deepened since the publication of an
article describing a rice miRNA in animal samples and the
possibility of cross-kingdom inhibition of mammalian targets
(Zhang et al. 2011), although the implications of this report
have been diminished in recent years by the identification of
some technical concerns in the report and the difficulties in
replicating the results by an independent group (corrigendum to
Zhang et al. 2011: Dickinson et al. 2013; Chen et al 2013).

Overall, the expansion of knowledge in the miRNA field is
overwhelming. While miRNA incumbency was first believed
to be exceptional and anecdotic, it turned out to be central to
plant biology, encompassing and modulating every aspect of
plant life investigated thus far.
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