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Abstract Plant D-type cyclin genes (CYCDs) are important
regulators of cell division. However, little is known on their
participation during the early developmental stage of cucum-
ber fruit. In this study, cucumber CYCD genes were identified
and characterized. The expression levels of these genes during
early fruit development were assessed from 0 to 8 days after
anthesis (DAA). The results revealed the presence of 13
different CYCD genes, which were named according to iden-
tity percentages of the corresponding orthologs inArabidopsis
thaliana and poplar. The genomic organization of each sub-
group CYCD was similar to their orthologs in A. thaliana and
poplar. The expression levels of CsCYCD genes were ana-
lyzed in cucumber fruits under different treatments including
natural parthenocarpic fruit, pollinated fruit, and N-(2-chloro-
4-pyidyl)-N ′-phenyurea (CPPU)-induced parthenocarpic
fruit. The highest expression levels of most CsCYCDs genes
were at four DAA in natural parthenocarpic and pollinated
fruits. Interestingly, the expression patterns of 8 of 13
CsCYCD genes in natural parthenocarpic fruit were similar
to those in pollinated fruit, but different from those in CPPU-
induced parthenocarpic fruit. Collectively, the results of this
study provide insights on the CYCDs involved in cucumber
parthenocarpic fruit development.
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Introduction

The plant cell cycle plays a crucial role in growth and devel-
opment (Dewitte et al. 2003). The plant cell cycle is regulated
at two points, the G1/S and G2/M phases, and is controlled by
cyclin-dependent kinases (CDKs), whose activities are deter-
mined by different types of cyclins (A-, B-, and D-types)
(Morgan 1997). The D-type cyclin (CYCD) controls both
the commitment of cells to cell division and the cellular
responses to extracellular signals during the G1 phase (Soni
et al. 1995; Riou-Khamlichi et al. 1999). Mitogenic signals
stimulate the activities of CDK/CYCD complexes involved
in cyclin/retinoblastoma (RB; animals) and RB-related
genes (RBR; plants) pathways, which are believed to be
involved in regulating the commitment of cells to the
mitotic cell cycle (Meijer and Murray 2001; Boonstra
2003). Phosphorylation of RBR by CDK/CYCD com-
plexes results in the release of RBR from promoter-
bound E2F/DP complexes, triggering the expression of
target genes and the progression of cells into the S phase
(Uemukai et al. 2005). This phosphorylation is dependent
on a specific RBR-binding motif near the cyclin N-
domain, which consists of the LxCxE amino acid se-
quences. Almost all plants CYCDs have a conserved
LxCxE RBR-interaction motif (Soni et al. 1995; Huntley
et al. 1998). Plant CYCD contains both a conserved cyclin
N-domain and a conserved cyclin region involved in CDK
binding (Nugent et al. 1991). However, some D-type cyclins
often contain less conserved cyclin-C domains (Buendía-
Monreal et al. 2011).

Cell division is necessary for plant development. Plant
D-type cyclin genes (CYCDs ) are important in regulating
the commitment of cells to cell division during plant growth and
development (Soni et al. 1995; Riou-Khamlichi et al. 1999). A
significant advance in our understanding of the role ofCYCDs in
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cell division came from transgenic manipulation. In Arabi-
dopsis , the overexpression of AtCYCDs genes enhances cell
division and accelerates plant development (Koroleva
et al. 2004; Cockcroft et al. 2000; Dewitte et al. 2003, 2007;
Kono et al. 2007; Collins et al. 2012). Therefore, plant
CYCDs play important roles in cell division and plant
development.

Fruit development depends on the successful completion of
pollination and fertilization. However, several varieties of
cucumber (Cucumis sativus L.) can naturally produce parthe-
nocarpic fruit in the absence of fertilization. Fruit growth and
development is determined by cell division and cell expansion
(Gillaspy et al. 1993). Cell division plays an essential role
during early fruit organogenesis by determining the number of
cells and the final size of fruits (Bohner and Bangerth 1988).
In cucumber, cell division occurs most rapidly in the
period before anthesis to 0–4 days after anthesis (DAA)
(Boonkorkaew et al. 2008; Fu et al. 2008; Ando et al.
2012; Fu et al. 2010). Plant CYCD genes, which regulate
cell division and fruit development, have been reported.
Kvarnheden et al. (2000) reported that LeCYCD3;1 ,
LeCYCD3;2 , and LeCYCD3;3 in tomato (Lycopersicon
esculentum Mill.) are involved in the transduction of sig-
nals that lead to fruit development. Similar studies have
been reported in white-flower gourd (Lagenaria leucantha)
and cucumber; the expression of LlCYCD3;1 , LlCYCD3;2 ,
CsCYCD3;1 , and CsCYCD3;2 are abundant in pollinated
ovaries and parthenocarpic ovaries (Fu et al. 2010; Li et al.
2003). These results suggest that CYCDs play important
roles in fruit development by promoting cell division.
However, there are few studies on the expression levels
of other CYCDs during early fruit development.

In cucumber, plant growth regulators including
α-naphthalene acetic acid (NAA), N -(2-chloro-4-pyidyl)-N ′-
phenyurea (CPPU), and brassinosteroids (BRs) induce parthe-
nocarpic fruits by stimulating CYCD3 expression (Fu et al.
2008, 2010). In addition, pollination/fertilization, which in-
crease the accumulation of auxins, gibberellins (GAs), and
cytokinins, enhance CYCD3 expression and activate cell di-
vision in cucumber ovaries (Boonkorkaew et al. 2008; Fu
et al. 2008, 2010). With the exception of CsCYCD3;1 and
CsCYCD3;2 , D-type cyclin genes are not involved in regu-
lating cucumber fruit development (Fu et al. 2008, 2010). The
relationship between transcriptional changes in CYCD genes
during cell division and early fruit development needs to be
further studied in cucumber fruits.

The Cucumber Genome Sequence Project is complete
(Huang et al. 2009). The availability of cucumber genomic
sequences provides an opportunity to study gene families in a
genome-wide manner. To set the foundation for a better un-
derstanding of the CYCD family in cucumber, we identified
the members of the cucumber CYCD family and compared
their similarity with sequences of the corresponding orthologs

in A. thaliana and poplar (Populus trichocarpa ). There is
ample information on the chromosomal locations, genomic
structures, and expression patterns of cucumber CYCD gene
family during the early stage of fruit development. This study
will help us understand the molecular and biological functions
of D-type cyclin genes in cucumber.

Materials and Methods

Identification of CYCD Gene Families in Cucumber

Sequence information for 10 A. thaliana CYCD genes and 22
poplar CYCD genes were retrieved from the Institute for
Genome Research [(TIGR) Annotation Version 5.0 (http://
www.tigr.org/tdb/e2k1/ath1/)] and the National Center for
Biotechnology Information GenBank (http://www.ncbi.nlm.
nih.gov). To assess the corresponding cucumber orthologs, a
basic local alignment search tool (BLAST) was performed for
each one of the A. thaliana and poplar CYCD protein se-
quences against the Cucumber Genome Database (http://
cucumber.genomics.org.cn/page/cucumber/index.jsp). Those
with the highest amino acid percentage identity were
selected. Cucumber CYCDs were named according to the
nomenclature of Wang et al. (2004) and Menges et al.
(2007). The gene numbers corresponding to every CYCD in
the Cucumber Genome Database are shown in Supplemental
Table S1.

Phylogenetic Analysis

Alignments of the CYCD protein sequences of cucumber, A.
thaliana , and poplar were performed using ClustalWMultiple
Alignment in MEGA 5.0 (Tamura et al. 2011). A Neighbor-
Joining phylogenetic tree was constructed by aligning the
CYCD protein sequences of A. thaliana (10), poplar (22),
and cucumber (13). Bootstrap analysis was performed with
5,000 repeats.

Analysis of CYCD Protein Domains and Genomic
Organization

To study cyclin-specific domains and motifs, CYCD protein
sequences were analyzed using the Functional Site Prediction
for Eukaryotic Linear Motif (http://elm.eu.org/) and PFAM
(http://pfam.sanger.ac.uk/) databases. The exon–intron
organization of cucumber CYCDs were analyzed using the
Gene Structure Display Server (Guo et al. 2007).

Chromosomal Mapping of Cucumber CYCDs

To determine the location of the CsCYCD genes on the cucum-
ber chromosomes, each cDNA sequence was used as a query
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sequence for BLAST against cucumber whole genomic scaf-
folds (http://cmb.bnu.edu.cn/Cucumis_sativus_v20/).
According to the information obtained from the whole
genomic scaffolds, 13 CYCDs were mapped on the corres-
ponding cucumber chromosomes.

Plant Growth and Treatments

Two cucumber cultivars, EC1 (natural parthenocarpy line)
and 8419s-1 (non-parthenocarpy line) were used in the exper-
iments. Seedlings were grown in a greenhouse [12-h photo-
period; mean daily air temperatures, 29°C/17°C (day/night);
relative humidity, 85%, photosynthetic photo flux density
800 μmol m−2 s−1] at the Nanjing Agricultural University in
China. The ovaries at the 12–15th nodes of the main stem
were isolated one day prior to anthesis to prevent pollen
contamination. Ovaries of EC1 were isolated for sampling.
Experiments with ovaries of 8419s-1 included two treat-
ments: (1) pollination and (2) parthenocarpic fruit induced
with 100 mg L−1 of CPPU at anthesis (Fu et al. 2010).
Samples were harvested at 0, 2, 4, 6, and 8 DAA; 8419s-1
unpollinated fruits were only harvested at 2 DAA. Samples
were frozen in liquid nitrogen and stored at −80°C prior to
RNA extraction.

Expression Profile Analysis

In our previous study, expression profiles were obtained
from young fruits (2 DAA) consisting of unpollinated
EC1, pollinated and unpollinated 8419s-1, and CPPU-
inducted 8419s-1. cDNA preparation, Illumine sequencing,
and transcript analysis were performed as described by
Feng et al. (2012). Differentially expressed genes con-
taining CYCDs at 2 DAA in young fruits were retrieved
from Cucurbit Genomics Database. The gene expression
levels were calculated using the RPKM method (Reads
Per kb per Million reads) reported by Mortazavi et al.
(2008).

Quantitative Real-Time PCR

Total RNA was extracted from cucumber fruits with Trizol
reagent (Invitrogen), according tomanufacturer’s instructions.
for 30 min at 25 °C and purified according to manufac-
turer’s instructions. First-strand cDNA was synthesized
from 2 μg of total RNA using a Fermentas Reverse
Transcription Kit. The designed primers are shown in
Supplemental Table S2. Cs-Actin was used as an inter-
nal control (GenBank accession number: AB010922).
QRT-PCR was performed using SYBR Premix Ex
TaqTM Kit (Takara) according to the manufacturer's pro-
tocol. The selected genes were analyzed using a Bio-Rad
iQ1 real-time PCR. At least three replicates were tested

per sample. Relative mRNA (fold) differences were assessed
using the 2–ΔΔCt formula (Livak and Schmittgen 2001).

Results

Identification of Cucumber CYCD Genes

Using A. thaliana and poplar CYCD protein sequences, we
identified 13 candidates D-type cyclins and further analyzed the
phylogenetic relationship with A. thaliana and poplar CYCDs.
The results revealed the presence of cucumber CYCD sub-
groups: CYCD1, CYCD2/CYCD4, CYCD3, CYCD5,
CYCD6, and CYCD7 (Fig. 1). As in A. thaliana , CYCD2
and CYCD4 belonged to one subgroup. Five cucumber
CYCD3 genes revealed close homology to AtCYCD3 ; these
genes consisted of three pairs of closely related genes arising
from genome duplication. In cucumber, CYCD1 and CYCD5
had two members; CYCD6 and CYCD7 had one member.
Cucumber CYCDs were named according to phylogenetic
results. Of the 13 D-type cyclin genes, two were CsCYCD3;1
and CsCYCD3;2 (Fu et al. 2008).

Analysis of Protein Sequences in CYCD: Domains and Motifs

Plant cyclins contain a conserved region called the cyclin core,
which consists of cyclin N-domain and cyclin C-domain

Fig. 1 Phylogenetic tree of 45 CYCD protein sequences from A.
thaliana AtCYCDs (red ), poplar PtCYCDs (blue ), and cucumber
CsCYCDs (dark green). Gene IDs are listed in Supplemental Table S1.
The values above the branches represent bootstrap percentages (5,000
replicates). The scale bar represents 0.1 amino acid substitutions per site
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Fig. 2 Genomic organization and
protein domains of cucumber D-
type cyclins. a Characteristic
cyclin domains in cucumber
CYCDs. b Genomic organization
with exons (light green bars),
introns (gray lines), and
untranscribed regions (UTRs)
(blue bars)

Fig. 3 Genomic localization of cucumber CYCD genes. The arrows
next to the gene names show the direction of the scaffold, which was
sequenced in cucumber genome database

Fig. 4 Expression levels of D-type cyclin genes analyzed by RNA-Seq
analysis of ovaries at 2 DDA. The colors represent RPKM-normalized
log2 transformed counts. Red indicates upregulation, dark indicates on
differences, and green indicates downregulation expression levels in
different ovaries. The control consisted of 8419s-1 unpollinated ovary
(U). Expression levels ofCYCDs genes in EC1 non-pollinated ovary (E),
8419s-1 pollinated ovary (P), and CPPU-induced 8419s-1 ovary (C)
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(Nugent et al. 1991). The cyclin N-domain is approximately
120 amino acids long and comprises the CDK-binding region
with a conserved cyclin signature of eight amino acids. The
cyclin-C domain is less conserved and is present in most plant
cyclins (Wang et al. 2004). In cucumber, it is present in all
cyclins with the exception of CYCD6;1 (Fig. 2a). The CYCD
structure is characterized by a conserved cyclin signature,
which is essential for cyclin binding to CDK. Cyclins are
nonfunctional in the absence of an intact cyclin signature.
However, with the exception of CsCYCD3;2, CsCYCD3;3,
CsCYCD6;1, and CsCYCD7;1, all CsCYCDs have the con-
served cyclin signature (Fig. 2a).

Almost all plant CYCDs contained an RBR protein-binding
site and an amino acid motif (LxCxE) near the N terminus
(Ewen et al. 1993; Soni et al. 1995). Of these 13 D-type cyclins,
four had no conserved LxCxE motif: CsCYCD1;2,
CsCYCD2;1, CsCYCD5;1, and CsCYCD6;1 (Fig. 2a). With
the exception CsCYCD1;1 and CsCYCD7;1, which have the
same LLCDE sequence, there were differences in the LxCxE
motif among the subgroups. These results suggested that there
are subgroup-specific differences in RBR binding.

Genomic Organization of CsCYCD Family Genes

We assessed the exon–intron organization in the 13 CYCD
cucumber genes (Fig. 2b). The exon–intron organization of
ancestral CYCD genes contains six exons (Menges et al. 2007;
Buendía-Monreal et al. 2011). Our results revealed that
CsCYCD1;1 , CsCYCD2;1 , CsCYCD4;1 , and CsCYCD6;1
contained six exons, which is consistent with the ancestral
structure of CYCD genes in vascular plants. As in A. thaliana
and poplar, five cucumber CYCD3 genes had four exons. Other
CsCYCD genes contained five exons. This result revealed that
some exons of the ancestral CYCD genes fused into one.

Chromosomal Distribution of D-type Cyclin Genes
in Cucumber

All CYCD genes from cucumber were anchored to cucumber
chromosomes. The chromosomal locations and scaffold se-
quence directions of the 13 CsCYCD genes were analyzed
using BLASTN. Further analysis of the cucumberCYCD genes
revealed that they were distributed on 6 of the 7 cucumber

Fig. 5 Expression levels of the
13 CsCYCD genes during the
early stage of natural
parthenocarpic fruit development.
Most of the CsCYCD expression
levels were the highest at 4 DAA
(a). Other CsCYCD genes had
different expression levels (b , c ,
d , and e). QRT-PCR analyses
were performed using RNA
generated from EC1 ovaries at
different developmental fruit
stages (0, 2, 4, 6, and 8 DAA).
The results were expressed
relative to mRNA levels of
8419s-1 unpollinated ovary at 0
DAA. Values represent a single
experiment consisting of three
independent biological replicates.
Bars indicate SE of the mean of
three experimental replicates
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chromosomes (Fig. 3). The number of CsCYCD genes per
chromosome ranged from one to four. Four CsCYCD genes
were located on chromosome 4, four on chromosome 6, and
two on chromosome 2. Three other CsCYCD genes were
located on chromosomes 3, 5, and 7. However, none of the
CsCYCD gene was found on chromosome 1. We observed
homologousCsCYCD genes located on different chromosomes
in cucumber, suggesting that duplicated events were potentially
involved in the evolution of cucumber CsCYCDs (Fig. 3).

Global Correlation Analysis of CsCYCD Expression
Profiling in Young Fruits at 2 DDA

According to previous work in our lab, the 13 D-type cyclin
genes can be identified from the expression profiles in young
fruits at 2 DAA. Of the 13 D-type cyclin genes, 11 were

upregulated in EC1 natural parthenocarpic fruit, 8419s-1 pol-
linated fruit, and CPPU-induced parthenocarpic fruit at 2
DAA (8419s-1 unpollinated fruit served as the control)
(Fig. 4). In addition, the expression level of CsCYCD4;1
was similar among the different treatments. However, at 2
DAA, CsCYCD7;1 was slightly upregulated in CPPU-
induced fruits, whereas it was downregulated in EC1 parthe-
nocarpic and pollinated young fruits compared to the control.
These results indicated that cell division in parthenocarpic and
pollinated fruits at 2 DAAwas very rapid.

Expression Levels of CsCYCDs During the Early
Development of Cucumber Fruits

To assess the role of D-type cyclins during the early develop-
ment of natural parthenocarpic fruits, we analyzed the

Fig. 6 Expressional levels of 13
CsCYCD genes during the early
developmental stage of pollinated
fruits. QRT-PCR analyses were
performed using RNA generated
from 8419s-1 pollinated fruits at
different developmental stages (0,
2, 4, 6, and 8 DAA). For more
details see Fig. 5
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expression levels of the 13 cucumber CYCD genes. In EC1
natural parthenocarpic fruit, the highest expression levels of
CsCYCD1;1 , CsCYCD2;1 , CsCYCD3;1 , CsCYCD3;2 ,
CsCYCD3;3 , CsCYCD3;4 , CsCYCD3;5 , and CsCYCD5;2
were obtained at 4 DDA and then began to decrease with
the completion of cucumber fruit set (Fig. 5a), suggesting that
the period of cell division may occur from anthesis to 4 DAA
in natural parthenocarpic fruits. Furthermore, the expression
patterns of these genes were similar from 0 to 8 DAA.
CsCYCD4;1 and CsCYCD5;1 were gradually downregulated
after anthesis (Fig. 5b). On the other hand, CsCYCD1;2 was
upregulated after anthesis (Fig. 5c). The highest expression
level of CsCYCD6;1 was at 2 DAA and then declined
(Fig. 5d). In addition, the expression level of CsCYCD7;1
was upregulated at 2 and 6 DAA during the early develop-
mental stage of natural parthenocarpic fruit (Fig. 5e).

In 8419s-1 pollinated fruit, the highest expression levels of
CsCYCD1;1 , CsCYCD2;1, CsCYCD3;2 , CsCYCD3;4 , CsCY-
CD3;5, andCsCYCD7;1 were obtained at 4 DDA (Fig. 6a). The
expression levels of CsCYCD3;3 , CsCYCD4;1 , and CsCYC-
D5;1 were gradually downregulated after anthesis (Fig. 6b). The
expression levels of CsCYCD3;1 and CsCYCD5;2 increased at
0 and 4 DDA (Fig. 6c).CsCYCD1;2 was downregulated at from
0 to 4 DAA, whereas it was upregulated at 6 DAA (Fig. 6d).
Figure 6e shows that the expression level of CsCYCD6;1 was
similar to that in natural parthenocarpic fruit. Interestingly, we
observed that the expression levels of certain CsCYCD genes
were consistent during the early development of natural parthe-
nocarpic fruit and pollinated fruit. These genes included
CsCYCD1;1 , CsCYCD2;1 , CsCYCD3;2 , CsCYCD3;4 , CsC-
YCD3;5 , CsCYCD4;1 , CsCYCD5;1 , and CsCYCD6;1 . This
result suggested that the period of cell division in natural
parthenocarpic fruit may coincide with that in pollinated fruits.

To assess whether the above results exist in CPPU-induced
parthenocarpic fruits, we analyzed the expression levels of
cucumber CYCD genes during the early developmental stage
of CPPU-induced parthenocarpic fruits. The expression levels
of CsCYCD1;1 , CsCYCD1;2 , CsCYCD3;5 , CsCYCD5;1 ,
and CsCYCD5;2 were downregulated from 0 to 6 DAA and
upregulated at 8 DAA (Fig. 7a). The expression levels of
CsCYCD2;1 and CsCYCD3;1 were downregulated after an-
thesis (Fig. 7b), whereas the expression level of CsCYCD3;2
was upregulated after anthesis (Fig. 7d). The expression levels
of CsCYCD3;3 , CsCYCD3;4 , CsCYCD4;1 , CsCYCD6;1 ,
and CsCYCD7;1 remained constant at 2 DAA and subse-
quently began to decline (Fig. 7c). Therefore, the results
indicated that the expression levels of D-type cyclins genes
in CPPU-induced parthenocarpic fruit were different among
natural parthenocarpic fruit and pollinated fruit, with the ex-
ception of CsCYCD4;1 (Figs. 5b, 6b, and 7c).

Discussion

In this study, we identified 13 genes that encode D-
type cyclins in cucumber. Of the 13 genes, two were
CsCYCD3;1 (EU122163) and CsCYCD3;2 (EU195880) (Fu
et al. 2008). The other genes were named on the basis of
identity percentages with A. thaliana and poplar genes. A
phylogenetic analysis revealed that six subgroups of cucum-
ber CYCDs were similar with those in A. thaliana and poplar;
each subgroup of D-type cyclins contained at least one gene
(Fig. 1). The CYCD4 cyclins were considered to be members
of the CYCD2 subgroup (Wang et al. 2004). The similarity
between the CYCD2 and CYCD4 subgroups was further
confirmed in our phylogenetic analyses.

Fig. 7 Expression levels of 13
CsCYCD genes obtained from
CPPU-treated 8419s-1 ovaries at
different developmental fruit
stages (0, 2, 4, 6, and 8 DAA). For
more details see Fig. 5
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Plant RBRwas identified by the LxCxE-containing D-type
cyclins (Boniotti and Gutierrez 2001; Nakagami et al. 2002).
However, A. thaliana CYCD5 contains a similar FxCxE
motif whereas CYCD4;2 and CYCD6;1 have no apparent
RBR-interaction motif (Vandepoele et al. 2002). In poplar,
CYCD1;4, CYCD5;3, and CYCD6 have no LxCxE motifs
(Menges et al. 2007). All cucumber D-type cyclins had
LxCxE motifs with the exception of CYCD1;2, CYCD2;1,
CYCD5;1, and CYCD6;1. This result indicated that there are
differences among plants.

The genomic organization of CYCD genes and CYCD1 ,
CYCD2/4 , and CYCD6 groups is conserved in angiosperms
(Buendía-Monreal et al. 2011). In this study, CsCYCD1;1 ,
CsCYCD2;1 , CsCYCD4;1 , and CsCYCD6;1 had six exons
(Fig. 2b). Previous studies have reported that all members of
theCYCD3 subgroup inArabidopsis and poplar have four exons
with a conserved length in the central exon and exon 1, which
represent exons 1–3 of the ancestral structure (Menges et al.
2007). In cucumber, the CsCYCD3 subgroup had four exons,
suggesting that a similar evolution took place in dicotyledons.
Other cucumber CYCD genes contained five exons. Menges
et al. (2007) reported that the ancestral exons 3 and 4 have fused
into one exon in all CYCD5 genes of angiosperms. A similar
phenomenon was observed in cucumber CsCYCD1;2 ,
CsCYCD5;1 , CsCYCD5;2, and CsCYCD7;1.

CYCDs were regulated by multiple hormones at the G1 to S
transition phases, thereby affecting the commitment to cell divi-
sion (De Veylder et al. 1999; Sorrell et al. 1999). CYCD3
subgroup genes were regulated by pollination and cytokinin
(Riou-Khamlichi et al. 1999; Fu et al. 2010). This was consistent
with the expression levels of CsCYCD3 subgroup in pollinated
fruits and parthenocapic fruits, whichwere higher than in aborted
fruits at 2 DAA (Fig. 4). In our study, CsCYCD3;1 ,
CsCYCD3;2 , CsCYCD3;4 , and CsCYCD3;5 were upregulated
in natural parthenocarpic and pollinated fruits at 4 DAA.
However, CsCYCD3;1 was downregulated in young fruits by
CPPU treatment at the day of anthesis (Fig. 7b); CsCYCD3;2
was upregulated from 0 to 8 DAA (Fig. 7d). Therefore, the
CsCYCD3 subgroup may be an important regulator of cell
division in cucumber fruit. In addition, some studies have report-
ed that BRs target CYCD3 expression (Hu et al. 2008; Fu et al.
2008). In our expression profiling experiments, certainCsCYCD
genes were involved in BRs signal transduction pathways; these
genes were not exclusively from the CsCYCD3 subgroup
(Supplemental Figure S1 and Supplemental Table S3).
Interestingly, CsCYCD7;1 was significantly upregulated in pol-
linated fruits at 4 DAA, resulting in the embryo and endosperm
in cucumber fruits (Fig. 6a). This finding is supported by the
effects that ectopic CYCD7;1 expression has on cell divisions
and growth of Arabidopsis embryos (Collins et al. 2012).

Expression levels of most D-type cyclin genes were the
highest at 4 DAA in natural parthenocarpic fruit and pollinated

fruit (Figs. 5a and 6a). These genes are among those associated
with mitosis and post-mitosis (M and G1) in Arabidopsis (Fu
et al. 2010; Ando et al. 2012). In cucumber, the number of cells
in parthenocarpic fruits did not differ significantly from those in
pollinated fruits, partly because of high levels of zeatin and zeatin
riboside at 4 DAA (Boonkorkaew et al. 2008). This suggests that
expression levels of mostCsCYCDs were the highest at 4 DAA,
partly because of high level of cytokinins in natural parthe-
nocarpic fruits and pollinated fruits, which is consistent with
the results obtained by other researchers (Takeno et al. 1992;
Boonkorkaew et al. 2008).

Interestingly, the expression levels of cucumber CYCD
genes revealed that the period of cell division during the early
stage of natural parthenocarpic fruit was similar to that of
pollinated fruit. However, the expression levels of CsCYCD
genes in CPPU-induced parthenocarpic fruit were different
from those in pollinated fruit and natural parthenocarpic fruit.
It is possible that pollination increased the levels of indole-3-
acetic acid, zeatin, and gibberellin, which promote cell divi-
sion and thus to fruit set (Sjut and Bangerth 2006; Kim et al.
1992; Lewis et al. 2006; Ben-Cheikh et al. 1997). Natural
parthenocarpic fruit development is controlled by regulation
of hormones; a balance of several hormones may partly imi-
tate hormonal actions during pollinated fruit development.
This result indicated that cucumber parthenocarpic fruit de-
velopment may be a process subject to complex hormonal
regulation.

In summary, the identification of cucumber CYCD genes
and the analysis of their protein domain and genomic organi-
zation revealed that six CYCD subgroups are conserved
across angiosperms. The expression levels of cucumber
CsCYCD genes were analyzed in cucumber fruits. The ex-
pression patterns of CsCYCDs revealed that the time of cell
division in natural parthenocarpic fruits is similar to that in
pollinated fruits, but different to that in CPPU-induced par-
thenocarpic fruits. Future studies should focus on assessing
the specific functions of D-type cyclins in cucumber parthe-
nocarpic fruit.
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