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Abstract To investigate the genetic basis of maize seedling
response to waterlogging, we performed a genome-wide
association study in 144 maize inbred lines, measuring
length, fresh and dry weight of roots and shoots under
normal and waterlogged conditions using 45,868 SNPs.
This panel was divided into three subgroups based on the
population structure results and the LD decay distance was
180 kb. A biparental advanced backcross (AB) population
was also used to detect quantitative trait loci (QTL). In a
comparison of 16 different models, principal components
analysis (PCA/top PC3)+K was found to be best for reduc-
tion of false-positive associations for further analysis. A
whole-genome scan detected four strong peak signals (P <
2.18x107°) significantly associated with the waterlogging
response on chromosomes 5, 6 and 9. SNP4784, SNP200,
SNP298, and SNP6314 showed significant association with
corresponding traits under waterlogging and explained
14.99-19.36 %, 15.75-17.64 %, 16.08 % and 15.44 % of
the phenotypic variation, respectively. The identified SNPs
were located in GRMZM2G012046, GRMZM2G009808,
GRMZM2G137108 and GRMZM2G369629 (AGPV1).
SNP4784 (GRMZM2G012046) was colocalized with the
major QTL that was identified with the same traits in the
AB population. Forty-seven SNPs significantly associated
(P<2.18x10~*) with six traits in association mapping were
identified and, among these, 33 SNPs were already reported
in literature as waterlogging-related traits. These results will
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help elucidate the genetic basis of differential responses and
tolerance to waterlogging stress among maize inbred lines,
and provide novel loci for improvement of waterlogging
tolerance of maize inbred lines using marker-assisted
selection.

Keywords Maize - Waterlogging - Association mapping -
QTL mapping

Abbreviation

SNP Single nucleotide polymorphism
AB Advanced backcross

PCA Principal components analysis
LD Linkage disequilibrium

QTL Quantitative trait locus

GWAS Genome-wide association study
SH Seedling height

RL Root length

SFW Shoot fresh weight
RFW  Root fresh weight
SDW  Shoot dry weight
RDW  Root dry weight
Introduction

Waterlogging, which results in oxygen deprivation in the
rhizosphere, is a serious abiotic stress in plants (Visser et al.
2003). In the life cycle of maize (Zea mays L.), the grain
yield will be reduced in both natural and agricultural sys-
tems when seedlings encounter oxygen limitation frequently
because of waterlogging. In general, the early seedling
growth phase from the second leaf stage (V2) to the seventh
leaf stage (V7) is sensitive to waterlogging (Zaidi et al.
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2004; Liu et al. 2010), but substantial variation exists among
maize genotypes in response to waterlogging stress (Mano
et al. 2002; Zaidi et al. 2004; Liu et al. 2010). In recent
years, genetic and molecular biological dissection has fo-
cused mainly on exploiting the genetic variability in water-
logging tolerance available in maize and its wild relative,
Zea luxurians and Zea nicaraguensis. Mapping of quantita-
tive trait loci (QTL) has revealed a number of chromosomal
regions that affect important traits, such as root and shoot
development-associated traits (Qiu et al. 2007), capacity for
root acrenchyma formation (Mano et al. 2007, 2008, 2012;
Mano and Omori 2008, 2009), adventitious root formation
(Mano et al. 2005a, b, 2009), tolerance to toxins under
reducing soil conditions and leaf injury (Mano et al. 2006)
under waterlogged conditions in maize seedlings. QTL as-
sociated with waterlogging tolerance have also been studied
in other crops, such as rice (Xu et al. 2006; Hattori et al.
2009), soybean (VanToai et al. 2001), wheat (Burgos et al.
2001), and barley (Li et al. 2008), and provide insights into
mechanisms of crop survival under waterlogging stress that
are potentially translatable to maize.

Successful map-based cloning revealed that major genes
control tolerance of complete submergence (SUBI) and
rapid outgrowth of adverse partial submergence (SK) in rice
(Xu et al. 2006; Hattori et al. 2009). However, the
waterlogging-tolerant mechanism in maize is potentially
different from that in rice; a large number of minor QTL is
considered responsible for waterlogging tolerance in maize,
and only a few major QTLs (R*>10 % often was adopted as
major QTL) (Li et al. 2012) were associated with water-
logging tolerance, for example, Qarf7.04-5 (Mano et al.
2005¢), Qaerl.06 (Mano and Omori 2009), Qaerl.06—
1.07 (Mano et al. 2012) and sdw9-1, rdw9-1, tdw9-1,
taw9-2, tdw9-3, saw9-4 (Qiu et al. 2007).

Association mapping is an approach to study the rela-
tionship between phenotypic variation and genetic polymor-
phisms on the basis of linkage disequilibrium (LD)
(Zondervan and Cardon 2004), which is rapidly becoming
the main strategy to dissect the genetic architecture of com-
plex traits in plants with the advent of abundant single
nucleotide polymorphisms (SNPs). Currently, most associa-
tion mapping studies in plants are performed using sets of
genes selected to be putative candidates for the trait of
interest (Su et al. 2011; Sharma and Chauhan 2012), but
rapid developments in genomics will allow for genome-
wide association study (GWAS) in virtually any plant spe-
cies in the near future (Rafalski 2010; Ingvarsson and Street
2011; Yan et al. 2011). The method has been applied in
diverse plants, such as maize (Belo et al. 2008; Yan et al.
2010a; Yang et al. 2010; Kump et al. 2011; Tian et al. 2011),
rice (Huang et al. 2010, 2012), wheat (Breseghello and
Sorrells 2006) and Arabidopsis (Atwell et al. 2010).
Excellent results have been achieved for complex traits,

such as rice flowering time and grain yield traits (Huang et
al. 2012), maize kernel composition (Cook et al. 2012), and
resistance to northern (Wisser et al. 2011) and southern
(Kump et al. 2011) leaf blight.

In the present study, the GWAS approach was used to
detect QTL involved in the response to waterlogging during
the maize seedling stage under normal and waterlogged
conditions. The goals were (1) to identify the major putative
alleles associated with root and shoot traits under normal
and waterlogged conditions by GWAS and further predict
the candidate genes for waterlogging tolerance; and (2) to
compare SNP-trait associations with the results of advanced
backcross-QTL (AB-QTL) mapping.

Materials and Methods
Maize Germplasm and Genotyping

A set of 144 maize inbred lines representing the genetic
diversity among different heterotic groups in China were
chosen for GWAS of the traits associated with waterlogging
tolerance in the seedling stage (Table S1) (Wang et al. 2011).
Total genomic DNA was bulked for extraction from the
young leaves of six randomly selected 30-day-old seedlings
per inbred line using a standard CTAB extraction method
(Saghai-Maroof et al. 1984).

DNA of each line was quantified and genotyped using
the Illumina MaizeSNP50 BeadChip following the manu-
facturer’s instructions (http://www.emtd.com.cn/index
en.asp). The MaizeSNP50 Genotyping BeadChip contains
56,110 SNPs spaced at an average distance of 40 kb. (http://
www.illumina.com/products/maize snp50 whole
genome_genotyping_Kkits.ilmn).

[llumina GenomeStudio genotyping software was used to
assess gene clusters, which were rechecked manually, and
heterozygous SNPs were attributed to missing data (Yan et
al. 2010b). A total of 45,868 SNPs with a minor allele
frequency (MAF) of more than 0.05 and missing data less
than 20 % were confirmed for further association analysis.
In total, 92 % (43,102/45,868) of oligomer sequences de-
rived from the SNPs were mapped with a single megablast
hit blasted against the maize sequence database AGPV1
(http://www.maizesequence.org), and were well distributed
across the maize genome by in silico mapping (data not
shown). The heterozygotes frequency of SNPs, gene diver-
sity, polymorphism information content (PIC) were estimat-
ed using PowerMarker V3.25 (Liu and Muse 2005).

Development of the Backcross Population

Linkage analysis was conducted with 180 BC,F, individu-
als developed from a cross between HZ32 (waterlogging
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tolerant) as the donor parent and K12 (waterlogging sensi-
tive) as the recurrent parent.

Phenotypic Evaluation

Three pot experiments (EXP.1, EXP.2 and EXP.3) with the
association panel were conducted in August, September and
October 2009, respectively. A total of 180 BC,F,.5 families
was phenotyped in a similar manner at Huazhong
Agriculture University’s experimental station in 2010. The
day/night temperatures were 36/11 °C and the photoperiod
was 13/11 h (day/night). The growth substrate and water-
logging treatment followed the description by Qiu et al.
(2007). Trials with the association panel and AB population
were laid out in a randomized complete-block design with
two replications and three replications, respectively. Six pots
per genotype and five plants per pot were included in each
replication, of which three pots were the control and three
pots were subjected to waterlogging stress. The waterlog-
ging treatment was applied at the seedling V2 stage and 15
seedlings per genotype were used for trait scoring under the
control and waterlogged conditions after waterlogging treat-
ment for 6 days. The treatment method, sampling, and
measurement of root and shoot traits were performed in
accordance with the methods of Qiu et al. (2007). Six traits,
namely seedling height (SH), root length (RL), shoot fresh
weight (SFW), root fresh weight (RFW), shoot dry weight
(SDW) and root dry weight (RDW), were dissected under
the control and waterlogged conditions.

Phenotypic Data Analysis

Statistical analysis for all seedling traits was performed with
software SAS8.02 (SAS Institute, Cary, NC). Using the
average value of 15 plants of each genotype per replicate
across the three trials, the effects of genotype by experiment
(GXE) and genotype by treatment (GxT) (i.e. , normal and
waterlogged conditions) were evaluated by PROC GLM.
The PROC MIXED procedure was used to calculate the
adjusted mean values for each trait in different treatments
(the normal and waterlogged conditions, respectively) of
each inbred line using best linear unbiased predictors
(BLUP), estimated from ANOVA of data sets for the three
pot experiments with genotype, experiments, and GxE con-
sidered. Broad-sense heritabilities (h?) of seedling traits
under waterlogged and control conditions were calculated
using the combined data from the three pot experiments
with the following formula:

W =65/ (66 + (6¢g/n) + 62 /rn]

where 52G is the genotypic variance, 62GE is the genotypex
experiments (GE) variance, 53 is the residual error variance,
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and n and r are the number of experiments and replications,
respectively (Knapp et al. 1985). Phenotypic Pearson’s cor-
relations among six seedling traits were estimated by PROC
CORR, using the adjusted means of this maize panel across
three experiments. Normality of distributions for each trait
under different moisture regimes was evaluated with the
Shapiro-Wilk test (Shapiro and Wilk 1965). To estimate
genotypic performances, the adjusted means across the three
experiments for the phenotypic trait of each inbred line
under the control and waterlogged conditions were used as
input values for GWAS.

Linkage Mapping

A linkage map consisting of 121 SSR markers was con-
structed by Kosambi’s mapping function with JoinMap 4.0
(Van Ooijen and Voorrips 2001). The AB-QTL analysis was
conducted on arithmetic mean values of three replicates for
each trait and each family by the inclusive composite inter-
val mapping (ICIM) method described by Li et al. (2007).
The logarithm of odds (LOD) score for declaring a QTL was
2.5 for each trait and the walking speed for all QTL was
1 cM.

Whole-Genome Scan Association Mapping

The software STRUCTURE (Pritchard et al. 2000), based
on a Bayesian Markov chain Monte Carlo model, was used
to estimate the population structure and assign inbred lines
to subpopulations in accordance with the methods reported
by Evanno et al. (2005), which took the parameter of
100,000 burn-in, 100,000 run length and three iterations
for each K with 28,791 SNPs with MAF of more than
0.05 and missing data less than 10 %. Nei’s genetic distan-
ces among given subgroups and lines and a neighbor-
joining tree were calculated with PowerMarker 3.25 (Liu
and Muse 2005). To correct for population stratification,
data from the 28,791 SNPs in the 144 inbred lines were
subjected to principal component analysis (PCA), and dis-
tance matrices were used to obtain eigenvectors based on
Nei’s genetic matrices, with the modules DCENTER and
EIGEN implemented in NTSYSpc 2.1 (Rohlf 2000). To
account for relatedness among individuals, 28,791 SNPs
were used to assess the kinship matrix (K) between each
pair of lines in this maize panel using the SPAGeDi software
package (Hardy and Vekemans 2002).

The pairwise estimates LD (+*) based on 28,791 SNPs
were calculated using the software package Haploview 3.31
(Barrett et al. 2005). The physical distance of each SNP on a
reference genome in the Maize B73 RefGen vl sequence,
and the sequence and function prediction of candidate genes
were obtained from MaizeGDB (http://www.maizegdb.org/).
A schematic representation of LD decay was exhibited in
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accordance with the methods of Yan et al. (2009). To correct
for false positives, 16 models were compared to identify the
optimal model of association analysis for seedling traits under
waterlogging, which referred to the population structure (Q,
PCA) and kinship (K). The first six models were a simple
model (GLM), Q model, PCA model, K model, Q + K model
and PCA + K model, respectively (Yang et al. 2011; Zhang et
al. 2010b). The other ten models were a PCA + K model that
each incorporated one of the top ten components. Each SNP
was fit as a fixed effect singly to test the association between
the SNP and phenotype. The simple modes, Q and PCA
models were applied using a general linear model (GLM) with
TASSEL 3.0.50; the K, Q + K and PCA + K models were
applied with a compressed mixed linear model (MLM) in
TASSEL 3.0.50 (Yu et al. 2006; Zhang et al. 2010Db).
Correction for multiple comparisons followed Setter et al.
(2011), i.e., a family-wise probability level of «<0.10 was
chosen, and a Bonferroni-corrected threshold probability
based on individual tests (£) was calculated as 5<0.10/n,
where n was the number of individual trait-SNP combinations
tested. Because of SNP dependence, chromosome indepen-
dence and empirical data (Lu et al. 2010; Setter et al. 2011),
the cutoff value is important and an alternative cutoff 10/n and

Table 1 Mean values, standard deviations, and broad-sense heritabil-
ity (h?) of seedling traits observed under different moisture regimes in
three independent experiments. SH Seedling height, RL root length,

1/n was adopted. Both the quantile-quantile plots and
Manhattan plots were drawn with the gplot library using R
version 2.12.0 (R Foundation for Statistical Computing, http://
WWwWw.r-project.org/).

Results
Analysis of Phenotypes

Phenotype data for the six traits of interest were collected
from the association panel under normal and waterlogged
conditions. The phenotypic frequency of the six traits fitted
anormal distribution as determined by the Shapiro-Wilk test
(Shapiro and Wilk 1965), which indicated that the traits
were quantitative traits. A wide range of phenotypic varia-
tion was observed for all traits measured under normal and
stress conditions. Most traits showed the lowest means in
EXP.3 and the highest means in EXP.2 (Table 1). Generally,
in all genotypes, the six traits were significantly reduced
(5.38-41.67 % decrease) under waterlogged conditions rel-
ative to the control across the three experiments. Overall,
RL, RFW and RDW showed a greater reduction than SH,

SFW shoot fresh weight, RFW root fresh weight, SDW shoot dry
weight, RDW root dry weight

Trait EXP? Treatment Control Reduction® K K GxE GxT
Mean=SDP Mean+SD

SH (cm) 1 19.88+2.90" 21.01+3.43 538 % 0.85 0.87 ok ok
2 20.5243.68%%* 24.27+4.15 15.45 %
3 19.534+4.08%** 21.75+4.78 10.21 %

RL (cm) 1 22.59+3.84% 32.73+6.07 30.98 % 0.75 0.80 ok ok
2 22.00£4.34%%x 34.11+5.79 35.5 %
3 19.5844.11%** 31.04+6.16 36.92 %

SFW (g) 1 1.03+£0.33%* 1.13£0.40 8.85 % 0.90 0.91 ok ook
2 1.090.40% 1.24+0.43 12.1 %
3 0.9740.42%% 1.10+0.45 11.82 %

RFW (g) 1 0.91+£0.4] %% 1.28+0.56 28.91 % 0.86 0.92 ok ok
2 0.81:£0.34%%x 1.26+0.47 35.71 %
3 0.77+0.39%*x* 1.27+0.55 39.37 %

SDW (g) 1 0.14+0.05 0.15+0.05 6.67 % 0.87 0.90 ok ok
2 0.14+0.05%** 0.16+0.06 12.5 %
3 0.13+0.06"" 0.14+0.06 7.14 %

RDW (g) 1 0.08+£0.03%* 0.12+0.05 33.33 % 0.84 0.90 ok ok
2 0.08£0.03%* 0.12+0.04 33.33 %
3 0.070.03%** 0.12+0.05 41.67 %

** *#% Significance at P<0.01 and P<0.001, respectively (interaction effects of genotype by experiment (G x E) and genotype by treatment (GxT) )]

? Three independent pot experiments (1-3) in which each trait was measured were conducted in August (1), September (2) and October (3) in 2009

® Statistical significance of mean comparisons between the waterlogging treatment and control in the maize panel

¢Reduction ratio relative to control

de Broad-sense heritability (4?) of seedling traits under waterlogged and control conditions

@ Springer


http://www.r-project.org/
http://www.r-project.org/

598

Plant Mol Biol Rep (2013) 31:594-606

SFW and SDW under waterlogging in the three experiments
(Table 1).

ANOVA indicated that the mean values of all traits
under waterlogged and control conditions were signifi-
cantly different (P<0.01) in all three experiments, and
the GXE and GxT interactions were also significant (P<
0.001) for all traits (Table 1), which indicated that the
genotypes responded differentially to experiments and
treatments. The ANOVA indicated that most of the var-
iation among the three experiments was explained by the
waterlogging treatment, and the difference among the
three experiments for all traits investigated was signifi-
cant (P<0.001); therefore, the maize association panel
was tested across a broad range of growing conditions
in the three experiments (data not shown). Broad-sense
heritability (4%) for the six traits was high under both
moisture conditions, but differed between the two con-
ditions. SH, RL, SFW, RFW, SDW and RDW had rela-
tively higher 4* (0.87, 0.85, 0.91, 0.92, 0.90 and 0.91,
respectively) under the control condition and lower A?
(0.85, 0.81, 0.90, 0.90, 0.87 and 0.88, respectively) under
the waterlogged condition (Table 1). Compared with 4
under the control condition, RL, RFW and RDW were
indicated to be more prone to waterlogging stress than
the other traits.

All seedling traits were significantly positively corre-
lated (P<0.001) under waterlogged and control condi-
tions (Table 2). Furthermore, most correlation
coefficients for pairs of measured traits were very sim-
ilar between waterlogged and control conditions, but
were usually lower under waterlogging stress than under
the control condition. As expected, the phenotypic cor-
relation coefficients were relatively higher between
SDW and RDW, and between SFW and RFW than
between one of these and other traits. However, RL
showed relatively low correlation coefficients with the
other five traits under both moisture conditions. For
example, the correlation coefficients between RL and

Table 2 Pearson’s phenotypic correlation coefficients among seedling
traits measured in the maize association panel. Data from waterlogging
stress (lower left) and the control moisture condition (upper right) of
144 maize inbred lines and the cross correlation coefficients between

RDW were 0.52 and 0.58 under waterlogged and con-
trol conditions, respectively. This result indicated that
RL expression showed greater independence of moisture
regime than the other traits.

Genotypic Data

The frequency distribution of minor alleles from 56,110
SNPs was evaluated with 50 continuous classes from 0.01
to 0.50 with a similar number of SNPs in each MAF class
(Fig. Sla). The mean value of MAFs from the 56,110 SNPs
was 0.25, and about 50 % of the SNPs had a MAF exceed-
ing 0.25. The average heterozygote frequency of 53,014
informative SNPs in the 144-strong maize panel is 0.037;
51,311 SNPs occurred in less than 0.1 % heterozygotes and
43,417 SNPs in less than 0.05 % heterozygotes. The average
values of PIC and gene diversity were 0.271 (maximum
0.375) and 0.339 (maximum 0.500) of all informative
SNPs, respectively. (Fig. S1b).

Linkage disequilibrium (LD) patterns and distribu-
tions in the panel of maize inbred lines determine the
power and resolution of GWAS. To explore LD decay,
the pairwise correlation coefficient (+%) based on 28,791
SNPs with respect to the physical distance for each
chromosome as well as all chromosomes is presented
in Fig. S2. As expected, a rapid decline in the pairwise
r* value was observed as the physical distance in-
creased. For the maize panel, it was expected that LD
would decay over relatively short distances because of
its diversity and historical recombination. The rate of
LD decay varied among different chromosomes. When
the »* cut-off value was set to 0.1, the LD decay rate
was estimated at 130-180 kb for every independent
chromosome and 180 kb at the whole-genome level.
This was a relatively long-range LD, which might be
the result of the small population size and origin of the
accessions. On the basis of the LD decay results,

waterlogging stress and the control (diagonal). Trait abbreviations as in
Table 1. Phenotypic correlation coefficients were calculated between
the traits using the adjusted means from three independent experiments

SH RL SFW RFW SDW RDW
SH 0.82%%* 0.59%* 0.83%%* 0.76%** 0.80%** 0.74%%*
RL 0.66%** 0.68%** 0.627%%* 0.68%** 0.637%** 0.58%%*
SFW 0.84% 0.61%%* 0.89%* 0.92%:%* 0.96%** 0.90%**
RFW 0.76%%* 0.61%%* 0.90%*** 0.97 %% 0.90%** 0.95%*
SDW 0.827%** 0.59%** 0.95%** 0.88*** 0.89%** 0.90%**
RDW 0.71%** 0.52%** 0.84%** 0.94%** 0.86%** 0.88%**

**P<0.01 *** P<0.001 (significance of correlation coefficients)
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45,868 SNPs were suitable for GWAS with the associ-
ation panel.

Population Structure and Kinship

Population structure in the panel and a long-range LD repre-
sent major challenges in GWAS and could cause spurious
associations. In other words, significant associations may not
be the consequence of physical linkage between markers and
causal genes and false positives could be avoided by account-
ing for population structure before GWAS. Therefore, first a
panel 0f 28,791 SNP markers was selected to infer population
substructure using STRUCTURE, and a Q matrix assigning
individuals to subpopulations was created. The maize panel
containing 144 inbred lines was divided into three subgroups
based on the known pedigree, LnP(D) and delta k (Fig. S3a)
(Pritchard et al. 2000; Evanno et al. 2005). Principal compo-
nent analysis (PCA) is a method widely used to identify
population substructure and to build the P matrix for popula-
tion correction to remove stratification effects owing to adap-
tation among lines (Price et al. 2006), which is an alternative
strategy to the STRUCTURE algorithm (Zhao et al. 2007).
PCA separated the maize populations easily into three sub-
populations by plotting the first two eigenvectors generated
with SNPs (Fig. S3b). A neighbor-joining tree based on Nei’s
genetic distance was constructed, and three subgroups similar
to those obtained with STRUCTURE and PCA were revealed
(Fig. S3c). The distribution of kinship coefficients between 0
and 0.45 represented 97.6 % of the data (Fig. S4). A total of
62.9 % of the pairwise kinship estimates were equal to 0,
which indicated there was no relatedness between these pairs
of lines, and the remaining estimates decreased continuously
with the increase in number of categories. The kinship analy-
sis indicated few lines showed strong similarities, which sug-
gested that the simple relatedness among inbreds will decrease
the frequency of spurious associations because of the effect of
population structure (Yang et al. 2011). Thus the maize panel
was suitable for GWAS.

Association Mapping

To reduce the frequency of spurious associations because of
unrecognized population structure or kinship between pairs of
lines in the association population, the GLM and compressed
MLM procedures (Zhang et al. 2010b) with different param-
eters were applied in TASSEL, which required a population
structure (Q matrix) and kinship matrix (K). To determine
which of the simple, Q, PCA, K, Q + K and PCA + K models
most efficiently reduced the number of spurious associations,
quantile-quantile plots of estimated —log10(P) were calculated
using all traits. The results indicated that the PCA + K model
was optimal in terms of reduction of the false-positive fre-
quency; because of the high correlation of different traits, and

consistent trends in the P value of the six traits, the results for
one trait (SFW) under the waterlogged condition for each
model are shown in Fig. S5. GWAS using principal compo-
nents may be sensitive to the number of principal components,
while no significant differences in the reduction of the false-
positive frequency for SFW under the waterlogged condition
were observed when the number of principal components
increased from one to ten with the PCA + K model (Fig.
S6). Thus, the top three principal components with the lowest
P value were selected to build the P matrix accounting for
population structure correction. Overall, the compressed
MLM approach, which took population structure (PCA) and
kinship (K matrix) into account, was used to perform GWAS
between 45,868 SNPs and the six physiological traits under
the different moisture regimes in a panel of 144 inbred lines,
as shown in Manhattan plots (Fig. 1).

Out of 550,416 possible associations (45,868 SNP x six
traits x two treatments), a total of 98 SNP-trait associations with
P<2.18x10* were identified, which comprised 47 unique
SNPs (uni-SNPs: unique position) blasted against the maize
sequence database AGPV1 (http://www.maizesequence.org),
for which detailed information is shown in Table S2.
Significant associated uni-SNPs were distributed on all chro-
mosomes except chromosome 4. Of the uni-SNPs 70.12 % (33/
47) were coincident with previously reported QTL associated
with waterlogging-responsive traits in different biparental pop-
ulations. We also identified 18 SNP-trait associations with P<
2.18x107°, which comprised five uni-SNPs (Table 3). The
SNP markers significantly associated with phenotype with
P<2.18x10°° were SNP 200 (RFW, P=2.18x10"°, R*=
18.28 %) and SNP 4784 (SFW, P=1.39x10"°, R?=19.36 %)
under the control and waterlogged conditions, respectively
(Table S2).

Because of the slow LD decay distance of 180 kb in the
maize panel, the putative genes were predicted in a 400 kb
region around each significant SNP with P<2.18x10°°.
SNP 200 was located within GRMZM2G009808, which
encodes the aconitase/3-isopropylmalate dehydratase large
subunit involved in energy metabolism on chromosome 9,
in bin 9.07; the functional annotations of ten putative genes
within a 400 kb region around SNP200 are shown in Table
S3. SNP 4784 was located within GRMZM2G012046,
which encoded the membrane attack complex component/
perforin/complement C9 on chromosome 5, in bin 5.04; the
function annotations of eight putative genes within a 400 kb
window around SNP4784 are shown in Table S4.

Linkage Mapping
Linkage analysis of a biparental mapping population is
extremely useful in identifying QTL that influence complex

traits. In the present study, the linkage map had a total length
of 1,286.9 cM with an average interval of 10.6 cM between
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(®)

* TSH
= TSFW
» TSDW

Fig. 1a,b Genome-wide association study of root and shoot traits
under the control and waterlogged conditions. a Manhattan plots of
the compressed mixed linear model (MLM) for all seedling traits under
the two moisture regimes for the whole genome. The horizontal axis
shows the single nucleotide polymorphism (SNP) physical location
and the vertical axis shows negative log10-transformed P values from
a genome-wide scan for each SNP tested. The blue horizontal line
indicates a genome-wide significance threshold of 1/n (n = no. of SNP

adjacent markers; the details are shown in Table S5. AB-
QTL mapping was used to test the results of association
mapping. A list of the putative QTL flanked by SSR
markers along with their LOD scores, phenotypic variance,
and additive and dominance effects is presented in Table 4.
A graphical presentation of QTL locations on the linkage
map is shown in Fig. 2. QTL that control RDW, RFW, SDW
and SFW were mapped to a similar region of chromosome

= TRL
* TRFW
* TRDW
+ CSH
- CSFW
- CSbw
+ CRL
= CRFW
+ CRDW

0 1 2 3 4 5
with association mapping). The different combinations of colors and
forms show different traits as indicated. b Quantile-quantile plots of
test statistics for SNP-trait associations using the compressed MLM for
the whole genome. The horizontal axis shows the expected negative
log10-transformed P values assuming no SNP-trait associations; the

vertical axis is the observed negative logl0-transformed P values
indicating true marker associations

5; the marker umc1171 closest to the QTL peak was located
at 168,868,089 bp against the maize sequence database
AGPV1 (http://www.maizesequence.org), and was located
extremely close to SNP 4784 by GWAS. Consistent results
were obtained for both moisture regimes. Individual QTL
accounted for 6.32-12.01 % of the phenotypic variation.
The alleles from the QTL flanked by umc1171/umc1722
on chromosome 5, which contributed to an increase in the

Table 3 Significant single nucleotide polymorphism (SNP)-trait associations with a P-value cutoft of 1/45,868. Trait abbreviations as in Table 1.
MAF Minor allele frequency, N number of maize genotypes, P probability of an SNP—trait association

Site 200 2262 4784 298 6314
Name PUT-163a-93013517-  PUT-163a-78122693-  PZE-105105668 PZE-106062084 PZE-106070185
4810 4409
Bin 9.07 5.06 5.04 6.04 6.05
Position 147425437 202836449 159998918 113103229 124458538
SNP [A/G] [A/C] [T/C] [A/G] [T/G]
MAF 0.053 0.079 0.106 0.056 0.12
N 131 127 132 126 133
Normal RDW, RFW RFW RDW, RFW, SDW, SFW  RDW RFW
PVE(R® %)* 16.70-18.20 15.55 15.53-17.77 15.81 17.75
Waterlogging RDW, RFW RDW, RFW, SDW, RFW SFW
SFW, SH
PVE(R® %)° 15.75-17.64 14.99-19.36 16.08 15.44
Pmax 1.91x107° 1.67x107° 1.67x107° 1.59x107° 1.89x107°
Pmin 2.15x10°° 1.67x107° 1.39x10°¢ 1.41x107° 3.84x10°°
Gene harboring GRMZM2G009808 GRMZM2G129146 GRMZM2G012046 GRMZM2G137108  GRMZM2G369629
SNP
Trait number 4 1 9 2 2

#Percent variance explained (PVE) for significant SNP under control conditions

°PVE for significant SNP under waterlogging
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Table 4 Putative quantitative trait loci (QTL) for root and shoot traits
detected in a population of 180 BC,F,.; lines derived from a cross
between the waterlogging-tolerant HZ32 (donor parent) and

waterlogging-sensitive K12 (recurrent parent) through inclusive com-
posite interval mapping. Trait abbreviations as in Table 1. 4 Additive
effect, D dominance effect

Trait® Chromosome Left marker (bin) Right marker (bin) LODP PVE (%)° A D Type®
TSH 5 phi087(5.06) bnlg2305(5.07) 3.02 6.32 1.032 0.476 PD
TSFW 5 umc1722(5.05) phi087(5.06) 5.23 8.84 0.079 -0.016 PD
CRFW 5 umc1722(5.05) phi087(5.06) 441 9.33 0.152 —0.029 PD
TRFW 5 umc1171(5.04) umc1722(5.05) 6.10 12.01 0.081 —0.049 PD
CRDW 5 umc1171(5.04) umc1722(5.05) 5.73 10.77 0.006 —0.016 oD
TRDW 5 umcl171(5.04) umc1722(5.05) 3.35 7.22 0.005 —0.004 D
TSDW 5 umcl171(5.04) umc1722(5.05) 5.44 9.64 0.008 —0.003 PD
CSFW 5 bnlg653(5.04) umc1171(5.04) 7.43 11.65 0.101 —0.038 PD
CSDW 5 bnlg653(5.04) umcl171(5.04) 5.72 9.40 0.010 —0.005 PD
CRFW 5 umc1416(5.00) bnlg1006(5.00) 3.42 6.64 0.085 —0.265 oD
TRFW 5 umc1416(5.00) bnlg1006(5.00) 2.68 4.74 0.064 -0.119 OD
CSDW 5 umc1416(5.00) bnlg1006(5.00) 2.51 391 0.005 -0.016 oD
CRDW 9 bnlg1525(9.06) umc1714(9.07) 2.97 5.73 0.001 0.014 oD
TRFW 9 bnlg1272(9.00) umc1867(9.00) 3.64 6.85 —-0.039 —0.082 oD
TRDW 9 bnlg1272(9.00) umc1867(9.00) 4.96 10.78 —0.004 —-0.010 OD

For trait names, the first capital letter represents phenotypic data in waterlogging treatment (T) and control (C)

®LOD score was calculated by Icimapping 3.0

°PVE explained by the genotype class at the QTL peak; positive effects indicate that the HZ32 allele increases the value of the trait, negative effects

indicate that the high values of the trait were inherited from K12

4 PD partial dominance (D/A<0.8); D dominance (0.8<D/A<1.2); OD overdominance (D/A>1.2)

trait values, were from the waterlogging-tolerant parental
genotype HZ32, which was in agreement with the genetic
direction in association mapping. One QTL associated with
RDW under the control condition was mapped between
bnlgl1525 and umc1714 on chromosome 9 in the BC,F, 3
families, which also partly overlapped with SNP 200 by
GWAS. Individual QTLs accounted for 5.73 % of the phe-
notypic variation and alleles from the waterlogging-tolerant
parental genotype HZ32 tended to increase the trait score,
which was consistent with the genetic direction in associa-
tion mapping. Two major peaks of association identified on
chromosome 6 in bin 6.04 and bin 6.05 were not confirmed
in the AB population.

Discussion

Maize seedlings prior to the sixth leaf stage (V6) are ex-
tremely susceptible to waterlogging because the shoot grow-
ing point is below the soil surface at that time (Nielsen
2004), and the most sensitive phase is V2 (Zaidi et al.
2004; Liu et al. 2010). The present results reveal substantial
genetic variation in SH, RL, SFW, RFW, SDW and RDW
existing in the maize inbred lines and BC,F, population. As
expected, in maize seedlings in response to waterlogging
stress, the growth and development of root and shoot traits

in most inbred lines and BC,F,.; families were seriously
inhibited, which is consistent with previous reports (Dennis
et al. 2000; Qiu et al. 2007; Liu et al. 2010). However,
shoots seemed to possess a different acclimation mechanism
for more rapid growth under waterlogging stress than under
control conditions for some inbred lines, which has also
been reported in Arabidopsis (Ellis et al. 1999) and Zea
nicaraguensis (Abiko et al. 2012). The significantly positive
correlations between the waterlogged and control conditions
for the traits investigated in the present study indicated that
common genetic mechanisms exist for these traits.

The magnitude and distribution of LD determines the
choice of association mapping methodology (Rafalski
2002). GWAS may help identify genomic regions that are
associated with interesting traits, and the size of the genomic
regions corresponds to LD decay distance. Rapid LD decay
in a given association mapping panel implies that a higher
density of markers is needed in GWAS to detect significant
marker—trait associations. In the present study, the decrease
in 72 to 0.1 within 180 kb indicated it was possible to
achieve resolution down to ~180 kb in GWAS. On the basis
of previous studies (Purcell et al. 2003; Belo et al. 2008; Yan
et al. 2010a; Yang et al. 2010; Setter et al. 2011), the
2,300 Mb complete maize genome (Schnable et al. 2009)
requires 23,000 or 11,500 markers with an average gap of
100 kb or 200 kb assuming that two selected SNPs can
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Fig. 2 Linkage map and chromosome locations of QTL for water-
logging response-related traits on chromosomes 5 and 9 in a BC,F,
population consisting of 180 BC,F,.3 families developed from a cross
between two maize inbred lines (K12 and HZ32) using inclusive

represent the diversity of one gene. The relatively high LD
observed in the maize panel contributed to the feasibility of
covering the whole genome with 45,868 SNPs. The num-
ber of markers ideally needed to cover the entire maize
genome was only for reference because previous studies
showed that LD levels varied both between the different
loci Y1 and PSY2? in the same population (Palaisa et al.
2003) and within the same locus Y/ in different popula-
tions (Palaisa et al. 2003, 2004). For example, in previous
studies of maize, the LD decay ranges from less than 1 kb
(Tenaillon et al. 2001; Su et al. 2011) or roughly 2—5 kb
(Remington et al. 2001; Yan et al. 2009) to as high as
100 kb (Ching et al. 2002). Comparing with the results of a
simulation of QTL detection power (Yan et al. 2011), the
panel in the present study provided 10-50 % detection
power for QTL that contributed 0.5-5.0 % of the total
phenotypic variation of the target traits. Marker density,
however, is another determinant for increasing the detec-
tion power of association analysis (Mackay 2009), espe-
cially for GWAS. In addition, a high density of markers
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composite interval mapping (ICIM). LOD curves obtained by ICIM
are shown in chromosome 5 and 9, where the significant SNP-trait
associations with P<2.18x 107> were detected in association mapping.
Bin numbers are in parentheses after marker names

will lead to finer resolution QTL mapping. Thus, the pop-
ulation size and marker density of the maize panel in the
present study were suitable for investigation of the genetic
basis of traits controlled by waterlogging-tolerance genes
(Yu et al. 2006; Yan et al. 2011).

The detection of false-positive associations caused by
population substructure identified within a germplasm
group and multiple testing across the entire genome is one
of the main limitations to the use of GWAS (Aranzana et al.
2005). Several statistical methods have been proposed to
account for population structure and familial relatedness
among individuals in association panels, including genomic
control (Devlin and Roeder 1999), structured association
(Pritchard et al. 2000; Falush et al. 2003), the unified mixed
model approach (Yu et al. 2006), principal component ap-
proach (Patterson et al. 2006; Price et al. 2006), and non-
metric multidimensional scaling (Zhu and Yu 2009). For
maize, spurious associations can be controlled efficiently
by the population structure (Q matrix) and kinship matrix
(K) (Yu et al. 2006; Patterson et al. 2006; Price et al. 2006).
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The MLM approach, which was used to account for both
population structure (Q matrix) and pairwise kinship (K ma-
trix), is one of the most common methods of association anal-
ysis used to eliminate possible false-positive associations and
previously has been applied successfully in plants (Yu et al.
2006). Estimation of the Q matrix with STRUCTURE software
is computationally intense, therefore the MLM with Q matrix
calculated by PCA may be an ideal method for large data sets
(Patterson et al. 2006; Price et al. 2006; Zhao et al. 2007; Zhu
and Yu 2009). In the present study, the performance of six
statistical models was evaluated to control for false positives
in the maize panel; the results indicated that the MLM (PCA +
K) model provided the best reduction in false-positive frequen-
cy (Fig. S5). In addition, false-positive correction was not
sensitive to the number of principal components when the
number of axes ranged from one to ten, as reported in previous
studies (Patterson et al. 2006; Price et al. 2006). These results
indicated PCA models that incorporate the top three principal
components were appropriate to control for population structure
and achieve the lowest frequency of false-positive associations
in our association panel. If the distribution of functional alleles
is highly correlated with population structure, statistically con-
trolling for population structure might also result in false-
negatives. Because GWAS can examine abundant SNPs
throughout the entire genome simultaneously, an exceptionally
high threshold was used in the present study to reduce the false-
positive frequency but increase the frequency of false-
negatives, especially if an individual SNP had a small effect
on the six traits studied.

Four major peaks, which were identified by association
mapping of root and shoot traits for the 45,868 SNPs, were
located on chromosomes 5, 6 and 9, respectively (Fig. 1).
Compared with reported QTL associated with waterlogging
responses, a novel genomic region in bin 5.04 that controls
waterlogging responses in RDW, RFW, SDW, SFW and SH
was identified, and the SNP—trait associations found by
GWAS were validated by AB-QTL mapping. Moreover,
two recombinant inbred lines, A3237 (waterlogging toler-
ant) and A3239 (waterlogging susceptible), derived from the
cross between Huangzao4 and Mol7 (both susceptible to
waterlogging) were analyzed by bulk segregation analysis.
Two SSR markers (umcl155 and umc0481) were tightly
linked with waterlogging-tolerance gene(s) and were located
close together in the same region in bin 5.04. A3237 and
A3239 were also sequenced using the genotyping-by-
sequencing method (Elshire et al. 2011), and the effective
SNPs for waterlogging tolerance were located in the same
QTL region in bin 5.04 (unpublished data). SNP4784
(bin5.04: 159998918) was located in GRMZM2G012046,
which encodes the membrane attack complex component/
perforin/complement C9 involved in Arabidopsis stress
responses (Morita-Yamamuro et al. 2005; Noutoshi et al.
2006). Salavati et al. (2012) reported that the ratio of change

in abundance of the membrane attack complex component/
perforin/complement C9 (ABE79564.1) protein spots com-
pared to that of the control was 2.22 in an analysis of
proteomic changes in roots of soybean seedlings during
recovery after flooding. All of these results indicated that
the genomic region identified by GWAS was an important
region for maize seedling waterlogging tolerance. However,
it was unclear whether this major QTL on chromosome 5
had a pleiotropic effect on seedling root and shoot traits.

On the basis of the results of Qiu et al. (2007) and AB-QTL
mapping, the major peak located on chromosome 9 also might
be an important region affecting maize seedling tolerance to
waterlogging. Citrate synthase (CS; EC 2.3.3.1) and alanine
aminotransferase (AlaAT; EC 2.6.1.2) QTL were colocated on
chromosome 9 (146,862,896-147,007,976) (Zhang et al.
2010a), which is extremely close to SNP200 (147,425,437).
CS plays key roles in the tricarboxylic acid cycle. AlaAT
catalyzes the reversible transfer of the amino group from the
second position of glutamate to pyruvate, to yield 2-
oxoglutarate and alanine. Recently, it was reported that trans-
genic Brassica napus and rice plants overexpressing a barley
(Hordeum vulgare) AlaAT cDNA show increased biomass
and seed yield (Good et al. 2007; Shrawat et al. 2008). It is
also interesting to note that AlaAT is significantly induced in
response to waterlogging stress (Zou et al. 2010). These
authors concluded that the crosstalk between carbon and
amino acid metabolism revealed that amino acid metabolism
performs two main roles at the waterlogging late stage: the
regulation of cytoplasmic pH and energy supply through
breakdown of the carbon skeleton (Zou et al. 2010).

In addition, the major peak on chromosome 6 detected by
GWAS was novel compared to the results of AB-QTL
mapping, but Qiu et al. (2007) identified a QTL in bin
6.04 for RDW under waterlogged conditions in F, popula-
tions (Table S2). Thus, classical QTL mapping based on a
biparental cross can be used as a complementary method to
GWAS. From the results of QTL mapping and GWAS, we
concluded that four major peaks of association might be
associated positively with waterlogging tolerance.

Of uni-SNPs with P<2.18x107*, 70.12 % (33/47) were
coincident with previously reported QTL associated with
waterlogging-responsive traits in different biparental popu-
lations. For example, Qiu et al. (2007) identified an impor-
tant cluster of QTL for RL on chromosome 7 that
overlapped with SNP43260 (bin 7.02: 21,185,816) associ-
ated with RL under waterlogging with P=1.74x10"* (Table
S2). Mano et al. (2009) reported that Qaeri.05-1.06 over-
lapped with SNP30312 (bin 1.05: 154,122,968) associated
with RL under waterlogging with P=1.26x10"* (Table S2).
These results indicated that most putative QTL existed with-
in the empirical significance threshold.

The present results prove that GWAS is invaluable for
identification of waterlogging response-related genes and
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offered novel insights for the genetic study of other envi-
ronmentally dependent and genetically complex traits. In
order to fine map and clone the waterlogging-tolerance
gene(s) in maize seedlings, it will be necessary for future
research to validate the present findings, including develop-
ment of markers based on associated SNPs, increasing the
sample size and marker density of the association popula-
tion, and validating the results in different genetic back-
grounds and environments.
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