# Developing Microsatellite Multiplex and Megaplex PCR Systems for High-Throughput Characterization of Breeding Progenies and Linkage Maps Spanning the Apricot (*Prunus armeciaca* L.) Genome

José Antonio Campoy · Pedro Martínez-Gómez · David Ruiz · Jasper Rees · Jean Marc Celton

Published online: 18 February 2010 © Springer-Verlag 2010

Abstract One hundred and twenty apricot and peach simple sequence repeat (SSR) markers have been used in the molecular characterization of a BC1 apricot progeny of 73 seedlings derived from the cross between the F1 selection "Z506-07" ("Orange Red" × "Currot") and the Spanish cultivar "Currot." To reduce costs and improve the capacity of molecular characterization assays using SSR markers, a series of seven megaplex PCRs containing between six and 20 SSR markers were developed for the molecular characterization of the apricot breeding progeny studied. Amplification was successful in apricot progenitors and in the progeny with 114 of the 120 (95%) SSR markers with a suitable level of polymorphism (1.7 alleles/marker) detected in the BC1 descendants studied. In addition, the implementation of megaplex PCR increased the efficiency and reduced the cost of this type of molecular studies. The implications of these results for apricot-breeding programs and the construction of genetic linkage maps have been also discussed.

J. A. Campoy (⊠) · P. Martínez-Gómez · D. Ruiz Departamento de Mejora Vegetal, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain e-mail: jacampoy@cebas.csic.es

P. Martínez-Gómez e-mail: pmartinez@cebas.csic.es

J. Rees · J. M. Celton Department of Biotechnology, University of the Western Cape, Modderdam Road, Bellville 7535, South Africa Keywords Apricot  $\cdot$  Prunus armeniaca  $\cdot$  SSR  $\cdot$  Molecular markers  $\cdot$  Breeding  $\cdot$  Multiplex PCR  $\cdot$  Megaplex PCR  $\cdot$  Linkage map

## Introduction

DNA marker technology has become an essential tool for the molecular characterization of plant species. From the end of the 1980s, the utilization of PCR-based markers has increased the opportunities for molecular characterization and mapping of populations in a wide range of plant species including fruit crops. One of the most used PCR-based markers is simple sequence repeat markers (SSR, i.e., microsatellites). This type of markers has been described as the best DNA markers for the assessment of genetic diversity within plant species because of their high polymorphism, abundance, and codominant inheritance (Gupta et al. 1996; Wünsch and Hormaza 2002). In the case of Prunus species, hundreds of primer pairs flanking SSRs have been cloned and sequenced in different species including peach, apricot, cherry, and almond (Cipriani et al. 1999, 2001; Testolin et al. 2000; Dirlewanger et al. 2002; Aranzana et al. 2003; Martínez-Gómez et al. 2003a; Dondini et al. 2007). In the international database Genome Database for Rosaceae (www.genome. clemson.edu/gdr), the information on these SSR markers can be compiled. Molecular studies using SSR markers are performed routinely in fruit-breeding programs, including apricot, allowing the characterization of progenitors and the design of new crosses (Hormaza 2002; Zhebentyayeva et al. 2003; Sánchez-Pérez et al. 2005). In addition, further studies using SSR markers in progenies segregating for agronomic traits are being performed for the development of genetic

Table 1 SSR markers assayed, listed based on the size of the amplified sequence in the original species, and multiplex PCR (indicated with a different shades) performed in the characterization of the apricot breeding progeny

| SSRs         | Reference               | Annealing<br>Temperature | Original<br>size (bp) | Labelling |
|--------------|-------------------------|--------------------------|-----------------------|-----------|
| BPPCT-024    | Dirlewanger et al. 2002 | 57-60                    | 96                    | 6-FAM     |
| AMPA095      | Hagen et al. 2004       | 56                       | 100                   | NED       |
| UDAp-474     | Messina et al. 2004     | 56                       | 100                   | PET       |
| UDP98-406b   | Cipriani et al. 1999    | 57-63                    | 101                   | VIC       |
| AMPA118      | Hagen et al. 2004       | 55                       | 104                   | 6-FAM     |
| UDP98-405b   | Cipriani et al. 1999    | 57-63                    | 104                   | NED       |
| UDP98-024    | Cipriani et al. 1999    | 57-63                    | 105                   | PET       |
| AMPA124      | Hagen et al. 2004       | 55                       | 110                   | VIC       |
| BPPCT-035C   | Dirlewanger et al. 2002 | 57-60                    | 113                   | 6-FAM     |
| UDAp-493     | Messina et al. 2004     | 50                       | 113                   | NED       |
| BPPCT-006C   | Dirlewanger et al. 2002 | 57-60                    | 117                   | PET       |
| UDAp-439     | Messina et al. 2004     | 56                       | 118                   | VIC       |
| UDAp-470     | Messina et al. 2004     | 56                       | 118                   | 6-FAM     |
| AMPA116      | Hagen et al. 2004       | 55                       | 119                   | NED       |
| AMPA115      | Hagen et al. 2004       | 55                       | 125                   | PET       |
| UDP98-409b   | Cipriani et al. 1999    | 57-63                    | 129                   | VIC       |
| UDP98-412    | Cipriani et al. 1999    | 57-63                    | 129                   | 6-FAM     |
| UDP97-401b   | Cipriani et al. 1999    | 57-63                    | 130                   | NED       |
| UDP96-010b   | Cipriani et al. 1999    | 57-63                    | 131                   | PET       |
| AMPA122      | Hagen et al. 2004       | 55                       | 132                   | VIC       |
| UDAp-432     | Messina et al. 2004     | 56                       | 132                   | 6-FAM     |
| BPPCT-026    | Dirlewanger et al. 2002 | 57-60                    | 134                   | NED       |
| BPPCT-038    | Dirlewanger et al. 2002 | 57-60                    | 135                   | PET       |
| BPPCT-040    | Dirlewanger et al. 2002 | 57-60                    | 135                   | VIC       |
| UDAp-435 c   | Messina et al. 2004     | 50                       | 135                   | 6-FAM     |
| AMPA113      | Hagen et al. 2004       | 55                       | 136                   | NED       |
| UDP97-402b   | Cipriani et al. 1999    | 57-63                    | 136                   | PET       |
| UDAp-491     | Messina et al. 2004     | 56                       | 140                   | VIC       |
| UDAp-412 a b | Messina et al. 2004     | 56                       | 141                   | 6-FAM     |
| UDAp-463     | Messina et al. 2004     | 56                       | 141                   | NED       |
| UDP96-003b   | Cipriani et al. 1999    | 57-63                    | 143                   | PET       |
| UDP98-021    | Cipriani et al. 1999    | 57-63                    | 145                   | VIC       |
| AMPA110      | Hagen et al. 2004       | 55                       | 146                   | 6-FAM     |
| UDAp-454     | Messina et al. 2004     | 56                       | 147                   | NED       |
| BPPCT-008b   | Dirlewanger et al. 2002 | 57-60                    | 148                   | PET       |
| BPPCT-007    | Dirlewanger et al. 2002 | 57-60                    | 149                   | VIC       |
| UDAp-405     | Messina et al. 2004     | 56                       | 149                   | 6-FAM     |
| UDAp-446     | Messina et al. 2004     | 56                       | 149                   | NED       |
| UDAp-462     | Messina et al. 2004     | 50                       | 149                   | PET       |
| UDP97-403b   | Cipriani et al. 1999    | 57-63                    | 150                   | VIC       |

maps and markers associated with genes or QTLs involved in the inheritance of the agronomic traits in many *Prunus* species including apricot (Martínez-Gómez et al. 2003a; Dirlewanger et al. 2004; Dondini et al. 2007). To reduce cost and improve the efficiency and throughput of the molecular characterization assays using PCRbased markers, multiplex PCR, a variant of the PCR in which more than one target sequence is amplified using

# Table 1 (continued)

| SSRs         | Reference               | Annealing<br>Temperature | Original<br>size (bp) | Labelling |
|--------------|-------------------------|--------------------------|-----------------------|-----------|
| LIDP98-411   | Cipriani et al. 1999    | 57-63                    | 150                   | 6-FAM     |
| UDAp-486     | Messina et al. 2004     | 56                       | 153                   | NED       |
| BPPCT-039ab  | Dirlewanger et al. 2002 | 57-60                    | 154                   | PET       |
| UDAp-473     | Messina et al. 2004     | 56                       | 154                   | VIC       |
| AMPA094      | Hagen et al. 2004       | 55                       | 155                   | 6-FAM     |
| BPPCT-037    | Dirlewanger et al. 2002 | 57-60                    | 155                   | NED       |
| UDP96-005b   | Cipriani et al. 1999    | 57-63                    | 155                   | PET       |
| UDAp-415     | Messina et al. 2004     | 56                       | 156                   | VIC       |
| UDAp-437     | Messina et al. 2004     | 56                       | 156                   | 6-FAM     |
| UDAp-489     | Messina et al. 2004     | 56                       | 156                   | NED       |
| UDAp-468     | Messina et al. 2004     | 56                       | 157                   | PET       |
| UDAp-471     | Messina et al. 2004     | 56                       | 157                   | VIC       |
| UDAp-483     | Messina et al. 2004     | 50                       | 157                   | 6-FAM     |
| UDAp-457     | Messina et al. 2004     | 50                       | 158                   | NED       |
| UDAp-410     | Messina et al. 2004     | 56                       | 159                   | PET       |
| UDAp-421 a b | Messina et al. 2004     | 56                       | 159                   | VIC       |
| UDAp-438     | Messina et al. 2004     | 56                       | 159                   | 6-FAM     |
| pchgms5      | Sosinski et al. 2000    | 58                       | 160                   | NED       |
| UDAp-452     | Messina et al. 2004     | 50                       | 160                   | PET       |
| UDAp-458     | Messina et al. 2004     | 56                       | 160                   | VIC       |
| UDAp-466     | Messina et al. 2004     | 56                       | 160                   | 6-FAM     |
| UDAp-406     | Messina et al. 2004     | 56                       | 161                   | NED       |
| UDAp-460     | Messina et al. 2004     | 56                       | 161                   | PET       |
| UDAp-496     | Messina et al. 2004     | 56                       | 162                   | VIC       |
| pchgms2      | Sosinski et al. 2000    | 58                       | 163                   | 6-FAM     |
| UDAp-444     | Messina et al. 2004     | 56                       | 163                   | NED       |
| BPPCT-012    | Dirlewanger et al. 2002 | 57-60                    | 164                   | PET       |
| BPPCT-028    | Dirlewanger et al. 2002 | 57-60                    | 164                   | VIC       |
| UDAp-497     | Messina et al. 2004     | 56                       | 166                   | 6-FAM     |
| UDAp-409     | Messina et al. 2004     | 56                       | 167                   | NED       |
| UDAp-449     | Messina et al. 2004     | 56                       | 167                   | PET       |
| UDAp-456     | Messina et al. 2004     | 56                       | 167                   | VIC       |
| UDAp-451     | Messina et al. 2004     | 50                       | 168                   | 6-FAM     |
| UDAp-418     | Messina et al. 2004     | 56                       | 169                   | NED       |
| BPPCT-009    | Dirlewanger et al. 2002 | 57-60                    | 171                   | PET       |
| UDAp-479     | Messina et al. 2004     | 56                       | 171                   | VIC       |
| BPPCT-011    | Dirlewanger et al. 2002 | 57-60                    | 172                   | 6-FAM     |
| UDAp-461     | Messina et al. 2004     | 56                       | 173                   | NED       |
| AMPA096      | Hagen et al. 2004       | 55                       | 174                   | PET       |
| RPPCT_017    | Dirlewanger et al. 2002 | 57-60                    | 174                   | VIC       |

more than one pair of primers (and usually less than four), is being assayed in molecular studies (Sánchez-Pérez et al. 2004; Hayden et al. 2008; Patocchi et al. 2009; Pascal et al. 2009). On the other hand, megaplex PCR is a very recent

and robust technology for highly multiplexed amplification of specific DNA sequences. It uses target-specific pairs of PCR primers (more than four) that are physically separated (Meuzelaar et al. 2007). To date, this methodology has not

| SSRs         | Reference               | Annealing   | Original  | Labelling |
|--------------|-------------------------|-------------|-----------|-----------|
|              |                         | Temperature | size (bp) |           |
| pchgms4      | Sosinski et al. 2000    | 58          | 174       | 6-FAM     |
| BPPCT-030    | Dirlewanger et al. 2002 | 57-60       | 175       | NED       |
| UDAp-420     | Messina et al. 2004     | 56          | 175       | PET       |
| UDAp-485     | Messina et al. 2004     | 56          | 177       | VIC       |
| UDAp-413     | Messina et al. 2004     | 56          | 179       | 6-FAM     |
| UDAp-424     | Messina et al. 2004     | 50          | 179       | NED       |
| AMPA107      | Hagen et al. 2004       | 51          | 180       | PET       |
| BPPCT-033B   | Dirlewanger et al. 2002 | 57-60       | 180       | VIC       |
| BPPCT-013    | Dirlewanger et al. 2002 | 57-60       | 183       | 6-FAM     |
| AMPA101      | Hagen et al. 2004       | 55          | 188       | NED       |
| UDAp-407     | Messina et al. 2004     | 56          | 188       | PET       |
| UDAp-465     | Messina et al. 2004     | 56          | 188       | VIC       |
| UDAp-469     | Messina et al. 2004     | 50          | 188       | 6-FAM     |
| UDAp-430     | Messina et al. 2004     | 56          | 189       | NED       |
| UDAp-450     | Messina et al. 2004     | 50          | 189       | PET       |
| AMPA105      | Hagen et al. 2004       | 55          | 191       | VIC       |
| UDAp-422     | Messina et al. 2004     | 50          | 191       | 6-FAM     |
| UDAp-423     | Messina et al. 2004     | 56          | 192       | NED       |
| UDAp-472     | Messina et al. 2004     | 56          | 192       | PET       |
| BPPCT-019C   | Dirlewanger et al. 2002 | 57-60       | 194       | VIC       |
| BPPCT-025    | Dirlewanger et al. 2002 | 57-60       | 197       | 6-FAM     |
| BPPCT-004    | Dirlewanger et al. 2002 | 57-60       | 200       | NED       |
| BPPCT-020B   | Dirlewanger et al. 2002 | 57-60       | 200       | PET       |
| UDAp-401     | Messina et al. 2004     | 56          | 201       | VIC       |
| UDAp-436 a b | Messina et al. 2004     | 56          | 202       | 6-FAM     |
| AMPA109      | Hagen et al. 2004       | 55          | 204       | NED       |
| UDAp-503     | Messina et al. 2004     | 56          | 204       | PET       |
| UDAp-467     | Messina et al. 2004     | 56          | 211       | VIC       |
| AMPA100      | Hagen et al. 2004       | 55          | 215       | 6-FAM     |
| BPPCT-014    | Dirlewanger et al. 2002 | 57-60       | 215       | NED       |
| BPPCT-041    | Dirlewanger et al. 2002 | 57-60       | 220       | PET       |
| pchcms3      | Sosinski et al. 2000    |             | 220       | VIC       |
| BPPCT-018B   | Dirlewanger et al. 2002 | 57-60       | 222       | 6-FAM     |
| AMPA112      | Hagen et al. 2004       | 55          | 223       | NED       |
| pchcms4      | Sosinski et al. 2000    | 58          | 225       | PET       |
| UDAp-431ab   | Messina et al. 2004     | 56          | 227       | VIC       |
| BPPCT-002    | Dirlewanger et al. 2002 | 57-60       | 229       | 6-FAM     |
| UDAp-441     | Messina et al. 2004     | 56          | 237       | NED       |
| UDAp-499     | Messina et al. 2004     | 56          | 248       | PET       |
| BPPCT-027ab  | Dirlewanger et al. 2002 | 57-60       | 249       | VIC       |

been applied in *Prunus* species. The most important advantage of this megaplex PCR system is the choice of many oligonucleotide primers to improve the speed of the molecular characterization assays and to facilitate the automation of this process also reducing the cost.

The objective of this work was the development of microsatellite multiplex and megaplex PCR systems for high-throughput characterization of apricot (*Prunus armeciaca* L.) progenies and development of linkage maps spanning most of genome.

 Table 2
 Megaplex, multiplex and single PCR (indicated with different shades) designed for the molecular characterization of the apricot breeding progeny using different SSR markers and range of the size of the resulted PCR products

|                                            |             | Range      | e (bn)     |                           |              | Rang      | e (hn)     |                      |              | Rang | e (hn) |
|--------------------------------------------|-------------|------------|------------|---------------------------|--------------|-----------|------------|----------------------|--------------|------|--------|
| SSRs                                       | Labelling   | Min        | Max        | SSRs                      | Labelling    | Min       | Max        | SSRs                 | Labelling    | Min  | Max    |
| 0010                                       | Lucening    | 1,111      | 111111     | 5516                      | Zucennig     |           |            | 0010                 | Zucening     |      | 1.14.1 |
| Megaplex 1                                 |             |            |            | Megaplex 3                |              |           |            | Multiplex 8          |              |      |        |
| AMPA095                                    | NED         | 85         | 142        | UDP96-010b                | PET          | 83        | 131        | UDP98-024            | PET          | 91   | 146    |
| UDP98406                                   | VIC         | 89         | 128        | UDAn-432                  | 6-FAM        | 96        | 128        | AMPA124              | VIC          | 108  | 156    |
| UDAp470                                    | 6-FAM       | 84         | 118        | BPPCT-040                 | VIC          | 108       | 135        | UDAn-444             | NED          | 108  | 170    |
| BPPCTO38                                   | PET         | 80         | 142        | LIDP97-402b               | PFT          | 141       | 146        | UDAn-436ab           | 6-FAM        | 103  | 262    |
| AMPA110                                    | 6-FAM       | 126        | 146        | UDAn-463                  | NED          | 110       | 122        | Multiplex 9          | 017101       | 105  | 202    |
| BPPCT007                                   | VIC         | 135        | 158        | UDAp-446                  | NED          | 131       | 153        | UDP97-401b           | NFD          | 109  | 142    |
| JIDAp405                                   | 6-FAM       | 164        | 164        | UDP98-411                 | 6-FAM        | 167       | 179        | UDAn-412ab           | 6-FAM        | 132  | 152    |
| UDAp460                                    | PFT         | 148        | 165        | UDAn-438                  | 6-FAM        | 130       | 130        | UD4n-410             | PET          | 122  | 149    |
| BPPCT028                                   | VIC         | 169        | 170        | UDAp-466                  | 6-FAM        | 147       | 162        | UDAp-410             | VIC          | 119  | 173    |
|                                            | NED         | 160        | 168        | UDAp-456                  | VIC          | 151       | 169        | Multipley 10         | VIC          | 11)  | 175    |
| BPPCT011                                   | 6-FAM       | 173        | 185        | UDAp-461                  | NFD          | 162       | 175        | UDAn-468             | PFT          | 146  | 168    |
| Pchams4                                    | 6-FAM       | 153        | 153        | BPPCT-017                 | VIC          | 174       | 186        | UD4p-483             | 6-EAM        | 133  | 160    |
| UDAp485                                    | VIC         | 181        | 211        | UDAn-407                  | PET          | 103       | 100        | UDAp-458             | VIC          | 127  | 170    |
| UDAp430                                    | NED         | 176        | 198        | ΔΜΡΔ105                   | VIC          | 198       | 217        | UDAp-409             | NED          | 109  | 160    |
| UDAp450                                    | PET         | 185        | 217        | $IIDAp_{472}$             | PET          | 156       | 184        | Multipley 11         | NLD          | 107  | 100    |
| AMPA112                                    | NED         | 204        | 217        | BPPCT 004                 | NED          | 107       | 203        | UDP07 401b           | NED          | 112  | 136    |
| $IID \Lambda n/100$                        | PET         | 204        | 2/0        | BPPCT 020B                | DET          | 108       | 108        | UDP08 400b           | VIC          | 132  | 161    |
| DCT027                                     |             | 220        | 249        | AMPA 100                  | 6 EAM        | 190       | 217        | UD1 98-4090          | 6 FAM        | 132  | 217    |
| Megapley 2                                 | vic         | 230        | 242        | RPPCT 014                 | NED          | 186       | 186        | Multipley 12         | 0-1 AIVI     | 141  | 217    |
| BDDCT 024                                  | 6 EAM       | 04         | 127        | PPPCT 041                 | DET          | 215       | 215        |                      | VIC          | 122  | 161    |
| BITCI-024                                  | DET         | 94<br>80   | 1/2        | Magaplay 5                | LT LT        | 213       | 215        | LIDAn 486            | NED          | 115  | 154    |
| UDAn 420                                   |             | 00         | 145        | AMDA118                   | 6 EAM        | 07        | 108        | Multiplex 13         | NED          | 115  | 154    |
| DDAp-439                                   | NED         | 90         | 141        | UDAn 454                  | NED          | 97        | 161        | LIDDO8 021           | VIC          | 152  | 152    |
| UDAn 415                                   | VIC         | 140        | 141        | DDAp-434                  | DET          | 97        | 101        | DDF 96-021           | NED          | 115  | 161    |
| UDAp-413                                   | 6 EAM       | 149        | 101        | $\frac{DFFC1-0080}{UDAn}$ | PEI          | 92<br>147 | 120        | Single 14            | NED          | 115  | 101    |
| DAp-437                                    | NED         | 162        | 171        | UDP07 402                 |              | 147       | 112        | JIDAn 441            | NED          | 120  | 222    |
| UDAn 452                                   | DET         | 154        | 164        | UDAp 451                  | 6 EAM        | 121       | 167        | Single 15            | NED          | 120  | 322    |
| UDAp-432                                   | DET         | 172        | 104        | AMDA 107                  | 0-FAM<br>DET | 171       | 242        | JIDAn 490            | NED          | 122  | 166    |
| UDAp-449                                   | 6 EAM       | 172        | 1/3        | AMPAI07                   | PE1<br>VIC   | 172       | 242<br>165 | Single 16            | NED          | 152  | 100    |
| UDAp-415                                   | 0-FAM       | 1/0        | 200        | AMDA 101                  | NED          | 120       | 105        | JIDAn 457            | NED          | 122  | 166    |
| UDAp-424                                   | NED         | 105        | 214        | AMPA101                   | NED          | 100       | 205        | Single 17            | NED          | 155  | 100    |
| UDAp 502                                   | DET         | 1/1        | 214        | AMPA109                   | A EAM        | 199       | 205        | AMDA112              | NED          | 124  | 161    |
| DAp-303                                    | DET         | 105        | 220        | Magaplay 6                | 0-FAM        | 100       | 195        | AMPAILS<br>Single 19 | NED          | 154  | 101    |
| Magaplay 4                                 | FLI         | 232        | 230        | UDD08 405b                | NED          | 104       | 148        | PDDCT 020            | NED          | 126  | 146    |
| UDAn 402                                   | NED         | 07         | 125        | UDP 98-4030               | 6 EAM        | 104       | 140        | BFFC1-030            | NED          | 150  | 140    |
| AMDA 115                                   | DET         | 97         | 133        | UDP96-412                 | 0-FAM<br>DET | 04        | 106        |                      |              |      |        |
| LIDAn 401                                  |             | 05<br>120  | 127        | UDP90-0030                | PE1<br>VIC   | 94        | 100        | No                   | amplificatio |      |        |
| DDAp-491                                   |             | 139        | 159        | 0DAp-475                  | 6 EAM        | 113       | 145        | UDAn 4350            | 6 EAM        | 0    | 0      |
| $\frac{\text{DFFC1-039}}{\text{UDAp} 421}$ |             | 112        | 122        | LIDDO6 005h               | DET          | 132       | 1.14       | DDAP-455C            | 6 EAM        | 0    | 0      |
| DAp-421                                    | 6 EAM       | 112        | 155        | UDP90-0030                | PE1<br>VIC   | 119       | 140        | DFFC1-0100           | 0-FAM        | 0    | 0      |
| UDAn 407                                   | 6 EAM       | 144        | 109        | Magaplay 7                | VIC          | 151       | 190        | UDAn 421ch           | VIC          | 0    | 0      |
| UDAp-497                                   | 0-FAM       | 144        | 144        | UDAp 474                  | DET          | 00        | 100        | DAp-451ab            | DET          | 0    | 0      |
| BDDCT 012                                  | LUI<br>CEVM | 1/0        | 140        | DDAP-4/4                  | FEI<br>6 EAM | 77<br>06  | 1/0        |                      | L L L<br>DET | 0    | 0      |
| $\frac{DFFUI-013}{UDAm}$                   | O-FAM       | 140        | 140        | UDAp 471                  | 0-FAM        | 90        | 148        | AMPA090              | PEI          | 0    | 0      |
| UDAp-422                                   | 0-FAM       | 101        | 198        | UDAp-4/1                  |              | 121       | 147        |                      |              |      |        |
| DDAP-423                                   | NED         | 1/1        | 240        | UDAp-400                  | NED          | 103       | 1/9        |                      |              |      |        |
| DIFUT-019C                                 |             | 214<br>170 | 240<br>150 | UDAP-490                  |              | 120       | 192        |                      |              |      |        |
| DFFU1-023                                  | NED         | 148<br>194 | 202        | BFFC1-012                 | PEI          | 132       | 109        |                      |              |      |        |
| UDAP-40/                                   | VIC         | 190        | 202        |                           |              |           |            |                      |              |      |        |

# **Material and Methods**

Plant Material

a BC1 progeny of 73 seedlings derived from the cross between the F1 selection "Z506-07" ("Orange Red"  $\times$ "Currot") and the Spanish cultivar "Currot" made in 2001. All genotypes were cultivated in the same experimental orchard in Calasparra, in the Region of Murcia, Southeast Spain (lat. 37° N, long. 1° W).

The plant material assayed included the North American apricot cultivar "Orange Red" <sup>®</sup>, the Spanish "Currot," and

#### DNA Isolation

Total genomic DNA was isolated using the procedure described by Doyle and Doyle (1987). Approximately 50 mg of young leaves were ground in a 1.5-ml Eppendorf tube with 750 µl of CTAB extraction buffer (100 mM Tris–HCl, 1.4 M NaCl, 20 mM EDTA, 2% CTAB, 1% PVP, 0.2% mercaptoethanol, 0.1% NaHSO<sub>3</sub>). Samples were incubated at 65°C for 20 min, mixed with an equal volume of 24:1 chloroform–isoamyl alcohol, and centrifuged at 6,000×*g* for 20 min. The upper phase was recovered and mixed with an equal volume of isopropanol at  $-20^{\circ}$ C. The nucleic acid precipitated was washed in 400 µl of 10 mM NH<sub>4</sub>Ac in 76% ethanol, dried, resuspended in 50 µl of TE (10 mM Tris–HCl, 0.1 mM EDTA, pH8.0), and incubated with 0.5 µg of RNase A at 37°C for 30 min to digest RNA.

## SSR Analysis

Extracted apricot genomic DNA was PCR-amplified using 120 pairs of primers flanking SSR sequences, previously cloned, and sequenced in peach (44 SSRs) (Cipriani et al. 1999; Sosinski et al. 2000; Dirlewanger et al. 2002) and apricot (76 SSRs) (Hagen et al. 2004; Messina et al. 2004) (Table 1). SSR-PCR amplifications were performed in  $5\,\mu$ L reaction mixture containing 2.5  $\mu$ L of commercial Taq PCR Master Mix Kit (Qiagen, Hilden, Germany), 20 nM of each forward primer labeled with a fluorescent dye [6-FAM (blue); VIC (green); NED (yellow); PET (red)] (Applied Biosystems, Foster City, CA), 20 nM of each unlabelled reverse primer, 5 ng of genomic DNA and  $1\,\mu$ L of dH<sub>2</sub>O. Amplification was performed for 40 cycles at 94°C for 30 s, 58°C for 1 min and 30 s, and 72°C for 1 min, for denaturation, annealing, and primer extension, respectively.

#### Multiplex and Megaplex PCR Development

Initially, 30 multiplex PCR using four SSR markers were designed (Table 1). Each SSR marker was labeled with one of the four dyes available. These SSR markers were applied in the progenitors and in several individuals of the progeny to check the size of the amplified bands in our apricot genotypes. These results were applied in the development of megaplex PCR using more than four SSR markers paying attention to the size of the amplification products and the dye of the SSR.

## DNA Fragment Analysis

Amplified PCR products were separated and analyzed on an automated capillary sequencer AB 3130x (Applied Biosystems) along GeneScanT 500 RoxT (-250) internal size standard. Allele sizes were scored using GeneMapper V. 4.0 (Applied Biosystem).

#### Map Construction

A framework genetic map was constructed using Join Map v. 3.0 software (van Ooijen and Voorrips 2001) by using the CP population type. Linkage groups were established with a minimal LOD of 4.0.

#### **Results and Discussion**

Amplifications were successful in apricot progenitors and in the progeny with 114 of the 120 (95%) SSR markers with a 69 % (79 out of 114 markers) polymorphism detected (number of polymorphic bands ranged from 1 to 4 depending on the codominant nature of the maker) in the apricot BC1 descendants studied. In the case of the SSR markers developed in apricot, 96% of these markers were successfully amplified in the progenitors ("Z506-07" and "Currot") and in the BC1 progeny with the exception of the UDAp-435c, UDAp-431ab (Messina et al. 2004), and AMPA096 (Hagen et al. 2004) (Table 2). SSR markers showed a size ranging between 83 and 242 bp (Table 2). For the majority of the markers, the allele size range matched the one initially described by the authors who developed these markers in both peach (Cipriani et al. 1999; Sosinski et al. 2000; Dirlewanger et al. 2002) and apricot (Hagen et al. 2004; Messina et al. 2004).

A series of seven megaplex PCRs containing between six and 20 SSR markers were assembled for the molecular characterization of the apricot breeding progeny (Table 2). These megaplex PCRs were designed according to the size obtained in our apricot materials (between 83 and 242 bp) by combining the different dyes labeling the SSR markers assayed. In the combination of these SSR markers through megaplex PCR, a minimum interval of 5 bp was kept between the SSR markers with the same labeling to avoid band misidentification (Table 2). Ninety-one of the 120 SSR markers assayed were used in only seven PCR reactions corresponding with the seven megaplexes. Sixty of these 91 markers amplified in the studied progeny and their polymorphism were evaluated for use in the construction of the genetic linkage map. No problems were found in the PCR amplification because of the location of SSR markers in the same PCR reaction. The percentage of markers amplified in the progeny in each megaplex ranged from 100% in the case of megaplex 6 to 28.57% in the megaplex 7 with a mean value of 66% (Table 3). In megaplex 1, for example, a total of 16 markers were amplified in the same PCR (Fig. 1).

Acquired marker data were used to construct the preliminary map of "Z506-07" and "Currot" (Fig. 2). This genetic

Table 3 Amplification of SSRs in each megaplex PCR

| Megaplex | Number of<br>Primers per<br>megaplex | Number of markersPeramplified in the(%progeny |        |  |  |
|----------|--------------------------------------|-----------------------------------------------|--------|--|--|
| 1        | 18                                   | 16                                            | 88.89  |  |  |
| 2        | 14                                   | 8                                             | 57.14  |  |  |
| 3        | 20                                   | 11                                            | 55.00  |  |  |
| 4        | 14                                   | 10                                            | 71.43  |  |  |
| 5        | 11                                   | 6                                             | 54.55  |  |  |
| 6        | 7                                    | 7                                             | 100.00 |  |  |
| 7        | 7                                    | 2                                             | 28.57  |  |  |
| Mean     | 13                                   | 8.57                                          | 65.93  |  |  |
| Total    | 91                                   | 60                                            | -      |  |  |

map includes 37 and 29 SSRs, for "Z506-07" and "Currot," respectively (Table 4). The maps cover 240.8 and 226.3 cM for "Z506-07" and "Currot," respectively (Fig. 2), spanning about 45% and 37% of the apricot genome, compared with the *Prunus* reference map (522 cM) (Aranzana et al. 2003; Dirlewanger et al. 2004). Considering both maps together, the SSR distribution was relatively uniform with the exception of linkage group 6. The number of markers per LG varied from none (LGs 6, 7, 8 in "Currot") to nine (LG1 in "Z506-07"; Table 4). The largest LG obtained were 90.0 and 52.9 cM for "Z506-07" and "Currot," respectively.

In this study, a large set of highly polymorphic SSR markers has been identified that are well distributed over the apricot genome. Overall, the results showed a high level of polymorphism in our apricot BC1 population. DNA finger-

prints obtained from the amplification of SSR markers are of great importance for different purposes including the certification program to protect new releases from breeding programs, particularly in the cases of species, such as apricot, that are vegetatively propagated (Sánchez-Pérez et al. 2005) or the development of genetic linkage maps and markers associated with genes or QTLs (Dirlewanger et al. 2004). Our results also confirmed the well-described transferability of SSR markers between *Prunus* species (Cipriani et al. 1999; Sosinski et al. 2000; Martínez-Gómez et al. 2003b, c; Zhebentyayeva et al. 2003; Arús et al. 2006): Forty-one of the 44 (93%) SSR markers initially developed in peach amplified successfully in the apricot progeny assayed.

One of the most important applications of this new methodology is to ease the development of genetic linkage maps. The location of the SSR markers mapped in this study was similar to those previously reported by Aranzana et al. (2003) and Dondini et al. (2007). Our results showed a high level of colienarity between *Prunus* species and confirmed a high level of transferability of the markers, as already described by Dirlewanger et al. (2004) and Arús et al. (2006). This homology among *Prunus* species partly explains the low level of breeding barriers to interspecific gene introgression and highlights the opportunity for successful gene transfer between closely related species (Martínez-Gómez et al. 2003c).

The development of the megaplex PCR greatly increased the efficiency and reduced the cost involved in the implementation of this type of molecular characterization studies. This efficiency is derived primarily from the high number of markers amplied in a single reaction. The organization of SSR markers in sets of megaplex PCR also increased the

Fig. 1 Distribution of amplified products in the megaplex PCR 1 after the analysis with the automated capillary electrophoresis. The observed peaks [*blue* (6-FAM dye), *black* (NED), *red* (PET), and *green* (VIC)] correspond to the different SSR markers included in the megaplex





Fig. 2 Comparison of molecular linkage maps of "Z506-07" (Z) and "Currot" (C) obtained with 37 and 29 SSRs, respectively, constructed using JOINMAP after the application of seven megaplex PCR including the evaluation of 91 different SSRs

efficiency and reduced the cost of the development of genetic linkage maps in *Prunus* species. The described set of SSR markers included in megaplex 2 that amplified the highest number of SSR markers, exemplified the possibility of the analysis of 18 SSR markers in only one reaction. The price of

labeling each forward primer is pretty high, as well as fragment analysis using automated capillary sequencer, making the results of this work even more important since multiplexing of up to 18 markers in one single reaction can significantly reduce the time and cost in development of a

| Table 4   | Number of mapped SSR      | markers, amplified | but not mapped ( | between parentheses), | , size of the LGs, | and marker density | (mean distance |
|-----------|---------------------------|--------------------|------------------|-----------------------|--------------------|--------------------|----------------|
| in cM) ii | n the two linkage maps of | f "Z506-07" and "C | Currot"          |                       |                    |                    |                |

| Linkage group | Number of SSR markers ('Z506-07') | Size of<br>LG (cM) | Marker density<br>(cM) | Number of SSR<br>markers ('Currot') | Size of LG<br>(cM) | Marker density<br>(cM) |
|---------------|-----------------------------------|--------------------|------------------------|-------------------------------------|--------------------|------------------------|
| 1             | 9                                 | 90.0               | 10.00                  | 5                                   | 25.7               | 5.14                   |
| 2             | 5+(1)                             | 38.4               | 7.68                   | 4                                   | 42.4               | 10.60                  |
| 3             | 4                                 | 33.7               | 8.43                   | 5                                   | 46.7               | 9.34                   |
| 4             | 4                                 | 17.2               | 4.30                   | 5                                   | 47.2               | 9.44                   |
| 5             | 8                                 | 18.0               | 2.25                   | 6                                   | 52.9               | 8.82                   |
| 6             | (1)                               | 0                  | _                      | _                                   | _                  | _                      |
| 7             | 3                                 | 25.3               | 8.43                   | (3)                                 | _                  | _                      |
| 8             | 4                                 | 18.2               | 4.55                   | _                                   | _                  | _                      |
| Unknown       | _                                 | _                  |                        | 4                                   | 11.4               | 2.85                   |
| Total         | 37                                | 240.8              | 6.52                   | 29                                  | 226.3              | 7.70                   |

new genetic map. These results indicate a higher efficiency in comparison with the multiplex PCR developed recently for the analysis of SSR markers in apple (Patocchi et al. 2009) and *Populus* (Pascal et al. 2009).

This work illustrated the possibility of analyzing 20 SSR markers, within initial set of 120 markers with a range of 92–249 bp, in only one reaction. Seeing that the 120 markers set had not been tested in our population prior to selecting the markers, the optimization of the process can be further increased if the exact size of the amplified product of the markers in the progeny is known in advance. Thus, the choice and grouping of primers in the megaplex could be more accurate. Moreover, the higher the range of the amplified sequences, the more markers could be included in a single megaplex. The optimization and use of the megaplex can open new dimensions in the multifunctional use of microsatellites for breeders and geneticists, multiplying the efficiency and significantly reducing the cost of the analysis.

Acknowledgements José A. Campoy is holder of a grant from the Spanish Ministry of Science and Innovation (Project reference AGL2004-04126-C02-01). The authors are also grateful to the Deciduous Fruit Producers Trust (South Africa) and the THRIP program of the Department of Trade and Industry (South Africa) for co-financing this work.

### References

- Aranzana MJ, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Arús P, Testolin R, Abbott A, King GJ, Iezzoni AF (2003) A set of simple-sequence repeat (SSR) markers covering the *Prunus* genome. Theor Appl Genet 106:819–825
- Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211
- Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Amer Soc Hort Sci 126:205–209
- Cipriani G, Lot G, Huang HG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (*Prunus persica* (L) Basch): isolation, characterization and cross-species amplification in *Prunus*. Theor Appl Genet 99:65–72
- Dirlewanger E, Crosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret L (2002) Development of microstellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138
- Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004) Comparative mapping and markerassisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896
- Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing *Prunus* map. Tree Gen Gen 3:239–249

- Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytoch Bull 19:11–15
- Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54
- Hagen LS, Chaib J, Fad B, Decrocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot (*Prunus armeniaca* L). Mol Ecol Notes 4:432–434
- Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80. doi:10.1186/2164-9-80
- Hormaza JI (2002) Molecular characterization and similarity relationships among apricot genotypes using simple sequence repeats. Theor Appl Genet 104:321–328
- Martínez-Gómez P, Sozzi GO, Sánchez-Pérez R, Rubio M, Gradziel TM (2003a) New approaches to *Prunus* tree crop breeding. J Food Agri Environ 1:52–63
- Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003b) An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica 131:313–322
- Martínez-Gómez P, Arulsekar S, Potter D, Gradziel TM (2003c) Relationships among peach and almond and related species as detected by SSRs. J Am Soc Hort Sci 128:667–671
- Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434
- Meuzelaar LS, Lancaster O, Pasche JP, Kopal G, Brookes AJ (2007) MegaPlex PCR: a strategy for multiplex amplification. Nature-Methods 4:835–837
- Pascal E, Steffen F, Martin S (2009) Development of two microsatellite multiplex PCR systems for huigh throughput genotyping in *Populus eupratica*. J For Res 20:195–198
- Patocchi A, Fernández-Frenández F, Evans K, Rezzonico F, Duneman F, Mathis-Jeaneteau F, Durel CE, Gianfranceschi L, Costa F, Toller V, Mott D, Konjame M, Barbaro E, Rikkering E, Gessier CW, van de Weg C (2009) Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Gen Gen 5:211–223
- Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica 138:263–269
- Sánchez-Pérez R, Ruiz D, Dicenta F, Egea J, Martínez-Gómez P (2005) Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci Hortic 103:305–315
- Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (*Prunus persica* (L) Basch). Theor Appl Genet 101:421–428
- Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori T, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (*Prunus persica* L.) Batsch and it use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520
- van Ooijen JW, Voorrips RE (2001) JoinMap\_ 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen
- Wünsch A, Hormaza JI (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:56–67
- Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Microsatellite (SSR) analysis for assessment of genetic variability in apricot. Theor Appl Genet 106:435–444