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Abstract Malus hupehensis Rehd. var. pinyiensis Jiang
(Pingyi Tiancha, PYTC) is a botanical variety of Malus (tea
crabapple) originating from China. This species is charac-
terized as apomictic, and it is highly capable of resisting
water-logging, shade, cold, and various diseases. Mitogen-
activated protein kinase (MAPK) cascades have been
implicated in the regulation of stress and developmental
signals in plants. In this study, an MAPK gene, MhMAPK,
has been isolated from a PYTC complementary DNA
(cDNA) library using rapid amplification of cDNA ends.
The gene encodes a 373-amino-acid protein with high-
sequence similarity to other previously reported plants
MAPKs. MhMAPK contains all 11 MAPK conserved
sub-domains and the phosphorylation motif TEY, and when
fused to the green fluorescent protein, it is found to be
localized in the nucleus of epidermal cells of onion.
Transcripts of MhMAPK accumulate when PYTC is treated
with 20% polyethylene glycol and 200 mM NaCl. These
results indicated that MhMAPK may be functional within
the nucleus by phosphorylating transcriptional factors. This,
in turn, allows plants to rapidly respond to the environ-
mental signals.
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Abbreviations
MAPK mitogen-activated protein kinase
PYTC Pingyi Tiancha (Chinese name of Malus

hupehensis Rehd. var. pinyiensis Jiang)
PCR polymerase chain reaction
RACE rapid amplification of cDNA ends

Introduction

Plants are continuously exposed to various environmental
conditions, and they cannot evade environmental stress. In
order to survive, plants must respond to various external
environmental conditions and adapt to them. During this
process, changes in the extracellular environment must be
communicated in a specific manner from outside of the cell
to the inside and ultimately to the nucleus where changes in
gene expression may take place. Many of these mecha-
nisms involve processes of protein phosphorylation by
specific protein kinases and dephosphorylation by protein
phosphatases (Hunter 1995; Hardie 1999). The MAP kinase
cascade, one particular signal transduction mechanism,
plays an important role in many different eukaryotic
organisms (Jonak et al. 2002). Mitogen-activated protein
kinases (MAPKs) are also known as external signal
regulated protein kinases (ERKs) and belong to a class of
conservative serine/threonine protein kinases (Hanks et al.
1988). Whether in animals, plants, or yeasts, all MAP
kinases have common characteristics: Molecular weight is
from 38 to 55 kDa; they contain 11 conservative protein
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kinase subregions; and there is a highly conservative TxY
motif between VII and VIII subregions, but the x changes
along with the biology category, for instance, x is usually E,
P, or G in animals and yeasts, but E or D in plants (Machida
et al. 1997).

In various organisms, the MAP kinase along with the MAP
kinase cascade forms, including MAPKs, MAPK kinases
(MAPKKs) and MAPKK kinases (MAPKKKs; Mizoguchi et
al. 1996). MAPKs are activated when both tyrosine and
threonine residues in the TxY motif are phosphorylated by
dual-specificity kinases MAPKKs. MAPKKs are activated
when serine and serine/threonine residues in the S/T–X3–5–
S/T motif are phosphorylated by serine/threonine kinases
MAPKKKs (Jonak et al. 1996). Phosphorylated MAP
kinases may stay in the cytoplasm where they continue
to phosphorylate other protein kinases or cytoskeleton,
and in addition, they may go into nucleus to phosphorylate
transcription factors and sequentially regulate the gene
expression (Liu et al. 2000). As a result, external signals
are transferred step by step until various physiological or
biochemical responses occur in cells (Ligterink et al.
1997). Various stimuli are all able to activate the MAP
kinase cascade such as environmental stress (Shoresh et al.
2006; Petersen et al. 2000), hormone and signal factor
(Knetsch et al. 1996; Pagnussat et al. 2004). These stimuli
can bring cell proliferation or differentiation and intracel-
lular response of resistance (Jeong et al. 2006; Bogre et al.
1997).

Currently, about 20 MAPK genes have been isolated
from plants, and based on their sequence homologies,
these can be divided into four groups. The first group of
MAPK genes is very different from all other groups, while
a high sequence identity is observed between the second
and third groups. In function, some members in the fourth
group are related to cell periods, and other types of
MAPKs mostly participate in the signal transduction of
phytohormone or environmental stress (Liu et al. 2000).
For instance, some MAPK genes in Arabidopsis thaliana
(Mizoguchi et al. 1994), Oryza sativa L. (Seo et al. 1995),
and Nicotiana tabacum (Zhang and Klessig 1997) have
been cloned.

It is highly capable of resisting water-logging, shade,
cold, and disease (Li 2001). Thus, it is often used as a
rootstock for propagating apples. As Pingyi Tiancha
(PYTC) is apogamic, plants are uniform, and little variation
is observed among progeny. Moreover, it is amenable for
genetic transformation and therefore ideally suited for
genetic studies (Yang and Jie 1997).

In this paper, we report on the cloning and characteriza-
tion of a new MAPK gene from PYTC, designated as
MhMAPK. The deduced protein sequence of MhMAPK is
highly identical to the N. tabacum NtMPK4. In addition,
we have characterized the expression of MhMAPK under

some particular environmental stimuli, including polyeth-
ylene glycol (PEG) and NaCl and investigated the
subcellular localization of MhMAPK in epidermal cells of
onion transformed with an MhMAPK-GFP fusion gene
construct.

Materials and Methods

Plant Materials, Growth Condition, and Treatment

Full seeds of PYTC were selected and were surface-
sterilized by soaking them for 10 min in saturated
bleaching powder solution and then were thoroughly
rinsed with sterile-distilled water and dipped in distilled
water for one night and laminated at 4°C for about
40 days. After that, they were sown in plastic trays
(diameter 12 cm and 18 cm high) filled with substratum,
which contained peat, pearlite, and venmiculite (propor-
tion, 3:1:1). When seedlings were six to eight leaves old,
they were used for experiment. Before treatment, the
seedlings were adaptive in distilled water for 24 h, and
then displaced in treatment solution of 200 mM NaCl
and 20% PEG-6000. Roots and leaves were harvested and
placed immediately in liquid nitrogen and then stored
at −70°C until use (1–2 weeks).

RNA Isolation and Reverse Transcription

Total RNA was extracted using the cetyltrimethylammo-
nium bromide (CTAB) method (Cheng et al. 1993). Plant
materials (about 2 g) were ground in liquid nitrogen, then
suspended in 5 ml CTAB immediately, and then preheated
in water at 65°C for 5 min. Sample was extracted with the
equal volume of phenol H2O/chloroform/isoamyl alcohol
(25:24:1, V/V) and repeated twice. RNA was precipitated
overnight with one-fifth volume of 12 M LiCl at 4°C for
about 12 h, and precipitate was suspended with SSTE
buffer (contained 1 M NaCl, 0.5% sodium dodecyl sulfate
and 10 mM ethylenediaminetetraacetic acid) and then
extracted with equal volume of phenol H2O/chloroform/
isoamyl alcohol (25:24:1, V/V) again and re-precipitated
with double volumes of 100% ethanol at −70°C for 1 h, and
centrifuged at 4°C for 12,000 rpm. The precipitate was then
dissolved in ddH2O treated with diethylpyrocarbonate.
RNA was treated with RNase-free DNase I in 40 mM
Tris–HCl, pH 7.9, 10 mM NaCl, 6 mM MgCl2, and 1 mM
CaCl2 for 30 min at 37°C. This was followed by a phenol/
chloroform and chloroform extraction and a subsequent
ethanolic precipitation. Reverse transcription was per-
formed according to the TaKaRa RNA PCR Kit (AMV)
Ver. 3.0, and the harvested complementary DNA (cDNA)
was deposited at −20°C until use.
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Cloning of the Middle Region of the MhMAPK

According to other plant MAPK sequences in NCBI, we
analyzed their conservative regions by DNAman software,
and then designed a pair of degenerate primers P1,
GATCTBCAYCARATWATWCG and P2, GCYTCRT
CAACTKTRATSCG (where R is A or G, Y is C or T,
M is A or C, K is G or T, S is G or C, W is A or T, and
B is G, T, or C). Then, the primers were used to
polymerase chain reaction (PCR). The PCR reaction
system was 25 μl, which contained 10× PCR buffer
2.5 μl, 25 mM MgCl2 2.5 μl, 10 mM deoxyribonucleo-
tide triphosphates 1 μl, 10 μM P1 and P2 1 μl,
respectively, cDNA 0.45 μl, ddH2O 16.4 μl, and 3 U
Taq™ polymerase (TaKaRa). PCR reaction conditions
were as follows: pre-denaturalization at 94°C for 5 min,
denaturalization at 94°C for 45 s, annealing at 50°C for
45 s, extension at 72°C for 45 s, 35 cycles and at last
extension at 72°C for 10 min. PCR product was purified
by TaKaRa Agarose Gel DNA Purification Kit ver.2.0.
The harvested fragment was cloned in PMD18-T vector
(TaKaRa) and then sequenced (Invitrogen).

3′RACE of MhMAPK

The first-strand cDNA was synthesized according to the
manufacture’s guidelines of TaKaRa RNA PCR Kit (AMV)
Ver. 3.0 by using the oligo dT-adaptor primer provided in the
kit. Then, according to the middle region and 5′end Oligo dT
of cDNA, we designed P3, CCAAACAGGCGCATCACAG,
as specific forward primer and B26, GACTCGAGTCGA
CATCGATTTTTTTTTTTTTTTTT as reverse primer. PCR
was carried out by pre-denaturing the cDNA at 94°C for
5 min followed by 35 cycles of amplification (94°C for45 s,
55°C for 45 s, and 72°C for 45 s) and by a final extension at
72°C for 10 min. PCR product was purified by TaKaRa
Agarose Gel DNA Purification Kit ver.2.0. The harvested
fragment was cloned in PMD18-T vector (TaKaRa) and then
sequenced (Invitrogen).

5′RACE and Full-Length cDNA Cloning of MhMAPK

Poly-C was added at the 3′end of cDNA with terminal
deoxynucleotidyl transferase (TdT) and the reaction system
was as follows: cDNA 5 μg, 5× TdT buffer 10 μl, 0.1%
bovine serum albumin 5 μl, 10 mM 2′-deoxycytidine 5′-
triphosphate 2.5 μl, TdT 15 U, and then reacted at 37°C for
30 min. Sample was extracted with the equal volume of
chloroform/isoamyl alcohol (1:1, V/V) and then precipitated
with double volumes of 100% ethanol at −20°C for 2 h and
centrifuged at 4°C for 12,000 rpm. Precipitate was
dissolved in ddH2O and deposited at −20°C until use.
According to the 3′end poly-C of cDNA and middle

fragment, we designed AAP, GGCCACGCGTCGACTA
GTACGGGGGGGGGGGGGGGG as specific forward
primer, and P10, GCTGTCAACGCTGGGGCTCG TGAG
as reverse primer. PCR was performed as follows: pre-
denaturalization at 94°C for 5 min followed by 35 cycles of
amplification (94°C for 45 s, 59°C for 45 s, 72°C for 45 s)
and final extension at 72°C for 10 min. PCR product was
purified by TaKaRa Agarose Gel DNA Purification Kit
ver.2.0. The harvested fragment was cloned in PMD18-T
vector (TaKaRa) and then sequenced (Invitrogen).

By comparing and aligning the sequences of middle
region, 3′RACE, and the 5′RACE products, the full-length
cDNA sequence of MhMAPK was obtained, which then was
amplified via PCR using a pair of primers P17 (CCATG
GACTCGAGCTCTGCT) and P12 (CGAATGTGT
GAAAGGAGTCAATAGC) and then sequenced. The full-
length MhMAPK was subsequently analyzed for molecular
characterization such as the conserved motifs, sequence
homology, secondary structure, hydropathicity analysis, and
subcellular localization. The primers’ positions labeled by
the base-pair sequence are shown in Table 1.

The Preparation of GFP-MhMAPK Fusion
and its Expression

To observe the subcellular localization of MhMAPK, we
prepared MhMAPK-mGFP5 fusion constructs. The full-
length cDNA of MhMAPK was cloned over again using
the P17 as forward primer and GFP1, GCTGGATCCCTT
GAAATGGAT, as the reverse primer, which was added to a
linker (GGTTCC), which could be recognized by BamHI.
Then, the full-length cDNA was cloned in PMD18-T
vector. PMD18-T-MhMAPK and PBIN-mGFP5 were
digested with BamHI and linked digested PBIN fragment
and MhMAPK gene fragment with T4-ligase, and then, the
fusion construct of MhMAPK-mGFP5 was obtained.
MhMAPK-mGFP5 was transformed into agrobacterium
EHA105 and then infected onion inner-epidermis, followed
by observance under laser scanning confocal microscope.

Table 1 The primers’ positions labeled by the base pair sequence

Primer name Position label

P1 627–646 bp
P2 1,187–1,206 bp
P3 1,178–1,196 bp
P10 416–440 bp
P12 1,454–1,479 bp
P17 246–263 bp

Plant Mol Biol Rep (2009) 27:69–78 7171



Real-Time Fluorescent Quantitative PCR

The real-time fluorescent quantitative PCR was analyzed by
Roch LightCycler1.5. The size of amplified fragments was
89 bp, and the annealing temperature of all primers was
60°C. Sequences of primers used were MhMAPK, forward,
GGCGCATTACAGTTGATGAGG, reverse, GAAAGG

CATTGGGCAGACA; 18S, forward, AAACGGCTACCA-
CATCCA, reverse, CACCAGACTTGCCCTCCA (RaKaRa
designed). The specificity of the primers to the genes for
which they were designed was tested by using melting
curve analysis of the PCR reaction, as well as sequence
analysis of the PCR product amplified. PCR was carried out
in quartzose capillaries as the guidelines of SYBR Prime-

Fig. 1 Electrophoresis gels of
fragments of the middle region

Fig. 2 Nucleotide and derived
amino acid sequence of the
MhMAPK cloned
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Script™ RT-PCR Kit (Perfect Real Time, TaKaRa), and
the reaction system contained SYBR Premix Ex Taq (2×)
10 μl, PCR forward primer (10 μM) 0.4 μl, PCR reverse
primer (10 μM) 0.4 μl, DNA templet 2.0 μl, and ddH2O
7.2 μl. The reaction protocol was stage 1, pre-denatural-
ization at 95°C for 10s, 20°C/s, 1 cycle; stage 2, PCR
reaction, 95°C for 5 s, 20°C/s, 60°C for 20 s, 20°C/s,
40 cycles; stage 3, melting curve analysis, 95°C for 0 s,
20°C/s, 65°C for 15 s, 20°C/s, 95°C for 0 s, 0.1°C/s. After
the process, the result was analyzed by relative quantita-
tive analysis of Roch software.

Results

Cloning of the Full-Length cDNA of MhMAPK

According to the conservative region of cDNA sequences
in other plants, primers P1 and P2 were designed for the
amplification of the middle region of MAPK-like cDNA
from PYTC. A fragment about 560 bp, showing high
homology to the NtMAPK4, was obtained (Fig. 1a). Then,
based on the middle region sequence, a forward specific
primer P3 and B26 were designed for 3′RACE and a
fragment about 685 bp was obtained, in which a 3′-
untranslated region (UTR) of 492 bp was found down-
stream from the stop codon (Fig. 1b). A reverse specific
primer P10 and AAP were designed for 5′RACE, and a
fragment about 440 bp was obtained and a 5′-UTR of
248 bp was found upstream of the start codon (Fig. 1c).
According to the middle region, 3′RACE and 5′RACE
products, the full-length of the cDNAwas amplified using a
pair of primers P17 and P12 (Fig. 1d). The cloned full-
length cDNA of MAPK gene from PYTC was 1,862 bp,
which contained a 1,122-bp open reading frame encoding a
protein of 373 amino acids with a molecular weight about
42.95 kDa and a pI of about 5.65. The protein exhibited a
high homology to the NtMAPK4 of N. tabacum, and the
Gen-Bank accession number is EF427897.

Sequence Analysis of MhMAPK

The MhMAPK contains all 11 conservative sub-domains of
protein kinases with serine/threonine specificity. Between
VII and VIII sub-domains, the TEY motif, which includes
the threonine and tyrosine residues whose phosphorylation
is necessary for MAP kinase activity, is a the feature of
MAP kinase and is also conservative in the MhMAPK
protein sequence (Fig. 2). A putative polyadenylation signal
AATAAA is located at nucleotide position 1816–1821
(Fig. 2). An alignment of the predicted amino acid
sequence of MhMAPK with the cloned MAPKs from other
plants was performed by using DNAman software, and the
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Fig. 3 Partial alignment of the MhMAPK with MAPKs from other
plant species. The plant MAPKs used for alignment were ZmMAPK5
(BAA74734), ATMPK4 (NP_192046), BnMAPK4 (ABB69023),
MmMAPK (AF435805), NtMAPK4 (BAE46985), PcMAPK4
(AAN65180), StMPK4 (BAB93532), and MsMMK2 (CAA57719)
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sequence was homologous at the conservative region
(Fig. 3).

Analysis of the Predicted Protein of MhMAPK

The secondary structure of the putative MhMAPK protein
was analyzed by DNAman software, and the result showed
that the putative MhMAPK peptide contained 39.5% alpha
helix, 13% extended strand, and 47.5% random coil (Fig. 4a).
The alpha helix and random coil constituted interlaced
domination of the main part of the secondary structure.

The specifically functional sites of predicted protein
were analyzed by PROSITE (http://au.expasy.org/), and the
results showed that the region from 40 to 326 amino acids
was protein kinase domain, where the domain from 46 to
70 amino acids was protein kinases adenosine triphosphate-
binding region signature, the domain from 75 to 178 amino

acid was MAP kinase signature, and the domain from 162
to 174 amino acid was serine/threonine protein kinases
active-site signature (Fig. 4b).

Hydropathicity analysis by TMpred program showed
that MhMAPK protein was a hydrophobic protein, and
there was a strong transmembrane helix between 200 and
250 amino acids (Fig. 4c).

A phylogenetic tree based on the genetic distance of the
protein sequences was constructed by the Clustal method
using DANStar software. Based on the relationship tree of
cloned plant MAPKs, MhMAPK can be grouped into
subgroup C (Fig. 5). Comparison of the predicted protein
sequences of the MhMAPK with MAP kinases of other
plants in NCBI showed that MhMAPK was most homolo-
gous to the Malus micromalus MAPK (94%), Petroselinum
crispum MAPK4 (88%), Medicago sativa MMK2 (85%), N.
tabacum MAPK (84%), and A. thaliana MPK4(84%).

b c d 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 37394 187 280

Helices Strands Coils

P
ro

ba
bi

li
ty

Position

a 

a

b

c

Fig. 4 The secondary structure
(a), specifically functional sites
(b), and hydropathy plot (c) of
the predicted polypeptide of
MhMAPK. a The helix, strands,
and coil were indicated, respec-
tively, with black, blue, and red
lines. b a From 40 to 326 amino
acids was protein kinase
domain; b from 46 to 70 amino
acids was protein kinases ATP-
binding region signature; c from
75 to 178 amino acids was MAP
kinase signature; d from 162-
174aa was serine/threonine pro-
tein kinases active-site signa-
ture. c Amino acid residues were
numbered from left to right on
the horizontal axis, and the
vertical axis indicates the aver-
age hydropathicity. The real line
indicated that the amino acid
had a transmembrane preference
from inside to outside and the
broken line indicated that the
amino acid had a transmem-
brane preference from outside to
inside. The black arrow showed
the strong transmembrane helix.
The hydrophobic and hydro-
philic positions were plotted
above and below the ordinate,
respectively
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Intracellular Localization of MhMAPK-GFP Fusion Protein

From the above sequence analyses, MhMAPK was found
to have many common characteristics to MAPKs in other
plants, and family C members tended to share highly
similar sequences.

To determine the intracellular localization of the
MhMAPK protein, a chimeric gene comprised of the coding
regions of MhMAPK and mGFP-5 under control of a CaMV
35S promoter was made, and this construction was introduced
into onion inner-epidermal cells by using agrobacterium. In
cells where the empty GFP vector was introduced alone
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Fig. 5 The phylogenetic relationship between the PYTC MhMAPK
and other MAPKs from plant species. A phylogenetic tree based on
the genetic distance of the protein sequences was constructed by the
Clustal method using DNAStar software. The protein sequences of the
MAPKs used for construction of the tree are listed in the GenBank
database under the following accession numbers: NtMAPK4
(BAE46985), PcMAPK4 (AAN65180), MsMMK2 (CAA57719),
MmMAPK (AF435805), ATMPK4 (NP_192046), BnMAPK4
(ABB69023), AtMPK11 (Q9LMM5), ATMPK12 (NP_182131),

ZmosMAPK1 (ABD77415), StMPK3 (BAB93531), AtMPK5
(Q39025), NtNRK1 (BAB32406), MsMAPK (CAB37188),
ATMPK13 (NP_001030990), CaMAPK1 (AAF81419), SpMAPK3
(ABW34945), NtWIPK (BAA09600), AtMPK3 (NP190150),
CbMAPK3 (AAV68711), PsMAPK3 (AAF73236), AsMAPK
(CAA56314), ZmMAPK4 (BAA74733), OsBIMK1 (AAK01710),
CaMAPK2 (AAF81420), NtNtf4-1 (ABB16417), NtSIPK
(AAB58396), EeMAPK (AAF65766), AtMPK6 (NP181907),
ZmMAPK5 (BAA74734), and AtMPK10 (NP_191538)

Fig. 6 Subcellular localization of MhMAPK fused to GFP after
transient transformation of onion epidermal cells and visualized using
laser scanning confocal microscope. a Onion cell transformed with
empty GFP vector alone; b fluorescence from onion cells transformed

with MhMAPK-GFP fusion construct under 10 objective and c
fluorescence from onion cells transformed with MhMAPK–GFP
fusion construct under 20 objective
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(Fig. 6a), fluorescence was visualized throughout the cell
with no clear preference for localization. However, in cells
expressing the MhMAPK-GFP construction, fluorescence
was found to be clearly localized to the nucleus (Fig. 6b,c).
The position of the nuclei was determined under laser
scanning confocal microscope.

In addition, we also used ProtComp Version 6.1 (www.
softberry.com) to analyze the subcellular localization, and
the results showed that the integral prediction of protein
localized in nucleus (Table 2).

Expression of MhMAPK Under Different Environmental
Stress

In order to investigate MhMAPK expression pattern in
different tissues of PYTC under stress, total RNA was
isolated from leaves and roots, and subjected to real-time
fluorescent quantitative PCR analysis.

As shown in Fig. 7, MhMAPK expressed after treatment
with 200 mM NaCl for different time periods. Compared
with control, the transcripts of MhMAPK in leaves changed
little during 1 h and only went to a high level at 1.5 h after
treatment, but in roots, there was a sharp increase of the

relative level of MhMAPK mRNA at 40 min after treatment.
The results showed that the induction of MhMAPK was
earlier in roots than that in leaves.

Under the treatment of 20% PEG, the relative level of
MhMAPK mRNA in leaves increased at 40 min and
reached at the highest level at 1 h after treatment (Fig. 8).
In roots, the highest relative level of MhMAPK mRNAwas
found at 1 h (Fig. 8), but comparing two levels of mRNA in
roots and leaves, the relative level of MhMAPK mRNAwas
higher in roots than that in leaves.

Discussion

Though many MAPK genes in plants have been isolated so
far, identified MAPKs in woody plants are still little. PYTC
is one kind of special woody plant used as apple rootstock
and one kind of apogamic plant whose gene can be
transmitted stably through apomixes. The isolation and
cloning of full-length cDNA of MhMAPK from PYTC
would redound to the breeding of apple rootstock.

MAPKs are thought to play key roles in integrating
multiple intracellular signals transmitted by various sec-

Table 2 The subcellular localization of MhMAPK analyzed by ProtComp Version 6.1

Location weights LocDB PotLocDB Neural Nets Pentamers Integral

Nuclear 8,645 9,165 1.18 1.16 5.28
Plasma membrane 0 0 0.72 0 0.72
Extracellular 0 0 1.12 0.12 1.24
Cytoplasmic 6985 9185 1.06 0 3.63
Mitochondrial 0 0 0.75 0.11 0.86
Chloroplast 0 0 0.73 0 0.95
Endoplasm. retic 0 0 0.71 0.22 0.92
Peroxisomal 0 0 1.02 0.21 1.02

Significant similarity in location DB. Location: nuclear. Predicted by Neural Nets—nuclear with score 1.2. Integral prediction of protein location:
nuclear with score 5.3
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Fig. 7 The relative mRNA lev-
els of MhMAPK treated by
200 mM NaCl in PYTC leaves
and roots
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ond messengers. In tobacco, salinity stress could activate
a 42-kDa MAP kinase (Mikolajczyk et al. 2000), and a
MAP kinase, AtMPK3, in A. thaliana also could be
activated by the drought and high salinity (Liu et al.
1998). It has become clear that MAPK-signaling pathways
are involved in plant resistance (Cheong et al. 2003; Zhang et
al. 2006). In our results, MhMAPK mRNA could be induced
by drought (PEG-6000) and high salt (NaCl) in leaves and
roots (Figs. 7 and 8). These results suggested that MhMAPK
also could be regulated at mRNA level not only at protein
phosphorylation level by drought (PEG-6000) and high salt
(NaCl) in woody plant. And MAPK might function in signal
transduction pathways under dehydration and salt stress
conditions wherever in roots and leaves of PYTC.

Besides, the analysis of predicted polypeptide showed that
there was a transmembrane structure at the C-end of
MhMAPK (Fig. 4c). This was analogous with the mitogen-
activated protein kinase ERK2 in mammals. In mammals,
the T-loop conformation of phosphorylated ERK2 changed,
then the ERK2 combined with the transmembrane structure
called L16 of the C-end of another ERK2 and the formed
homologous dimer had an ability of going into nucleus
(Dong et al. 2005). This implied that MhMAPK might
localize in nucleus at last, and this deduction was accordant
with our results of MhMAPK-GFP fusion localization
(Fig. 6). MAPKs can regulate the expression of many genes
through the phosphorylation of transcription factors. In A.
thaliana, the first integral MAPK cascade AtMEKK1-
AtMEK4/5-AtMPK3/6 could activate the transcription factor
AtWRKY22/29 and start up the expression of some
defensive genes (Asai et al. 2002); analogously in O. sativa,
a MAP kinase OsBWMK1 could interact with a analogous
transcription factor OsEREBP1 and regulate the expression
of defensive genes and arouse responses to pathogeny
(Cheong et al. 2003). As a result, MhMAPK might also
play a role in nucleus via phosphorylation of the transcrip-
tion factors and sequentially regulate some resistance genes
expression.

In general, plants respond to the external stress by the
receptor in the membrane, and the receptor can be a receptor-
like protein kinase, which then transferred the external signals
by interacting with other proteins. A receptor-like protein
kinase, RPK1, identified in A. thaliana, could receive the
signals about drought, high salinity, and low temperature
(Hong et al. 1997) and could phosphorylate a MAPK
cascade AtMEKK1-MEK1-AtMPK4, which also transmitted
the signals of drought, high salinity, and low temperature
(Mizoguchi et al. 1998). Then, the phosphorylated MAPK
could interact with some transcription factors, such as
WRKY, and phosphorylated WRKY could combine the W-
box [(T) (T) TGAC (C/T)] of numerous defense genes and
brought various physiological and biochemical responses.
WRKY transcription factors phosphorylated by SIPK/WIPK
and WRKY1 by SIPK (Kim and Zhang 2004; Menke et al.
2005), NtWIF transcription factor phosphorylated by WIPK
in tobacco (Yap et al. 2005; Waller et al. 2006), and
senescence-related WRKY53 transcription factor directly
phosphorylated by Arabidopsis MEKK1 (Miao et al. 2007)
could all result in regulating the expression of many defense
genes.

Drought and high salinity could change the metabolism
conditions of cells directly, but before these changes
happened, drought and salinity signals must be recognized
and transmitted by protein kinases in membrane or
cytoplasm. Our results showed that the MhMAPK local-
ized in nucleus (Fig. 6). This implied that, when the PYTC
encountered the drought or high-salinity stress, these
signals might be transmitted by phosphorylating
MhMAPK in cytoplasm, and then the phosphorylatd
MhMAPK goes to the nucleus to regulate some defensive
genes expression by phosphorylating the transcript factors;
on the other hand, drought or high salinity stress might
activate the MhMAPK by some ways in nucleus directly
and then cells could respond to them more quickly.
However, it still needs further researches whether in
cytoplasm or in nucleus.
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