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Abstract 
Background and aims  Litter decomposition is 
essential for the global carbon cycle, which is affected 
by environmental factors. In the context of global 
warming and increasing nitrogen deposition, the 
responses of litter decomposition are unclear in sub-
tropical forests.
Methods  Here, we carried out an interaction experi-
ment of warming (3.3  °C) and nitrogen addition 
(50 kg ha−1 yr−1) and a recovery experiment (remove 
warming and nitrogen addition treatments) in a sub-
tropical evergreen broad-leaved forest for four years 
in total.
Results  The results showed that during the treat-
ment period, warming, nitrogen addition, and their 
combination significantly decreased litter decom-
position according to the k values by 35.8%, 23.0%, 
and 42.2%, respectively. However, there was no 

significant interaction effect between warming and 
nitrogen addition. Litter decomposition rates quickly 
returned to the same level during the two-year recov-
ery period. Variance partitioning analysis (VPA) 
and covariance analysis (ANCOVA) simultaneously 
confirmed that warming and nitrogen addition sig-
nificantly affected litter decomposition. VPA and 
ANCOVA also showed that soil temperature and 
water content significantly contributed to the decom-
position rate during the treatment period.
Conclusions  This study suggests that warming and 
nitrogen addition significantly inhibit litter decompo-
sition, but this effect is not sustainable.

Keywords  Leaf litter · Climate warming · 
Nitrogen addition · Soil physical properties · Initial 
decomposition degree

Introduction

Litter decomposition is essential in the global car-
bon cycle (Daan et  al. 2018). Current studies sug-
gest that litter decomposition mainly by microorgan-
isms, being influenced by climate, litter quality, soil 
environmental factors, and the initial priming effect 
(Ge et  al. 2013; Liu et  al. 2023). Climate warming 
and increasing nitrogen deposition are important 
contributors to global climate change (De Frenne 
et al. 2021; Liu et al. 2011). Therefore, an increas-
ing number of studies have focused on the effects 
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of warming and nitrogen addition on litter decom-
position (Henry and Moise. 2015; Ma et  al. 2011). 
However, the effects of warming, nitrogen deposi-
tion, and their interaction on litter decomposition 
in subtropical mountain forests are not clear (Gong 
et al. 2015).

Previous studies have shown that the effect of 
warming on the litter decomposition rate may be eas-
ily affected by water conditions in the environment 
(Butenschoen et  al. 2011; Gorecki et  al. 2021). A 
certain degree of warming can increase the activity 
of microorganisms, thereby promoting litter decom-
position (Aerts 2006). However, the decrease in soil 
water content caused by warming inhibits micro-
bial activity, which limits litter decomposition (Lee 
et  al. 2014). Some studies have reported that warm-
ing tends to inhibit litter decomposition in grassland 
ecosystems (Chuckran et al. 2020; Penner and Frank 
2018). Previous studies have confirmed that in some 
ecosystems with adequate water conditions, such as 
rivers and wetlands, warming usually promotes lit-
ter decomposition (Ferreira  and  Canhoto  2014; Gao 
et  al. 2022; Migliorini and Romero 2020). In forest 
ecosystems, some studies have reported that warm-
ing promotes litter decomposition (Liu et  al. 2015; 
Liu et  al. 2017), while others have reported a nega-
tive effect (Li et al. 2022; Liu et al. 2022a). Therefore, 
the effects of warming might be closely linked to the 
intricate hydrological processes within mountain for-
est ecosystems (Brigham et al. 2018).

Similar to the effect of warming on decomposi-
tion, the response of litter decomposition to exter-
nal nitrogen addition has not been fully elucidated 
(Zhang et al. 2018). Previous studies have shown that 
nitrogen addition may promote litter decomposition 
(Song et  al. 2018; Zhang et  al. 2019), inhibit litter 
decomposition (Peng et al. 2022; Zhang et al. 2022), 
or have no effect (Růžek et al. 2021). It is speculated 
that the different effects of nitrogen addition on lit-
ter decomposition may be closely related to the local 
atmospheric nitrogen deposition level, litter quality, 
and amount and form of added nitrogen (Knorr et al. 
2005; Schulte-Uebbing and de Vries 2018). Besides, 
the nitrogen added may also lead to changes in soil 
water content by influencing the water absorption 
efficiency of dominant plant roots, thus indirectly 
influencing litter decomposition (Henriksson et  al. 
2021). Therefore, the effects of warming and nitro-
gen addition on the litter decomposition rate may be 

affected by various factors and are highly uncertain 
(Zou et al. 2022). Current research on forest ecosys-
tems has focused on the impact of individual fac-
tors on litter decomposition (Li et al. 2022; Wu et al. 
2019; Xia and Wan, 2013). The interaction between 
warming and nitrogen addition on litter decomposi-
tion is rarely involved (Henry and Moise 2015; Moise 
and Henry 2014).

Subtropical forests play an essential role in the 
global terrestrial ecosystem carbon cycle and contain 
a wide range and a large amount of litter (Tan et al. 
2011; Wu et al. 2014). Currently, subtropical forests 
in southwestern China suffer from climate warming 
and high nitrogen deposition (Huang et  al. 2015; Li 
et al. 2018; Tian et al. 2018;). However, few studies 
have explored the response of litter decomposition 
to warming and nitrogen addition in similar regions 
(Zhang et  al. 2017). Therefore, we hypothesized 
that 1) warming and nitrogen addition promote litter 
decomposition and that there is a significant posi-
tive interaction, and 2) warming and nitrogen addi-
tion have sustained effects on litter decomposition 
after warming and nitrogen addition treatments are 
stopped. Here, we conducted a comprehensive experi-
ment that involved the application of warming and 
nitrogen addition treatments. Additionally, we per-
formed a subsequent recovery experiment where all 
treatments were discontinued. The primary objective 
of these experiments was to test our hypotheses and 
gain a deeper understanding of the effects of these 
treatments on litter decomposition within the subtrop-
ical forest ecosystem.

Materials and methods

Study site description

This study was conducted at the Ailaoshan Station 
for Subtropical Forest Ecosystem Studies (24°32’N, 
101°01′E; 2480 m above sea level), which is located 
in Jingdong County, Yunnan Province. It is an old-
growth subtropical evergreen broad-leaved forest with 
a stand age > 300 years (Tan et al. 2011), and a tree 
density of 2728 ha−1 (Lu et al. 2021). It is character-
ized by a subtropical mountain climate with an annual 
average temperature of 11.3 °C and annual precipita-
tion of 1778 mm (Wu et al. 2014). There is a distinct 
annual rainy season from May to October. The soil 
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nitrogen content is 6.53 ± 0.83 g kg−1 (Lu et al. 2017). 
The local background value of nitrogen deposition is 
10.5 kg N  ha−1  yr−1 (Shi et  al. 2017). The soils are 
Alfsols, which is acidic (pH < 5) (Chan et  al. 2006). 
The main tree species of the forest are Machilus gam-
blei, Castanopsis wattii, and Hartia sinensis. The for-
est litterfall is 864 g m−2 year−1 (Wu et al. 2014).

Experimental design and setup

In this study, we selected 12 subplots (1 × 1 m) in a 
30 × 40  m experimental plot. We conducted two-
factor experiments with two levels: control (CK), 
warming (W), nitrogen addition (N), and warming 
combined with nitrogen addition (WN). Each treat-
ment had three replications and included treatment 
and recovery periods. For warming, we utilized three 
90  cm lamps (with a lampshade length of 100  cm), 
each with a power of 200  W. These lamps were 
arranged in a triangle formation, positioned 1.2  m 
above the soil surface, and continuously powered for 
heating. The lamps were angled at 30o to the ground 
to optimize heat gathering. We added ammonium 
nitrate (NH4NO3) solution at 50  kg  N  ha−1  yr−1 for 
the nitrogen treatments, which were divided into 
12 months per year. Therefore, we weighed 1.19 g of 
NH4NO3, dissolved it in 500  ml of ultrapure water, 
and carried out monthly even spraying onto both litter 
and soil in the subplots. We also spread the same vol-
ume of ultrapure water on the subplots without nitro-
gen addition.

Fresh foliage litter samples were collected from 
several locations within the subtropical forest using 
1 × 1 m nylon nets hanging 1 m above the ground dur-
ing the dry season from October to December 2017 
(Wu et al. 2022). To avoid the impact of differences 
in the initial litter water content on the assessment 
of litter decomposition rates, we first air-dried and 
then oven-dried the leaf litter (60  °C for 72  hours). 
Twelve litter bags (2  mm mesh, 10 × 15  cm in size) 
were prepared for each subplot. To facilitate optimal 
contact between the litter bag and the soil, we care-
fully removed the visible litter before the commence-
ment of the experiment. Then, we placed the decom-
position bags on the soil surface, with each bag 10 cm 
apart from each other. The decomposed litter sam-
ples were collected three times per year. The mass of 
each sample was measured before the decomposition 
experiment began, and the initial mass (Mi) of litter 

samples was approximately 4  g. Litter decomposi-
tion during the treatment period was terminated on 
December 31, 2019.

The recovery experiment started on March 31, 
2021, and also lasted for two years. Fresh litter leaves 
were collected from early January to mid-March 2021 
using the same method employed during the treat-
ment period. Here, we prepared 6 litter bags (2 mm 
mesh, size 15 × 30 cm) for each subplot with an initial 
mass of approximately 14 g (to ensure consistent cov-
erage of the designated area throughout the treatment 
period, Fig. 1) for the recovery period.

Data collection and analysis

As mentioned above, we collected litter bags every 
four months for two years for a total of 12 times dur-
ing the treatment and recovery periods. After each 
collection of litter collection, we cleaned, washed, 
air-dried, and subsequently dried them at 60  °C for 
72 hours (Liu et al. 2023; Wu et al. 2022). The litter 
dry weight (Mf) was then weighed and recorded using 
an electronic analytical balance (accuracy 0.01 g).

We calculated the decomposition coefficient (k 
value) during the study period using the following 
decay model (Olson 1963):

where RR is the residual rate and t (yr) is the corre-
sponding decomposition time.

We used four months as a stage, so the 24 months 
divided the litter decomposition period into six stages 
and the decomposition rate (SDR, %/month) of each 
stage was calculated.

where s is the stage number from 1 to 6, and Tstage is 
the stage time (yr).

We utilized an automated digital thermometer 
(6310; Spectrum, Illinois, USA) and time domain 
reflectometry (MP-KIT; Beijing Channel, Beijing, 
China) to manually assess the soil temperature (Ts) 
and water content (Ws) of each plot from January 
2017 to March 2023. To minimize the impact of 

(1)RR =
Mf

Mi

(2)RR = e−kt

(3)SDRs =
RRs−1 − RRs

RRs−1

÷ Tstage ÷ 12 × 100%
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spatial heterogeneity on soil temperature and water 
content measurements, we randomly selected three 
points within the inner edge of the leaf litter bag for 
measurement. The measurements were conducted 
three times a month (every 10 days) at a 5-cm depth 
from the surface of the exposed soil (Fig.  1). We 
divided them into three periods: before treatment 
(2017.01–2017.12, background of each subplot), dur-
ing the treatment period (2018.01–2019.12, treatment 
effect), and the recovery period (2021.04–2023.03). 
The averages of each period were used to test the 
treatment effect, taking the before-treatment period 
as the background value and calculating the ratio 
value of the treatment and recovery periods. We also 
divided the soil temperature and water content into 
six stages (SST and SSW) corresponding to the SDR 
in the treatment and recovery periods.

One-way ANOVA and Duncan’s test were used to 
test the differences in each period’s soil temperature, 
water content, ratio values, and k values among treat-
ments. Two-way ANCOVA was used to test each peri-
od’s k value and SDR difference. The warming and 
nitrogen addition treatments were the fixed factors, 
and soil water content was the covariate for k values. 
SST, SSW, and initial decomposition degree (IDD) 
were the covariates for the SDR. All the data passed 
the normality and homoscedasticity tests. The effects 
of warming, nitrogen addition, IDD, SST, and SSW 
on the SDR were analyzed by variance partitioning 

analysis (VPA). The variance inflation factor (VIF) 
test was conducted, and all VIF values were less than 
4. All the statistical charts were generated using R 
software (version 4.3.0) and R Studio with the readxl, 
ggplot2, lubricate, ggpubr, car, gtsummary, agricolae, 
and ggbeeswarm packages.

Results

Effects on soil microenvironmental factors

Warming and nitrogen addition did not change the 
seasonal variation in soil temperature and water con-
tent in this study (Fig.  2). There was no significant 
difference in temperature between all plots before and 
after treatment (Fig. 3a). Soil temperature had no sig-
nificant difference among each plot before treatment, 
only in the treatment period, was the temperature of 
the warming group and the warming and nitrogen 
addition group significantly higher than that of the 
non-warming group, with a temperature increase of 
3.3 °C (Fig. 3a, b). In contrast to soil temperature, the 
soil water content had high heterogeneity before treat-
ment (Fig.  3a, c). Considering the heterogeneity of 
the initial water content, the soil water content in the 
treatment stage and recovery stage of the sample plot 
was compared with soil water content before treat-
ment to show its change (Fig. 3d). The results showed 

Fig. 1   Picture of the warming device (a), schematic diagram of litter bag positions, and soil temperature (Ts) and water content 
(Ws) measurement positions during the treatment period (b) and recovery period (c)
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that during treatment period, the soil water content in 
the W and WN plots was significantly lower than that 
in the CK and N addition plots (Fig. 3d). In general, 
the soil temperature returned to the same level in all 
plots after removal of warming and nitrogen addi-
tion treatments (recovery period). Meanwhile, the 
soil water content in the other plots also recovered to 
similar levels except for that in the warming treatment 
plots.

Effects of warming and nitrogen addition on litter 
decomposition

In the treatment period, the differences in the lit-
ter residual rate increased with decomposition time 
(Fig.  4a). One-way ANOVA showed that all treat-
ments (N, W, WN) significantly affected the litter 
decomposition rate in terms of k value and SDR in the 
treatment period, and the k values of CK, N, W, and 
WN were 0.422 ± 0.008, 0.325 ± 0.046, 0.271 ± 0.032 
and 0.244 ± 0.039 (mean ± SD), and the mean values 
of SDR were 3.20 ± 0.12, 2.33 ± 0.28, 2.16 ± 0.45, 
and 1.85 ± 0.30%/month (mean ± SD), respectively. 
The N, W, and WN treatments reduced the k values 
by 23.0%, 35.8%, and 42.2%, and reduced the SDR 
by 27.2%, 32.5%, and 42.2%, respectively (Fig.  4b, 
d). In the recovery period, there was no significant 

difference in k values and SDR between treatments 
(Fig. 4b, d). Two-way ANCOVA showed that warm-
ing and nitrogen addition had significant effects 
on the k values and mean SDR without consider-
able interactions, and the covariate had no significant 
effect (Table 1). Further analysis also showed no dif-
ference after the warming and nitrogen addition treat-
ments were terminated (Table 1), suggesting that the 
effects of warming and nitrogen addition on litter 
decomposition were not persistent.

Factors affecting litter decomposition

To explore the factors affecting litter decomposition, 
we used the litter mean SDR, IDD, and correspond-
ing soil environmental factors for further analysis 
(Figs.  4c and 5). Two-way ANCOVA showed that 
the SDR significantly differed due to warming and 
nitrogen addition, and was affected by SST and SSW 
(Table  2). Nevertheless, only SST, SSW, and IDD 
in the recovery period greatly influenced the SDR 
(Table 2), suggesting that the effect of the treatments 
disappeared.

VPA showed that SST, warming, and SSW signifi-
cantly contributed to the SDR by 36.7%, 25.3%, and 
24.5%, respectively, during the treatment period, IDD 

Fig. 2   Mean soil tempera-
ture (Ts) and water content 
(Ws) at 5 cm depth in the 
environmental plots of 
the control (CK), nitrogen 
addition (N), warming (W) 
and warming and nitrogen 
(WN) treatments from Janu-
ary 2017 to January 2023
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and nitrogen addition contributed 8.3% and 5.2%, 
respectively (Fig.  6a). During the recovery period, 
IDD significantly contributed to 60.4% of the SDR; 
SST and SSW contributed 20.9% and 7.1%, respec-
tively, but these differences were not significant 
(Fig. 6b).

Discussion

Temperature is a critical factor affecting litter decom-
position (Liu et al. 2023; Wu et al. 2022). In general, 
modest warming promotes the activity of microorgan-
isms to some extent, thereby promoting litter decom-
position (Liu et al. 2015). Previous research reported 

that an increase in soil temperature by 1.84 °C signifi-
cantly promoted litter decomposition by 10.3% (Gao 
et  al. 2022). Other studies also found similar results 
(Ferreira and Canhoto 2014; Migliorini and Romero 
2020). However, the results of this study showed that 
the litter decomposition rate decreased significantly 
when the temperature increased by 3.3  °C (Fig.  3c, 
d), similar to previous studies (Li et  al. 2022; Liu 
et al., 2022a; Penner and Frank 2018). We speculate 
that this difference may be related to the decrease in 
soil water content caused by warming. In this study, 
the soil water content under warming treatment 
decreased by 18.2%, which was consistent with earlier 
studies in forest ecosystems (Li et al. 2022; Liu et al. 
2015, 2017). The decreasing soil water content may 

Fig. 3   Average soil temperature and water content in different 
treatment plots at different periods (before treatment, treatment 
period, recovery period) (a, c), and ratio of soil temperature 
and water content (soil temperature and water content data 

from the treatment and recovery periods were compared with 
those in the same plots before treatment to indicate the change 
in soil environmental factors) (b, d)
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significantly inhibit the activity of microorganisms 
and soil fauna, thus inhibiting decomposition (Buten-
schoen et al. 2011; González and Seastedt 2001; Liu 
et al. 2022b). Meanwhile, the dry heat stress caused 
by warming may also indirectly inhibit litter decom-
position by inhibiting the quantity and activity of soil 

fauna (Barajas-Guzmán and Alvarez-Sánchez 2003; 
Collison et  al. 2013). VPA showed that soil temper-
ature and water content were positively correlated 
with the litter decomposition rate. In contrast, the 
warming treatment was significantly negatively cor-
related with the litter decomposition rate (Fig.  6a). 

Fig. 4   Litter residue rate (a), and K value (b) in the treatment and recovery periods. Stage decomposition rate (SDR) (c) and mean 
SDR in the treatment and recovery periods (d)

Table 1   Covariance 
analysis of nitrogen, 
warming, their interactions, 
and soil water content on 
litter decomposition rate 
(K values) and litter stage 
decomposition rate (SDR) 
during treatment and 
recovery periods

Factor K values SDR

Treatment period Recovery period Treatment period Recovery period

F value P F value P F value P F value P

N 8.9475 0.0202 0.1198 0.7394 10.5322 0.0141 0.2468 0.6345
Warming 31.3716 0.0008 1.0645 0.3365 17.8359 0.0039 0.6014 0.4634
N × Warming 2.9987 0.1269 0.4867 0.5079 2.6315 0.1488 0.8996 0.3745
Ws 0.0621 0.8103 1.2334 0.3034 0.5012 0.5018 0.6553 0.4449
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This further indicated that the inhibitory effect of a 
decrease in soil water content on litter decomposition 
may be much greater than the promoting effect of soil 
warming. Therefore, the impact of warming on litter 

decomposition in forest ecosystems depends on the 
combined effects of warming and the adverse effects 
of changes in soil water conditions caused by warm-
ing (Canessa et al. 2020; Ferreira and Canhoto 2014).

Previous studies suggested that nitrogen addition 
could improve litter quality (with a lower C/N ratio), 
thereby promoting litter decomposition to a certain 
extent (Jiang et al. 2014; Tian et al. 2018). However, 
similar conclusions were not reached in our study. In 
agreement with other authors, this difference may be 
closely related to the concentration of nitrogen added 
(Tu et al. 2014; Zhang et al. 2016). Previous studies 
have shown that a low concentration of nitrogen addi-
tion promotes litter decomposition, while a high con-
centration inhibits litter decomposition (Knorr et  al. 
2005). In this study, the nitrogen concentration was 
50 kg ha−1 yr−1, which is approximately 3 to 4 times 
the local atmospheric nitrogen deposition (Liu et  al. 

Fig. 5   Initial decomposition degree (IDD, %), soil temperature (SST, °C) and soil water content (SSW) at each stage (4 months) of 
the treatment and recovery periods

Table 2   Covariance analysis of nitrogen, warming, their inter-
actions, SST, SSW and IDD on litter stage decomposition rate 
(SDR, %) during treatment and recovery periods

Effect Treatment period Recovery period

F value P F value P

N 5.62 0.02 0.21 0.65
Warming 9.51 0.01 0.51 0.48
N × Warming 1.63 0.21 1.22 0.27
SST 34.93 <0.001 56.91 <0.001
SSW 15.77 <0.001 25.50 <0.001
IDD 2.64 0.11 28.24 <0.001
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2002). Previous studies have shown that continuous 
high concentrations of nitrogen addition might alter 
microbial community composition and function (Wu 
et al. 2019), inhibit the activity of catabolic enzymes 
(Jiang et al. 2014), and reduce N dependence from lit-
ter, thereby inhibiting litter decomposition. Further-
more, the addition of high nitrogen concentrations 
may also result in a decline in soil arthropod group 
richness and individual abundance, thereby inhibiting 
litter decomposition (Tie et al. 2021).

In this study, warming and nitrogen addition sig-
nificantly inhibited litter decomposition (Fig. 4b, d). 
However, there was no significant interaction effect 
between warming and nitrogen addition (Table  1), 
which differs from previous research conclusions 
in grassland ecosystems and wetlands (Ma et  al. 
2011; Tao et  al. 2019). It is suggested that this may 
be related to the decreased soil water content caused 
by the warming treatment (Chuckran et  al. 2020). 
Under low soil water content, the litter decomposi-
tion rate was significantly inhibited and the inhibitory 
effect of nitrogen addition was weakened (Fig. 3c, d), 
agreeing with the previous study’s result (Yan et  al. 

2018). Therefore, the inhibition effect of WN on litter 
decomposition did not show a noticeable amplifica-
tion effect compared to warming and nitrogen addi-
tion alone. In addition, it was observed that the soil 
water content of the initial WN plot was also rela-
tively lower than that of the other treatment groups 
(Fig. 3c), which may further weaken the interaction. 
Therefore, soil water content variation may influence 
the interaction effect of warming and nitrogen addi-
tion on litter decomposition.

The experimental results during the recovery period 
of this study showed that the decomposition rate of 
the litter rapidly recovered to the level of the control. 
Meanwhile, soil environmental factors recovered well 
after the warming and nitrogen addition treatments 
were removed (Fig. 4a, c), suggesting no lasting effect 
of warming and nitrogen addition. The IDD deter-
mined the decomposition dynamics of litter during 
the recovery period, which masked the contribution of 
SST and SSW to litter decomposition, which may be 
related to the regulation of the litter decomposition rate 
by initial soil environmental factors (Liu et al. 2023). 
In this study, the beginning of the treatment period was 

Fig. 6   The proportion of influencing factors (warming, N adding, IDD, SSW and SST) on litter decomposition rate in treatment and 
recovery stages (P values are expressed as an asterisk: ***P ≤ 0.001, ** P < 0.01, * P < 0.05, # P < 0.1)
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January, while the beginning of the recovery period 
was April (Fig. 4a), and the decomposition rate of the 
first decomposition stage was significantly higher in 
the recovery period than in the treatment period, simi-
lar to our previous study (Liu et al. 2023), which also 
changed the earlier IDD and thus the whole decom-
position stage. Most importantly, the recovery period 
results confirmed the treatment effects of warming and 
nitrogen addition during the treatment period.

Conclusions

In summary, warming and nitrogen addition inhibited 
litter decomposition rate in the subtropical forests, with-
out a significant negative interaction. Variance partition-
ing analysis (VPA) showed that soil temperature (SST) 
and soil water content (SSW) had positive effects on the 
decomposition rate (SDR), and the contribution rate of 
SST was greater than that of SSW. The recovery experi-
ment showed the effect of all treatments disappeared, 
confirming the effects of the treatments during the treat-
ment period. This study is a further step toward better 
understanding the role of high N deposition levels on lit-
ter decomposition under climate warming scenarios.
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