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Abstract  Intercropping is of interest to farmers and 
researchers because of the increase in productivity 
observed in these systems. Beneficial soil microor-
ganisms present in the microbiome could play a role 
in increased crop yields as they improve plant growth, 
provide protection from soilborne pathogens, and 
aid with drought stress. Therefore, research has been 
done to determine if these advantages are observed in 
intercropping systems and how it impacts the makeup 
and function of the soil microbiome. This review cov-
ers current findings on how the soil microbiome is 
impacted by intercropping regarding its roles in nutri-
ent availability, plant stress responses, and if the soil 
microbiome can be altered to further improve plant 
success.

Keywords  Intercropping · Microbiome · 
Agroecology · Arbuscular mycorrhizal fungi · Plant 
growth-promoting microorganisms · Interactions

Introduction

Intercropping, the practice of growing two or more 
crops together, has been of increasing interest to 

farmers due to improvements in yield and resource 
use efficiency (Dowling et  al. 2021). The research 
focus of various intercropping systems is on evaluat-
ing land equivalent ratio (LER) with an emphasis on 
productivity (Dowling et al. 2021; Fletcher et al. 2015, 
2016). Typically, the LER is greater than 1, showing 
there was an overall yield increase in the intercrop-
ping system compared to monoculture (Duchene et al. 
2017; Fletcher et al. 2015, 2016). A meta-analysis on 
intercropping showed that it increased crop yield by 
8.9% compared to monoculture (Chen et  al. 2023). 
Microorganisms present in the soil microbiome could 
be responsible for this increased productivity, with 
the soil microbiome being defined as all microor-
ganisms present in this environment and their genes. 
However, most studies demonstrating benefits from 
soil microorganisms have been limited to monocul-
ture systems.

In monoculture, plant growth-promoting rhizobac-
teria (PGPR) and fungi benefit plants by improving 
availability of essential plant nutrients (N and P), and 
mitigating abiotic and biotic stressors such as drought, 
soil pollution, and pathogens (Ayangbenro and 
Babalola 2021; Bittencourt et  al. 2023; Chepsergon 
and Moleleki 2023; Gorka et al. 2019). These functions 
can improve plant growth in addition to producing 
plant growth regulators and inducing plant hormones 
(Fig. 1A; Abdelaal et al. 2021; Bittencourt et al. 2023; 
Wasternack 2014). Protection from abiotic and biotic 
stressors is caused by the secretion of exopolysaccha-
rides by PGPR in addition to the regulation of soil 
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enzyme activity (Fig.  1A; Bittencourt et  al. 2023; Ju 
et al. 2020; Morcillo and Manzanera 2021). These ben-
efits likely exist in polyculture, but the degree to which 
they do is still being investigated. There is some evi-
dence that microorganisms are important to the success 
of intercrops. In the pea-canola system, LER is highest 
under minimal N fertilizer and fungicide usage (Dowl-
ing et al. 2021). Literature reviewed by Dettweiler et al. 
(2023) found similar detrimental impacts of fertilizer 
application in casava-legume intercropping systems. 
This suggests that beneficial microorganisms could be 
responsible for increased productivity since fungicides 
kill beneficial fungi, and N and P inputs downregulate 
relationships with rhizobia and arbuscular mycorrhizal 
fungi (AMF) (Qin et  al. 2015, 2019; Verzeaux et  al. 
2017). Resource use efficiency by plants in intercrops 
may also be improved due to shifts in microbial diver-
sity and abundance (Fig. 1B; Duchene et al. 2017).

Furthering our understanding of how the soil 
microbiome contributes to intercropping success will 
allow us to promote beneficial changes to the micro-
biome (Duchene et  al. 2017). This will have further 
impacts since decreasing synthetic inputs will improve 
the sustainability of agricultural practices as they have 
negative environmental impacts such as eutrophication 
of aquatic ecosystems and soil acidification (Sharma 
et  al. 2022). Decreased necessity for these synthetic 
inputs partnered with increased land productivity also 

leads to larger profit margins for producers (Dowling 
et al. 2021). This could improve producer wellbeing as 
socioeconomic pressures negatively impact their men-
tal health, especially with the challenges of climate 
change (Daghagh Yazd et al. 2020).

This mini-review explores our current understand-
ing of the role the soil microbiome plays in inter-
cropping success of legume non-legume systems. 
We focus on how the soil microbiome (1) changes 
between monoculture and intercropped systems; 
(2) improves nutrient availability in intercropped 
systems; (3) contributes to improved plant stress 
responses in intercropped systems; and (4) could be 
altered to improve plant success.

Does the microbiome change significantly 
between monoculture and intercropping systems?

In various intercropping systems, fungal and bacte-
rial communities have been characterized to address 
how intercropping changes the microbiome. Overall, 
bacterial community composition was impacted by 
intercropping with bacteria found to be important to 
the decomposition of organic matter, N fixation, deni-
trification, plant growth promotion, or metal detoxi-
fication being enriched (Table  1). Fungal communi-
ties were measured less often and were generally 

Fig. 1   A  Plant-microbe interactions help facilitate growth 
increases in plants and improve responses and protection from 
biotic and abiotic stressors. B Shifts in the microbiome under 

intercropping may lead to increased nutrient availability and 
stress tolerance due to reductions in pathogens from competi-
tion and resource sharing via mycorrhizal networks
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found to have higher diversity and greater changes 
to community composition in intercropping systems, 
with enriched fungi being saprotrophic, mycorrhizal, 
or biocontrol (Table  1). However, pathogens were 
enriched in some intercropping systems (Table  1). 
Meta-analyses have also confirmed the positive corre-
lation between intercropping and bacterial and fungal 
abundance as measured by phospholipid fatty acids 
(Morugán-Coronado et al. 2022).

Changes observed in microbial communities in 
intercropping systems are correlated with changes 
in soil physicochemical properties such as pH, nutri-
ent content, and enzyme activity (Chen et al. 2023; 
Madsen et  al. 2022; Malviya et  al. 2021). These 
changes provide a benefit to crops following their 
planting known as the plant-soil feedback effect 
(Wang et  al. 2020). Therefore, plants in soils that 
have a history of intercropping can call on a more 
robust microbiome that can aid in stress responses 
and plant nutritional needs (Bakker et al. 2018).

Does the microbiome improve nutrient availability 
in intercropped systems?

Intercropping has been observed to increase soil 
available C and N in addition to C and N in the micro-
bial biomass (Chen et al. 2023). It is known that inter-
cropping increases the abundance of plant growth 
promoting-bacteria (PGPB) which impacts soil nutri-
ent content due to their involvement in N fixation, 
nutrient uptake, plant hormone production, and the 
regulation of soil enzymes (Table 2; Bittencourt et al. 
2023; Malviya et  al. 2021; Solanki et  al. 2020). A 
meta-analysis confirmed the positive impacts of inter-
cropping on N-targeting enzymes N-acetyl-glucosa-
minidase, protease, and urease (Chen et  al. 2023). 
The abundance of saprotrophic and mycorrhizal fungi 
also increases under intercropping, further enhancing 
the release and uptake of plant nutrients (Mwakilili 
et  al. 2021; Malviya et  al. 2021; Wang et  al. 2020; 
Yang et  al. 2022a). The microbiome is thus often 
credited for improved nutrient availability in inter-
crops, contributing to overyielding. Intercrops often 
have increased nutrient uptake of N and Fe, leading 
to improved crop nutritional quality (Dai et al. 2019; 
Sun et al. 2022a).

Studies manipulating the microbiome have been 
done to determine their role in nutrient uptake and 

availability in intercropping systems. Qiao et  al. 
(2022) manipulated the microbiome and P availabil-
ity and found that overyielding in relation to P avail-
ability was only observed in unsterilized conditions, 
with the best yields observed in low P environments. 
They also found that less diverse microbial communi-
ties resulted in improved wheat growth and P uptake 
compared to more complex microbial communi-
ties. This could be due to the enrichment of specific 
microorganisms that thrive in low P environments, 
as these microorganisms tend to contain genes which 
are important to P-cycling encoding carbon-phospho-
rus lyase, phosphonotase degradation pathways, and 
membrane-bound quinoprotein glucose dehydroge-
nase encoded by gcd (Oliverio et al. 2020; Wu et al. 
2022). Further research found that the abundance 
of the microbial gene ppa, which encodes inorganic 
pyrophosphatase that hydrolyses inorganic P into 
P, and bacteria harboring this gene were increased 
by intercropping with a legume and AMF inocula-
tion (Liao et  al. 2023). Therefore, it is possible that 
intercropping creates an environment where P-cycling 
bacteria thrive improving the availability of P and 
contributing to overyielding.

Evidence for N transfer from a legume to non-leg-
ume in intercropping systems has been observed in a 
barley-pea intercropping system, with 11.1% of N sym-
biotically fixed by pea being transferred to barley in a 
1:1 planting system (Chapagain and Riseman 2014). 
This could occur through direct transfer facilitated by 
mycorrhizal networks, indirect transfer through root 
exudates and the decomposition of legume roots and 
nodules, and indirect transfer from increased N mineral-
ization by mycorrhizae (Fig. 2; Homulle et al. 2022). To 
determine if N is being transferred directly between the 
legume and non-legume in intercropping systems, iso-
topically labeled N (15N) is used and is either provided 
to the legume or the 15N natural abundance method is 
used in the field (Homulle et al. 2022; Isaac et al. 2012; 
Ingraffia et  al. 2019; Tsialtas et  al. 2018). Evidence 
for the direct transfer of N via AMF hyphal networks 
has been observed as inoculation with AMF increases 
N transfer between soybean and maize, and faba bean 
and wheat (Wang et  al. 2016; Ingraffia et  al. 2019). 
Co-inoculation of AMF and rhizobia was found to pro-
duce the highest level of N transfer (Wang et al. 2016). 
Other studies have demonstrated direct N transfer from 
the legume to non-legume (Homulle et al. 2022; Isaac 
et al. 2012). In intercropping systems where crops are 
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spatially close or have direct root contact, indirect trans-
fer via nodule and root decomposition would be possi-
ble in addition to direct transfer (Fig. 2).

Mycorrhizal networks may be important to P trans-
fer between plants in intercrops (Dowling et al. 2021; 
Homulle et al. 2022; Wang et al. 2016). Overyielding 
cannot be explained solely by direct transfer by AMF 
since intercrops involving non-mycorrhizal plants still 
experience increased LERs (Madsen et al. 2022). This 
suggests that other mechanisms (indirect transfer and 
changes to nutrient availability) can be important to 
intercrop success. Further work should be performed 
to determine the importance of N transfer as it would 
improve our understanding of the role of plant-plant 
facilitation via the microbiome and mycorrhizae.

Does the microbiome contribute to improved plant 
stress responses in intercropped systems?

The soil microbiome may improve performance 
of intercrops in salt and drought stressed condi-
tions (Homulle et  al. 2022; Shi et  al. 2022). Under 
drought stress, plants exchange water via mycor-
rhizal networks, which can be especially beneficial 
when intercropping a shallow-rooted plant with 
a deep-rooted plant. The deep-rooted plant can 
bring deeper water sources to the shallow-rooted 
plant through hydraulic lift, with transfer of water 
between plants occurring via mycorrhizal networks 
(Homulle et  al. 2022). Under salt stressed condi-
tions, total P and NH4

+-N were significantly higher 
in the intercropped peanut-sorghum system com-
pared to monoculture peanut, and peanut pod yield 
increased (Table  2; Shi et  al. 2022). Soil nitrate 
reductase and soil fructose-1,6-biphosphate aldolase 
enzyme were the only enzymes found to be signifi-
cantly more active in the intercrop than in peanut 
monoculture (Shi et al. 2022). The activities of soil 
protease and soil polyphenol oxidase were signifi-
cantly less under salt stress, but the activity of soil 
urease was increased (Shi et  al. 2022) Functional 
analyses of genes showed the involvement of bacte-
ria and fungi in nutrient cycling processes matching 
the differences observed in soil nutrient content and 
enzymatic activity (Shi et  al. 2022). Both benefits 
will become increasingly important due to changing 
climate conditions and increased issues with saline 
soils (Dowling et al. 2021; Shi et al. 2022).In
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The microbiome in intercropping systems 
could also be responsible for disease suppres-
sion. Two studies, one conducted on banana 

intercropped with five different legumes and one 
conducted on faba bean intercropped with wheat 
or maize, showed that intercropping decreased the 

Table 2   Summary of results on the impact of intercropping on soil nutrients and enzymatic activity and abundance

 + indicates an increase in activity or abundance. – indicates a decrease in activity or abundance

Intercropping System(s) Changes in Nutrient Content Enzymatic Changes Reference

Sugarcane-Soybean + 1.1 g kg−1 Organic C
+ 0.06 g kg−1 Total N

+ urease and nitrogenase activity
- nitrate reductase and dehydroge-

nase

Malviya et al. 2021

Sorghum-Peanut + total P
+ available K
+ soil organic carbon

+ soil nitrate reductase, soil 
fructose-1,6-biphosphate aldolase 
enzyme, and soil polyphenol 
oxidase

Shi et al. 2022

Sugarcane-Soybean and Sugarcane-
Peanuts

+ organic matter in soybean-peanut
+ total N
+ Total K
+ N (NH4)
+available K

+ nitrite reductase, protease, dehy-
drogenase, and nitrogenase

Solanki et al. 2020

Tea plant (Camellia sinensis (L.) O. 
Kuntze)-Soybean

No significant increase in nutrients 
tested

− 138.39 mg kg−1 P from tea plant 
monoculture

NA Sun et al. 2022a

Maize-Faba bean Intercropped faba bean
+ 0.91 g kg−1 Total C
− 0.2 g kg−1 Total N

NA Sun et al. 2022b

Intercropped maize
+ 0.84 g kg−1 Available P

NA

Sugarcane-Peanut Intercropped sugarcane
+ 0.009 g kg−1 Available N

Intercropped sugarcane
+ acid phosphatase activity

Tang et al. 2021

Intercropped peanut
No significant changes

Intercropped peanut
+ protease and sucrase activity

Maize-Peanut, Maize-Soybean, 
Maize-Sweet potato, and Maize-
Gingelly

Maize-Peanut
+ total P at seeding, elongation, and 

mature sages
+ available P across all four stages
+ microbial biomass P at elonga-

tion and mature stages

Maize-Peanut
+ alkaline phosphatases and acid 

phosphatases across all four 
stages

Yang et al. 2022b

Maize-Soybean
+ total P at seeding, elongation, and 

flowering stages
+ available P across all four stages
+ microbial biomass P across all 

four stages

Maize-Soybean
+ alkaline phosphatases and acid 

phosphatases across all four 
stages

Maize-Sweet potato
+ total P across all four stages
+ available P across all four stages
+ microbial biomass P across all 

four stages

Maize-Sweet potato
+ alkaline phosphatases and acid 

phosphatases across all four 
stages

Maize-Gingelly
+ total P at seeding stage
+ available P across all four stages
+ microbial biomass P at seeding, 

elongation, and mature stages

Maize-Gingelly
+ alkaline phosphatases across all 

four stages
+ acid phosphatases at seeding, 

elongation, and mature stages
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abundance of Fusarium oxysporum from mono-
culture soils and decreased the disease incidence 
improving plant performance (Wang et  al. 2020; 
Yang et  al. 2022a). The conclusion was that F. 
oxysporum’s abundance was likely negatively 
impacted by changes to soil properties (organic 
matter and NH4

+-N content) induced by intercrop-
ping and competition with other fungal species 
present in the more diverse microbial commu-
nity (Wang et  al. 2020; Yang et  al. 2022a). This 
is supported by literature reviewed by Zhu and 
Morel (2019) which found that beneficial bacte-
ria attracted by intercrops could be responsible for 
decreased disease incidence. Literature reviewed 
by De Corato (2020) also suggested the release 
of nutrients and competition as other mechanisms 
of disease suppression. This is supported by  Sun 
et  al. (2022b) as they found a decrease in gene 
copies of F. oxysporum in addition to four bacteria 
isolated from intercropped soils that demonstrated 
antagonistic traits towards F. oxysporum, provid-
ing further evidence for the role of the microbiome 
in reducing disease. Additional research should be 
performed on the role of the intercrop microbiome 
in suppressing other relevant soilborne pathogens 
to further our understanding of this mechanism.

Can the microbiome be altered in intercropped 
systems to improve plant success?

Given that the microbiome contributes to the success 
of intercropping systems, we could manipulate the 
microbiome to amplify plant success. So far, we know 
that successful intercrops require selecting crops that 
fill different niches and have compatible root traits 
and secondary metabolites (Yu et al. 2022). Informa-
tion on how to manipulate the microbiome is scarce, 
although research on inoculums has been done. A 
study on intercropped black cumin and fenugreek 
inoculated with AMF (Funneliformis mosseae and 
Rhizophagus irregularis) or PGPB (Pantoea agglo-
merans, Pseudomonas putida, and Azotobacter vine-
landii) that solubilize P and fix N revealed that crop 
quality was improved, and LER (1.44) was the high-
est with bacterial inoculum and a planting ratio of 
66:34 (Rezaei-Chiyaneh et  al. 2021). Similar results 
were found in a peanut-maize intercropping system 
inoculated with Azotobacter chroococcum as inocula-
tion increased the LER by 12–16% compared to uni-
noculated plots, with the highest LER of 1.70 seen 
with 100% peanut and 50% maize (Pourjani et  al. 
2022). This pattern also persisted in a durum wheat-
faba bean intercropping system co-inoculated with 

Fig. 2   Nutrient transfer can be facilitated by the microbiome through direct and indirect means. Direct forms of nutrient transfer are 
in green boxes and indirect forms of nutrient transfer are in red boxes
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PDP13 (Rahnella aquatilis) and PS11 (Pseudomonas 
sp.) showing the best plant performance (Bechtaoui 
et  al. 2019). Aside from the ability of microorgan-
isms to improve nutrient availability through N fixa-
tion and P solubilization, it is possible that PGPB are 
improving plant growth and production by producing 
plant growth hormones (Pourjani et al. 2022). Micro-
bial communities can also be manipulated through 
host plant selection (Tosi et  al. 2020). Further work 
on altering the microbiome by inoculation or other 
agronomic practices such as cover cropping, no-till, 
or soil amendments is needed. Reduced tillage has 
been shown to have a positive impact on bacterial 
and fungal abundance making it especially promising 
to pair with intercropping practices (Morugán-Cor-
onado et  al. 2022). Synthetic communities made up 
of known PGPB could also prove to be beneficial to 
intercrop success through their enrichment. Research 
should be done to explore this further.

Conclusion

The soil microbiome is an important player in the 
success of our current intercropping systems. It is 
involved in regulating plant stress responses and nutri-
ent availability and uptake making cropping systems 
more robust and productive. There are still many 
unknowns regarding how the soil microbiome func-
tions in intercropping systems, and how we can uti-
lize it to improve agricultural productivity and sus-
tainability. To further our understanding, we need to 
determine how the soil microbiome (1) is involved in 
the transfer and availability of N, P, and other essen-
tial nutrients; (2) improves the availability of essential 
plant nutrients in intercropping systems involving non-
mycorrhizal plants; and (3) can be managed to further 
improve intercropping success. Further insights in 
these areas will allow us to make changes to the soil 
microbiome and improve its functionality. Looking 
forward, understanding plant-microbe interactions 
will help us continue to produce food for a growing 
population in a world where climate conditions are no 
longer certain and farmable land is decreasing.
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