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Abstract 
Background and aims Forest management practices 
affect soil carbon dynamics, particularly by changing 
the diversity of aboveground plant functional groups. 
However, we have a limited understanding of the 
underlying mechanisms for how plant management 
affects soil respiration in planted forest ecosystems.
Methods We conducted a 3-year manipulation 
experiment of plant functional groups that included 
understory removal, tree root trenching, and fertiliza-
tion treatments in 2-year-old and 6-year-old Eucalyp-
tus plantations in the subtropical region, to explore 
the responses of soil carbon emission and microbial 
community composition.

Results Soil respiration was significantly suppressed 
by understory removal (-38%), tree root trenching 
(-41%), and their interactions (-54%), but fertilization 
alone and in interactions had no significant effect. Soil 
bacterial and fungal diversity was negatively affected by 
understory removal and tree root trenching, respectively. 
Soil respiration and microbial diversity were lower in 
younger plantations. Reductions in soil carbon emis-
sions were associated with losses of plant functional 
groups and soil microbial diversity, while increases in 
soil respiration were associated with soil physicochemi-
cal factors, soil temperature, and plantation age.
Conclusions The results indicated that understory 
removal and tree root trenching strongly affected soil 
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respiration, while the power effects were regulated by 
soil microbial community and soil properties in con-
trast plantation ages. Our findings highlight that plant 
management is of great significance to the soil carbon 
emission processes in afforested plantations.

Keywords Soil respiration · Afforestation · 
Understory removal · Plant management · Soil 
microbial community · Eucalyptus plantation

Introduction

Biodiversity, species identity, and functional traits 
on the aboveground plant communities affect the 
function and structure of the belowground cycling 
of carbon (C) (Bardgett and van der Putten 2014; 
Bastida et  al. 2021; McClelland et  al. 2021), which 
in turn affects C emissions and global climate change 
(Hooper et  al. 2005; Tilman et al. 2014; Chen et  al. 
2019a). The growth of large-scale forest plantations 
usually increases the ecosystem’s C pool, which 
through C sequestration may reduce atmospheric  CO2 
concentration and mitigate climate warming (Piao 
et al. 2009; Grassi et al. 2017; Ahirwal et al. 2021). 
Soil carbon emission or soil respiration is an impor-
tant component of the forest C cycle, i.e., it is one of 
the main pathways by which C fixed in the biosphere 
returns to the atmosphere (Jobbágy and Jackson 
2000; Olsson et  al. 2005; Sayer and Tanner 2010). 
Differences in plantation biodiversity and manage-
ment can directly influence forest soil properties 
(including water content, temperature, nutrient input, 
and soil microbial communities) and thereby affect 
soil respiration and C cycling (Raich and Tufekcioglu 
2000; Giuggiola et al. 2018; Delgado-Baquerizo et al. 
2019). However, there is no comprehensive under-
standing of how plant management over time could 
affect the terrestrial C budget through plantation 
establishment and growth.

Eucalyptus trees grow rapidly and produce high 
yields of wood for the paper-making industry (Wan 
et al. 2015; Wu et al. 2015; Nadal-Sala et al. 2021). 
Studies have shown that Eucalyptus plantations cover 
approximately 1.7  million hectares in China, which 
young Eucalyptus plantations sequester large quan-
tities of C compared with native plantations (Chen 
et  al. 2011; Wan et  al. 2015; Ferreira et  al. 2018). 
Many studies have assessed the effects of plantation 

management on soil C dynamics, e.g., plantation 
tree species selection (Binkley et  al. 2006), tree 
root trenching (Phillips and Fahey  2007), removal 
of understory plants (Wu et  al. 2011b), grazing 
(Mueller et  al. 2017), soil biotic interactions (Wang 
et  al. 2021), and fertilizer addition (Yu et  al. 2019), 
but there is uncertainty regarding the relationship 
between plantation management and soil respiration 
that is the second largest C efflux in terrestrial ecosys-
tems (Machmuller et al. 2018).

In the Eucalyptus plantations, plant functional 
groups (PFGs) can be separated into a canopy func-
tional group and an understory functional group due 
to their simple plant community composition (Wu 
et  al. 2011b). Accordingly, the role of canopy func-
tional group was indicated by tree root trenching, 
while the role of understory functional group was 
shown with removal in forest ecosystems (Wu et  al. 
2011a; Fanin et  al. 2019). Managements of both 
groups can affect the soil C dynamics (Docherty and 
Gutknecht 2019; Grau-Andrés et al. 2020) by chang-
ing the microclimate (Wan et al. 2014), soil physico-
chemical properties (Yahdjian et al. 2017; Fanin et al. 
2019), and soil microorganism community (Urcelay 
et al. 2009; Liu et al. 2021). Soil microorganisms play 
a crucial role in ecosystem functions and services, 
such as the decomposition of litter (Delgado-Baquer-
izo et  al. 2016a), nutrient mineralization (Bahram 
et  al. 2018), and the maintenance of edaphic condi-
tions (Jing et al. 2020; Zhou et al. 2023). The role of 
soil microbial communities in soil C emission after 
changes in PFGs is important (Marshall et  al. 2011; 
De Long et al. 2016; Bastida et al. 2021). However, 
the mechanisms by which management of plant 
functional groups (PFGs) affect soil C processes are 
poorly understood (Nilsson and Wardle. 2005; Wang 
et al. 2014; Ferreira et  al. 2018; Zhang et  al. 2021). 
The lack of information on the impact of the manage-
ment of PFGs and soil microorganisms also leads to 
increased uncertainty in the evaluation of an ecosys-
tem C pool (Zhao et al. 2013; Winsome et al. 2017; 
Crowther et al. 2019; Grau-Andrés et al. 2020).

In the present study, we investigated how soil res-
piration and the soil microbial community composi-
tion were affected by managements in PFGs, i.e., 
understory plant removal and tree root trenching. 
The effects of fertilization and all treatment interac-
tions after management in PFGs on below-ground 
properties were also investigated. The Eucalyptus 
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plantations are usually harvested around 6 years 
growth in south China, so the two plantation ages 
such as 2- and 6-year-old Eucalyptus plantations 
were selected in this study. In addition, previous stud-
ies had found that carbon input from plants strongly 
affects soil respiration in forest ecosystems (Wu et al. 
2011a; Fanin et al. 2019). We tested two hypotheses 
in this study: (1) Understory plant removal and tree 
root trenching will reduce soil respiration in Eucalyp-
tus plantations of different ages; and (2) The effects 
of management in PFGs will be regulated by soil 
physicochemical characteristics and microorganisms 
in plantations of different ages.

Materials and methods

Site description

The research was conducted in two Eucalyptus planta-
tions at the Tianma National Forestry Farm (117°24′ 
E, 24°18′N) in Zhangzhou City, Fujian Province, 
China. This region has a subtropical monsoon climate 
with mean annual precipitation (MAP) of 1503  mm 
and a mean annual temperature (MAT) of 21 °C. The 
soil is an acrisol, which is a red soil in the Chinese 
soil classification system. The two plantations had 
the same soil type and texture, and a similar history 
of disturbance. The plantations were planted with 
1-year-old Eucalyptus urophylla×grandis saplings 
in 2011 for the younger plantation (2-year-old) and 
2007 for the older plantation (6-year-old); the dis-
tance between saplings was 2 m within a column, and 
3  m between rows. The average diameter at breast 
height (DBH, 1.3 m height) of young and old planta-
tions were 9.47 and 13.68  cm when the experiment 
began in February 2012 (Fan et al. 2015). Understory 
species in the plantations were dominated by Pseu-
dosasa amabilis, Rubus swinhoei, Miscanthus sinen-
sis, Dicranopteris dichotoma, and Smilax china (Fan 
et al. 2015).

Experimental design

The same random block design with three replicates 
was used in each Eucalyptus plantation. On each 
plantation, three plots (15  m × 15  m) were estab-
lished > 100 m from each other. Inside each 15 × 15 m 
plot, we randomly established eight subplots 

corresponding to eight treatments. These eight treat-
ments were as follows: (1) the control (CK); (2) 
understory removal (UR); (3) tree root trenching 
(Tre); (4) fertilization (Fer); (5) understory removal 
and tree root trenching (UR + Tre); (6) understory 
removal and fertilization (UR + Fer); (7) tree root 
trenching and fertilization (Tre + Fer); and (8) under-
story removal, tree root trenching, and fertilization 
(UR + Tre + Fer). For understory removal subplots, 
the area was 5 m × 5 m where understory plants were 
manually removed monthly with a machete and hoe. 
Tree root trenching subplots were placed in between 
the rows of trees where the area was 1 m × 1 m and 
a 40-cm-deep trench was dug. The trenching subplots 
were lined with a PVC board to stop new tree roots 
into the subplot. For fertilization, urea was added at 
the start of the experiment and broadcasted by hand at 
25 kg N  ha− 1  year− 1. Since the old roots in soil may 
affect soil respiration during decomposition, all treat-
ments were initiated in February 2012 and soil respi-
ration measurements were started in May 2012.

Soil sampling and measurement

Soil samples (0 to 20 cm depth after surface litter and 
rock was removed) were collected from each subplot 
in December 2014, using a 3-cm-diameter soil corer. 
The samples were passed through a 2-mm sieve to 
remove stones and roots and were thoroughly mixed 
and then divided in half. One half was for physico-
chemical analyses, and the other half was stored at 
-20℃ before microbial analysis.

In situ soil respiration was measured between 9 
a.m. and 12 a.m. on one day each month from May 
2012 to December 2014, with a Li-cor 8100 auto-
mated soil flux system (LI-COR Inc., Lincoln, NE, 
USA); soil respiration was measured in a PVC collar 
(20 cm diameter and 5 cm high; one collar per sub-
plot). The PVC collar was embedded into the soil 
surface 2  cm deep after removing living plants and 
surface leaf litter from the collar area. Soil tempera-
ture (ST, ℃) at 5 cm depth and soil water (volume %) 
were measured monthly with probes attached to the 
soil flux system.

All soil analysis methods were cited from Liu 
(1996). In brief, soil water content (SWC, dry 
weight%) was gravimetrically determined by oven 
drying fresh soil at 105℃ to a constant weight. 
Soil pH was measured with a pH meter in a 1: 2.5 
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mixture of soil: water. Soil organic carbon (SOC, 
g·kg-1) was analyzed by the acid-dichromate  Fe2SO4 
titration method with air-dried soil.  NO3

--N (mg·kg-

1) and  NH4
+-N (mg·kg-1) in filtered KCl extracts of 

fresh soil samples were measured using a flow injec-
tion autoanalyzer (FIA, Lachat Instrument, USA). 
Total nitrogen (TN, g·kg-1) contents were measured 
after micro-Kjeldahl using the flow injection auto-
analyzer. Total phosphorus (TP, g·kg-1) was deter-
mined by a colorimetric assay after wet digestion 
with  H2SO4 and  HClO4. Available phosphorus (AP, 
mg·kg-1) was determined with an acid extracting solu-
tion (0.025 M HCl and 0.03 M  NH4F). Total potas-
sium (TK) was analyzed by an inductively coupled 
plasma mass spectrometer (ICP-MS, Agilent, Santa 
Clara, CA, USA).

Soil DNA was extracted from 0.25  g defrosted 
samples using the PowerSoil DNA Isolation Kit 
(MoBio Laboratories Inc., Carlsbad, CA, USA), and 
genomic DNA was detected by 1% agarose gel elec-
trophoresis. To determine the composition and diver-
sity of bacterial and fungal communities, the paired 
primers of 515 F (5’-GTG CCA GCMGCC GCG G-3’) 
and 907R (5’-CCG TCA ATTCMTTT RAG TTT-3’) 
with a barcode were used to amplify the bacterial 
16 S rRNA gene (Xiong et al. 2012), and the paired 
primers of SSU0817F (5’- TTA GCA TGG AAT AAT 
RRA ATA GGA -3’) and SSU1196R (5’- TCT GGA 
CCT GGT GAG TTT CC-3’) with a barcode were 
used to amplify the fungal 18 S rRNA gene (Rousk 
et al. 2010). The sequences were processed with the 
QIIME pipeline (Callahan et  al. 2016). Paired-end 
sequencing of PCR amplicons was performed on 
an Illumina Miseq PE250 sequencer (Illumina, San 
Diego, CA, USA). Paired-end reads were assembled 
using FLASH to obtain raw tags. In brief, paired-
end reads were merged into single sequences, and 
the low-quality merged sequences were removed 
from downstream analysis. After the chimeras were 
removed, 97% similar sequences were clustered into 
operational taxonomic units (OTUs) by using the 
Usearch program. Taxonomic names were assigned 
using the Ribosomal Database Project (Wang et  al. 
2007); the community composition of each sample 
was measured at all levels (domain, kingdom, phy-
lum, class, order, family, genus, and species). If the 
relative abundance of a fungal or bacterial OTU was 
≤ 1%, the OTU was classified as Others. According 

to the meaning of biodiversity indices, the Chao1 and 
Shannon indices were selected in the present study.

Statistical analyses

The  Q10 values (the temperature sensitivity of 
soil respiration) for all of the treatment plots were 
derived from soil respiration rate against monthly 
soil temperature that was fitted with an exponential 
growth model. The exponential growth model and 
 Q10 values were calculated as follows:

Where Rs is the soil respiration rate (µmol  CO2 
 m− 2   s− 1); e is the base of the natural logarithm 
function; T is the soil temperature (℃); a and b 
represent models fitting constant values;  Q10 is the 
temperature sensitivity value of soil respiration 
(Sierra 2012).

One-way analysis of variance (ANOVA) and the 
least significant difference (LSD) were used to ana-
lyze the effects of different treatments in each plan-
tation on soil respiration rate and soil physicochem-
ical properties. Furthermore, three-way analysis 
of variance (ANOVA) with two covariates (month 
and plantation age) was used to assess the effects 
of understory removal, tree root trenching, fertili-
zation, and their interactions on the soil respiration 
rate. All analyses were performed in R version 4.0.3 
(R Core Team 2020). The R packages vegan, and 
ggpubr were used to analyze the diversity and com-
munity of soil microorganisms. Principal coordi-
nates analysis (PCoA) and permutational multivari-
ate analysis of variance (PERMANOVA) were used 
to determine the effect of plantation age and PFGs 
removal treatments on soil microbial communities 
(Lajoie and  Kembel  2021). Redundancy analysis 
(RDA) was performed to determine the relation-
ships between microbial communities, soil physico-
chemical properties, and environmental factors (soil 
temperature and moisture). The most discriminating 
soil property variables were selected by the “back-
ward selection” procedure with the vegan package. 
Before the RDA analysis was performed, the vari-
ance expansion coefficient of all soil environmental 
factors was calculated. To explore how plantation 

(1)R
s
= ae

bT

(2)Q10 = e
10b



143Plant Soil (2024) 501:139–153 

1 3
Vol.: (0123456789)

age and plant functional groups influenced the soil 
respiration rate, soil physicochemical properties, 
and microbial community, the R packages vegan, 
lme4, and MuMin were used in the variance parti-
tioning analyses (VPA). Statistical significance was 
determined at P < 0.05.

Results

Soil microclimate and physicochemical properties

Three-way ANOVAs showed that soil temperature, 
pH, SOC,  NH4

+-N, TN, TP, AP, and TK significantly 
differed between the 2- and 6-year-old plantations 
(P < 0.001; Table  1; Appendix S1: Table  S1). Soil 
temperature was 3℃ higher in the 2-year-old plan-
tation than in the 6-year-old plantation (P < 0.01). 
The contents of SOC, TN, and TP were significantly 
higher in the 2-year-old plantation than in the 6-year-
old plantation. In contrast, the soil pH, NH4+-N, 
AP, and TK contents were significantly lower in the 
2-year-old plantation than in the 6-year-old plantation 
(Table 1; Appendix S1: Table S1).

Three-way ANOVAs showed that the interaction 
of understory removal × tree root trenching × ferti-
lization (UR×Tre×Fer) increased SOC (P < 0.05; 
Table 1). The interaction of understory removal and 
tree root trenching (UR×Tre) increased soil tempera-
ture (P < 0.05; Table 1). The interaction of understory 

removal and fertilization (UR×Fer) increased soil pH 
(P < 0.05; Appendix S1: Table S1).

Respones of soil respiration rate

The soil respiration rate was significantly different in 
the 2- and 6-year-old plantations (P < 0.001; Table 2). 
The mean soil respiration rates were lower in the 2- 
year-old plantation (3.20 µmol  CO2  m− 2  s− 1) than in 
the 6-year-old plantation (3.39 µmol  CO2  m− 2   s− 1) 
in CK treatment. The soil respiration rate signifi-
cantly differed among months (P < 0.001), with the 
lowest in January (1.31 µmol  CO2  m− 2   s− 1) and the 
highest in July (4.08 µmol  CO2  m− 2   s− 1) for the 2- 
year-old plantation, with the lowest in January (1.40 
µmol  CO2  m− 2   s− 1) and highest in July (5.05 µmol 
 CO2  m− 2  s− 1) for the 6- year-old plantation (Fig. 1a; 
Table  2). Three-way ANOVAs showed that under-
story removal (UR), tree root trenching (Tre), and 
their interaction significantly reduced the soil respi-
ration rate in all years and seasons (Fig. 1b; Table 2; 
Appendix S1: Table S2). The effect of fertilization on 
soil respiration rate was minor and fertilization did 
not have a significant effect on the soil respiration in 
the second and third years when compared with the 
first year (Fig. 1b; Table 2).

One-way ANOVA showed that understory removal 
(UR), tree root trenching (Tre), and understory 
removal + tree root trenching significantly reduced the 
soil respiration rate (UR: -38%, Tre: -41%, UR + Tre: 

Table 1  Effects (P values) of plantation age, treatments, and their interactions on the soil microclimate and physicochemical proper-
ties in the 2- and 6-year-old Eucalyptus plantations in China

Abbreviations: ST: soil temperature; SM: soil moisture (%); Age: plantation age; UR: understory removal; Tre: tree root trenching; 
Fer: fertilization; UR×Tre×Fer: interactions among understory removal, tree root trenching, and fertilization. OC: soil organic car-
bon;  NO3

−-N: nitrate nitrogen;  NH4
+-N: ammonium nitrogen; TN: total nitrogen; AP: available phosphorus; TP: total phosphorus; 

TK: total potassium. Significance was set at P < 0.05. The actual values can be found in supplementary Table 1
Significant effects are indicated in bold font

Source ST SM pH SOC NO3
--N NH4

+-N TN AP TP TK

Age < 0.001 0.824 < 0.001 < 0.001 0.016 0.003 < 0.001 < 0.001 < 0.001 < 0.001
UR 0.994 0.564 0.423 0.578 0.072 0.087 0.057 0.834 0.160 0.226
Tre 0.405 0.101 0.468 0.395 0.340 0.337 0.569 0.133 0.079 0.609
Fer 0.963 0.357 0.469 0.972 0.287 0.612 0.751 0.168 0.118 0.783
UR×Tre 0.046 0.211 0.354 0.035 0.854 0.350 0.115 0.451 0.646 0.673
UR×Fer 0.635 0.327 0.011 0.858 0.620 0.565 0.601 0.581 0.118 0.188
Tre×Fer 0.481 0.168 0.769 0.399 0.125 0.766 0.245 0.785 0.200 0.858
UR×Tre×Fer 0.710 0.377 0.148 0.006 0.411 0.476 0.163 0.949 0.339 0.691
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-54%; P < 0.001) (Fig.  1e; Table  2; Appendix S1: 
Table  S2). Fertilization (Fer) alone did not signifi-
cantly affect the soil respiration rate (P = 0.88), but 
understory removal + fertilization (UR + Fer) did sig-
nificantly reduce soil respiration (-29%, P < 0.05). 
The three factors understory removal + tree root 
trenching + fertilization (UR + Tre + Fer) also reduced 
soil respiration rates (-52%, P < 0.05; Fig. 2e; Table 2; 
Appendix S1: Table S2).

The  Q10 value for the 2-year-old plantation 
 (Q10 = 1.81) was lower than for the 6-year-old plan-
tation  (Q10 = 2.04). The soil respiration rate increased 
with temperature increases  (R2: 33-49%), and  Q10 
values were higher with understory removal (UR), 
tree root trenching (Tre), fertilization (Fer), and their 
combinations than with CK (Fig.  2; Appendix S1: 
Fig.  S1). The loss of functional groups had positive 
effects on the temperature sensitivity of soil respira-
tion, but Fer attenuated this effect (Fig. 2; Appendix 
S1: Fig. S1).

Soil microbial diversity and community composition 
as affected by plantation age and treatments

The bacterial Chao1 and Shannon indices indicated 
higher diversity in the 6-year-old plantation than 
in the 2-year-old plantation (P < 0.001) (Fig.  3a, b; 
Appendix S1: Table  S3). The fungal Chao1 index 
was higher in the 6-year-old plantation than in the 
2-year-old plantation (P < 0.001), but there was no 

significant difference in fungal diversity between 
plantation ages as measured by the Shannon index 
(P = 0.55) (Fig. 3c, d; Appendix S1: Table S3).

Understory removal (UR) significantly reduced 
bacterial diversity (Chao1 index P < 0.05) (Fig.  3; 
Appendix S1: Table  S3). Fungal Chao1 index was 
significantly reduced by tree root trenching (Tre) or 
by interactions of tree root trenching × fertilization 
(Tre ×Fer) (Fig. 3; Appendix S1: Table S3). The bac-
terial and fungal communities significantly differed 
between the two plantation ages according to the 
PCoA and PERMANOVA analysis (P < 0.001, PER-
MANOVA by Adonis) (Fig.  4). Understory removal 
did not significantly change the microbial communi-
ties of bacteria (P = 0.99) or fungi (P = 0.14); PER-
MANOVA by Adonis) (Fig. 4; Appendix S1: Fig. S2) 
on either plantation.

Relationships between the microbial communities 
and environmental factors

The dominant soil bacteria in both plantations were Aci-
dobacteria (relative abundance = 42%) and Proteobacte-
ria (relative abundance = 31%) (Appendix S1: Fig. S3a, 
b). The relative abundances of Acidobacteria were 
higher in the 2-year-old plantation (46%) than in the 
6-year-old plantation (38%), in contrast, the Proteobacte-
ria were lower in the 2-year-old plantation (26%) than in 
the 6-year-old plantation (35%) (Appendix S1: Fig. S3a, 
b). The relative abundances of both Acidobacteria and 

Table 2  Effects (F and P values) of the month, plantation age, treatments, and their interactions on soil respiration in the 2- and 
6-year-old Eucalyptus plantations in China

Abbreviations: Age: plantation age; UR: understory removal; Tre: tree root trenching; Fer: fertilization; UR×Tre×Fer: interactions 
between understory removal, tree root trenching, and fertilization. Significance was set at P < 0.05
Significant effects are indicated in bold font

Source 2-year-old 6-year-old Both plantations

F P F P F P

Month 7.931 < 0.01 21.943 < 0.001 30.342 < 0.001
Age / / / / 38.004 < 0.001
UR 55.843 < 0.001 44.289 < 0.001 96.154 < 0.001
Tre 153.366 < 0.001 59.951 < 0.001 186.313 < 0.001
Fer 0.533 0.465 0.134 0.714 0.024 0.878
UR×Tre 11.165 < 0.001 7.831 < 0.01 18.014 < 0.001
UR×Fer 7.367 < 0.01 1.094 0.296 6.131 0.013
Tre×Fer 4.223 0.040 1.454 0.228 0.086 0.769
UR×Tre×Fer 7.189 < 0.01 0.194 0.660 3.908 0.048
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Proteobacteria were significantly affected by planta-
tion age (P < 0.001), but not by understory removal and 
tree root trenching (P = 0.62 and P = 0.98, respectively). 
The dominant soil fungi in both plantations were Asco-
mycota (relative abundance = 41%) and Basidiomycota 
(relative abundance = 46%), and these relative abun-
dances were not significantly affected by plantation 
age (P = 0.53 and P = 0.64, respectively), or understory 
removal and tree root trenching (P = 0.07 and P = 0.05, 
respectively) (Appendix S1: Fig. S3c, d).

The relative abundance of Acidobacteria as meas-
ured by redundancy analysis (RDA) was positively 

correlated with SOC,  NO3
−-N, TN, and TP, while 

the relative abundance of Proteobacteria was nega-
tively correlated with soil physicochemical factors 
(Appendix S1: Fig.  S4a). For the Ascomycota, the 
relative abundance was positively correlated with 
SM but negatively correlated with  NH4

+-N, AP, 
 NO3

−-N, and TN. The relative abundance of Basidi-
omycota had positive relationships with these fac-
tors (Appendix S1: Fig.  S4b). On the whole, the 
composition of the soil microbial community was 
mainly affected by SOC,  NO3

−-N, and TN.

Fig. 1  Soil respiration dynamics as affected by plantation age 
(a) and treatments (b). And effects of different treatments on 
soil respiration rate in the 2-year-old plantation (c), the 6-year-
old plantation (d), and averaged for both plantations (e). Val-
ues are means + SE (n = 3). For c, d, and e, boxplots indicates 
the soil respiration rate variation in different treatments (aver-

aged across time). Means in boxes with different lowercase 
letters are significantly different (P < 0.05) between different 
treatments in the same plantation. CK: the control; Fer: fer-
tilization; Tre: tree root trenching; UR: understory removal; 
UR + Fer + Tre: combination between understory removal, tree 
root trenching, and fertilization
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Relationships between soil respiration and 
environmental factors and soil microbial diversity

Variance partitioning analysis (VPA) was used to 
explore the power of environmental factors on soil 
respiration, and showed that soil respiration was 
affected by Eucalyptus plantation age (0.32), under-
story removal (-0.15), tree root trenching (-0.50), soil 
temperature (0.13), and microbial diversity (-0.14), 
SOC (0.17),  NO3

− -N (-0.17), TP (0.50) and AP 
(0.19) (Fig. 5). Among these factors, plantation age, 
soil microclimate, and soil physicochemical prop-
erties had positive effects on soil respiration, while 
understory removal, tree root trenching, and bacterial 
diversity had negative effects on soil respiration. The 
adjusted R2 of the model was 0.50 (Fig. 5).

Discussion

In this study, we divided the Eucalyptus plantations 
into understory and canopy plant functional groups 

by understory removal and tree root trenching. The 
effects and potential mechanisms of plant management 
on soil respiration were explored. We found that both 
understory removal and tree root trenching reduced 
soil respiration. Soil environmental factors and micro-
bial communities also regulated soil respiration in both 
young and old plantations. Our study provides a com-
prehensive understanding of how the changes in plant 
functional groups influence soil respiration in forests 
through both biotic and abiotic factors.

Effects of understory removal and tree root trenching 
on soil respiration

Researchers have found that the functional groups 
of canopy trees and understory plants strongly affect 
the turnover of soil C in forest ecosystems (Wardle 
et al. 1999; Binkley et al. 2006; De Deyn et al. 2008; 
Clemmensen et  al. 2013; Chen et  al. 2016). In this 
study, we found that the removal of the understory 
plants and tree root trenching both significantly, and 
independently, reduced the soil respiration rate in 
the Eucalyptus plantations. This negative effect was 

Fig. 2  Effects of treatments on exponential relationships 
between soil respiration and soil temperature (a), and tem-
perature sensitivity  (Q10) values (b). The linear equation, R2, 
and  Q10 values are shown in the figure. CK: control; Fer: fer-

tilization; Tre: tree root trenching; UR: understory removal; 
UR + Fer + Tre: combination between understory removal, tree 
root trenching, and fertilization
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Fig. 3  Soil microbial diversity of bacteria (a, b) and fungi (c, 
d) at the end of the experiment as affected by plantation ages 
and treatments. CK: control; Fer: fertilization; Tre: tree root 
trenching; UR: understory removal; UR + Fer + Tre: combina-
tion between understory removal, tree root trenching, and fer-

tilization. Boxplots are explained in Fig. 1. Within each treat-
ment, *, **, and *** indicate significant differences between 
the 2- vs. 6-year-old plantations at P < 0.05, < 0.01, and 
< 0.001, respectively

Fig. 4  Community composition of soil bacterial (a) and fungi 
(b) as affected by plantation ages and treatments as indicated 
by PCoA analysis and PERMANOVA analysis. CK: control; 

Fer: fertilization; Tre: tree root trenching; UR: understory 
removal; UR + Fer + Tre: combination of understory removal, 
tree root trenching, and fertilization
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amplified when both tree roots and understory plants 
were removed in the same subplot and was consist-
ent with the results obtained in a mixed subtropical 
plantation (Wang et al. 2011), a Eucalyptus plantation 
(Wu et al. 2011a) and a Tibetan subalpine ecosystem 
(Li et  al. 2018). Recent studies have also indicated 
the profound effects of above-ground PFGs diversity 
on the carbon exchange of under-ground soil ecosys-
tems, since plant C inputs, soil microbial diversity 
and community composition, and microclimates are 
changed after the loss of PFGs (Fanin et  al. 2019; 
Delgado-Baquerizo et al. 2020; Gonzalez et al. 2020; 
Prager et al. 2021).

Soil fertilization with urea did not significantly 
affect soil respiration in our experiment. Other 
experiments have shown that soil respiration had 

hysteresis and threshold effects in response to N 
enrichment (Contosta et  al. 2011; Du et  al. 2018; 
Zhang et al. 2021), therefore the absence of a sig-
nificant effect of fertilization indicated that long-
term investigation would be needed in the field 
experiments. Our variance partitioning analysis 
also confirmed that microclimate, soil micro-
organisms, and soil physicochemical factors inter-
actively affect soil respiration.

We noted that there was a decrease in soil micro-
bial diversity after the removal of aboveground plant 
biodiversity and suggested this explained the soil 
respiration differences (Wardle et  al. 2008; Strecker 
et  al. 2016; Chen et  al. 2019a; Bastida et  al. 2021). 
The explanation was that the PFGs removal leads 
to reduce the inputs of litter and root exudates from 

Fig. 5  Variance partitioning analyses of the relationships 
among soil respiration, treatments, and other soil factors. Age: 
plantations age; UR: understory removal; Tre: tree root trench-
ing; ST: soil temperature; SOC: soil organic carbon;  NO3

−-N: 

nitrate nitrogen; AP: available phosphorus; TP: total phospho-
rus; BD: bacterial diversity. ** and *** indicate significant 
effects at P < 0.01 and < 0.001, respectively
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plants, resulting in the reduction of SOC and conse-
quently decreased soil respiration (Wu et  al. 2011b; 
Winsome et  al. 2017; Fanin et  al. 2019). In our 
experiment, the SOC content was reduced under the 
combined effects of understory removal and tree root 
trenching, which supported our deduction. Soil respi-
ration with understory removal and tree root trench-
ing treatment, which was similar to the heterotrophic 
respiration, had lowest mean values in both planta-
tions also indicated that soil microorganisms prefer 
to use fresh carbon from photosynthesis (Chen et al. 
2016; Machmuller et  al. 2018). This indicated the 
tight link between above- and below-ground organ-
isms (Clemmensen et  al. 2013; Chen et  al. 2019b; 
Yang et  al. 2020; Bastida et  al. 2021). Furthermore, 
our experimental results showed that the difference in 
the microbial diversity was dependent on the planta-
tion age, with the 2-year-old plantation having lower 
diversity than the 6-year-old plantation. This could 
explain why the reduction in soil respiration after the 
loss of PFGs was greater in the young plantation than 
in the old one. Since the decreases of plant carbon 
inputs would limit the activities of soil microorgan-
isms (Wu et al. 2013).

Plantation age affects soil respiration

Our results indicated that the variation in soil respi-
ration over time in Eucalyptus plantations of differ-
ent ages was mainly related to seasonal microclimatic 
factors and especially soil temperature, with higher 
respiration rates in the summer. Other studies such 
as in subtropical pine plantations (Yu et  al. 2019) 
and tropical forests (Machmuller et al. 2018; Waring 
et al. 2021) have also found that soil respiration was 
highest in the summer and was lowest in the winter. 
In addition, soil respiration was greater in the older 
than in the younger plantation, which is similar to 
previous results found in loblolly pine plantations 
(Wiseman and Seiler 2004) and Massoniana planta-
tions (Yu et al. 2019). The average soil respiration in 
the 6-year-old plantation was more than three times 
higher than the soil respiration in the 2-year-old plan-
tation. The first reason would be higher soil C meta-
bolic activities in the older Eucalyptus plantation than 
in younger, which was supported by another study in 
a Eucalyptus plantation in a subtropical region (Chen 
et  al. 2013). Second, the forest microclimate had a 

significant impact on soil respiration (Ma et al. 2014; 
Giuggiola et al. 2018; Bertrand et al. 2020; Zellweger 
et  al. 2020). For example, we found that the higher 
plant coverage in the 6-year-old plantation than in the 
2-year-old plantation (Fan et  al. 2015), would input 
more plant-induced C from aboveground plants and 
contribute to the higher soil respiration. The higher 
soil respiration in the old plantation would lead to a 
negative effect on soil C storage. Our previous study 
also indicated that soil organic C storage decreased by 
6.7% per year following the establishment of Euca-
lyptus plantations (Wu et al. 2013).

Studies in both natural forests and plantations 
have shown that forest type and plantation age 
greatly affect soil microbial communities (Waldrop 
et  al. 2006; Peerawat et  al. 2018; Liu et  al. 2019; 
Wan et al. 2021). In our study, we found that both 
soils bacterial and fungal diversity was lower in the 
2-year-old plantation than in the 6-year-old planta-
tion. Previous reports indicate that soil respiration 
increases with increasing SOC contents (Wiseman 
and Seiler 2004). In contrast, we found that SOC 
content was lower but soil respiration was higher 
in the 6-year-old plantation, compared to in the 
2-year-old plantation. The potential reason could 
be that soil C content was correlated to the diver-
sity of soil microorganisms, which was higher in 
the 6-year-old plantation. Clemmensen et al. (2015) 
also found that lower soil C sequestration was 
linked to a higher abundance of the mycorrhizal 
fungi in early successional-stage boreal forests. Our 
finding is consistent with research on global pat-
terns of soil bacterial diversity (Delgado-Baquer-
izo et  al. 2016b), who found higher soil micro-
bial diversity can respire more soil carbon. Taken 
together, our finding indicated that SOC content 
was lower and soil microbial diversity was higher 
in the older plantation when compared with the 
younger plantation. These findings were supported 
by the view that soil respiration increased with the 
diversity of soil microorganisms (Malik et al. 2018; 
Waring et al. 2021).

Conclusions

Through 3-year field experiments, our study had three 
main findings. First, the management of different plant 
functional groups, i.e., understory removal and tree root 
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trenching caused changes in soil microorganisms that 
reduced the soil carbon emission. Both soil nutrients 
and temperature after plant management contributed to 
the outputs of soil carbon emission. Second, fertilization 
had no obvious effect on soil carbon emission in either of 
the Eucalyptus plantations, indicating that a longer dura-
tion for field experiments is needed in the future. Third, 
the soil respiration rate was higher in the older Eucalyp-
tus plantation than in the younger Eucalyptus plantation, 
mainly because of higher soil microbial diversity and dif-
ferences in their community composition. The implica-
tion of our findings is that PFGs removal or biodiversity 
reduction would decrease soil respiration in afforested 
plantations, but we should take into account the cascade 
effects from above- to below-ground in the context of 
land-use change when conducting plant management.
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