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Abstract 
Aims Inoculation with climate-adapted rhizobia is 
able to increase legume productivity in drought-prone 
regions of Sub-Saharan Africa. Enhanced nodulation 
might additionally affect plant-soil interactions and 
control rhizosphere carbon (C) and nitrogen (N) pools.
Methods We investigated inoculation effects on 
nodulation and biological  N2 fixation (BNF) of Vigna 
unguiculata and consequent effects on C and N pools 
in two Namibian soils. Three treatments (Bradyrhizo‑
bium sp.1–7 inoculant, non-inoculated, N-fertilised 
with 50  kg N   ha−1) were applied in rhizoboxes at 
45% and 20% maximum water holding capacity. 

Nodule development was photo-documented, and 
rhizobia-DNA sequences were identified. BNF was 
assessed by δ15N enrichment, and organic C and N 
pools were analysed in bulk and root adherent soil.
Results Plant growth initially enhanced mineral 
N losses from the rhizosphere at flowering stage 
(6 weeks growth), but led to a re-increase of N, and 
organic C contents after ripening (10 weeks). Inocu-
lation had no effect on nodulation and soil C and N 
pools, indicating that both soils contained sufficient 
indigenous rhizobia to allow effective nodulation. 
However, the inoculant strain was more competitive 
in establishing itself in the root nodules, depending 
on the local conditions, showing a need for regional 
adjustment of inoculation strategies.
Conclusion Water stress was the main limitation for 
nodulation and, in combination with soil type, sub-
stantially affected rhizosphere and bulk soil C and N 
contents. The temporally enhanced rhizodeposition 
after ripening could be able to maintain soil C and N 
pools after legume cultivation.

Keywords Rhizodeposition · Soil–plant 
interaction · Soil organic carbon · Mineral N · 
Biological nitrogen fixation · Nodulation

Introduction

Smallholder farming systems in Sub Saharan Africa 
is characterized by low productivity, which is mainly 
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caused due to declining soil fertility, insufficient ferti-
liser availability and unreliable water supply (Dakora 
and Keya 1997; Wall et al. 2014). Sandy soils in Sub-
Saharan Africa contain low amounts of N and soil 
organic carbon (SOC), and hold a generally low nutri-
ent level (de Blécourt et  al. 2019; Gröngröft 2013). 
However, a potential enhancement of soil fertility 
through mineral fertilisers is limited because these are 
not affordable by the majority of subsistence farmers 
in the region (Grönemeyer et  al. 2013). Considering 
projected climate-change impacts and growing popu-
lations (IPCC 2018; United  Nations 2019), pressure 
on crop production areas will increase substantially, 
and therefore a sustainable and efficient way towards 
an intensification of agricultural crop production is 
required to ensure food security in the future.

A promising approach to achieve this is the 
improvement and adoption of legume crops for sus-
tainable agriculture (Rehman et  al. 2019). Many 
legumes are relatively drought resistant and have 
the capacity to grow in low-fertile sandy soil (Van-
lauwe et  al. 2019). Since they produce high protein 
grain and leaves (Hamid et al. 2016; Kerr et al. 2007), 
legumes are already one of the main food as well as 
fodder crops growing in Southern Africa (Vanlauwe 
et al. 2019). A characteristic feature of legume plants 
is their ability to establish a mutualistic symbio-
sis with Rhizobia (i.e. formation of nodules) for the 
utilisation of atmospheric dinitrogen  (N2) as an N 
source (Sugiyama and Yazaki 2012). This legume-
rhizobia symbiosis might improve soil fertility via 
crop residues acting as N-rich green manure which 
can improve soil physicochemical characteristics 
and increase SOC content and N availability for suc-
ceeding crops (O’Dea et  al. 2015). Further, through 
exudation of organic compounds and nutrients in the 
rhizosphere, which can trigger plant-microbial inter-
actions (Lynch and Leij 2012). The  N2 fixation by 
rhizobia could for example stimulate microbial activ-
ity and increase nutrient concentrations in the rhizo-
sphere (Dakora and Phillips 2002; Sammauria and 
Kumawat 2018), enhancing plant responses against 
pathogens especially under unfavourable environmen-
tal conditions (Reinhold-Hurek et  al. 2015). While 
the incorporation of legume residues is known to 
increase SOC sequestration and improves crop nutri-
ent uptake (Amusan et  al. 2011; Lal 2015a), direct 
effects of plant-soil and rhizosphere interactions 
are less clear (Fustec et  al. 2010) or were not given 

emphasis in agronomy (Gogoi et al. 2018). However, 
recent research has pointed out the importance of leg-
ume derived rhizodeposition for soil C and N status 
(Virk et  al. 2022). These direct effects of plant-soil 
interaction are particularly important for smallholder 
farmers who rely on removing legume residues for 
livestock feeding (Paul et al. 2020).

Cowpea (Vigna unguiculata) is the major food 
crop and a source of cheap protein for most resource 
poor households in Namibia (Horn and Shimelis 
2020). The north-central regions (such as Oshana and 
Omusati) and the north-eastern Kavango region are 
the most significant production areas in the country, 
where smallholder farmers cultivate cowpeas for per-
sonal consumption or use them in intercropping and 
crop rotation practices to enhance soil fertility. While 
cowpeas are generally able to fix adequate amounts 
of N (Salgado et al. 2021), the efficiency of nodula-
tion can be hindered by local conditions and previ-
ous studies have reported such low root nodulation 
in cowpeas in northern regions of Namibia. (Gröne-
meyer et al. 2013). Previous analyses have shown that 
local rhizobia phylotypes are well adapted to the local 
environment (Delamuta et al. 2013; Grönemeyer et al. 
2016, 2014; Grönemeyer and Reinhold-Hurek 2018), 
and particularly the genus Bradyrhizobium spp. pro-
vides the majority of rhizobia for a potential sym-
biosis in these soils (Grönemeyer et  al. 2014). Low 
water holding capacity, and water scarcity in general 
might also negatively influence biological  N2 fixation 
(BNF) by reducing nodule nitrogenase activity (Para-
rajasingham and Knievel 1990), as well as reducing 
nodulation by limiting rhizobia mobility or lead-
ing to desiccation and subsequent cell death (Hamdi 
1971; Vlassak et al. 2010). Particularly, the long dry 
period that occurs yearly in Namibia is putatively 
adverse to rhizobial survival and abundance. Hence, 
a possible solution to improve nodulation potential 
and consequent nutrient supply and growth under 
drought conditions, is the treatment of legumes with 
climate adapted native rhizobial bio-inoculants. It is 
particularly promising for increasing crop productiv-
ity of smallholder farming systems in drought-prone 
regions of Sub-Saharan Africa (Smaling et al. 2008). 
In this approach, a selected rhizobial inoculant strain, 
enriched as biofertilizer is directly applied to the leg-
ume seeds, at the time of sowing thereby enhancing 
the chance of root nodulation of the legume mostly 
by the bio-inoculant strain which ideally should also 
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outcompete the infection from possibly small or inac-
tive populations present in the soil.

To investigate inoculation effects on crop pro-
ductivity and soil properties, a preceding field 
study was conducted in Northern Namibia, com-
paring different cowpea cultivars, and identify suit-
able inoculants for local pulses that are not only 
adapted to current dry climatic conditions during 
the vegetation period but also to future exacerbat-
ing conditions due to climate change. In a previ-
ous experiment, Bradyrhizobium sp. strain 1–7 led 
to increased cowpea yields (Chaluma Luchen et al. 
2018). Strain 1–7 belongs to the B. japonica lineage 
of Bradyrhizobium, was isolated from root nodules 
of peanut grown in the Mashare area of the Namib-
ian Kavango, and was used in the current study 
because it is particularly heat tolerant and active at 
up to 38 °C, while also being more competitive than 
other strains (Grönemeyer et al. 2014; Grönemeyer 
and Reinhold-Hurek 2018). Among the different 
cultivars in these studies, particularly’Lutembwe’ 
variety reacted positively to inoculation. How-
ever, it is yet unclear how inoculation with specific 
Bradyrhizobium sp. influences nodulation of cow-
pea cultivar’Lutembwe’ and subsequent N sup-
ply via BNF. Previous studies mainly investigated 
legume effects on soil fertility, but it has yet to be 
explored how inoculation affects legume-soil inter-
action and thereby control rhizosphere N dynamics 
over time and under varying environmental condi-
tions. Faster and more efficient nodulation could 
e.g. enhance root productivity and exudation (Con-
cha and Doerner 2020), eventually affecting soil C 
and N status.The inoculation with rhizobia can also 
modify the physical and chemical properties of the 
soil, creating a more favorable environment for the 
growth of other soil microbes (Alami et  al. 2000), 
which can lead to an increase in soil C pools. To 
our knowledge, there is no present study compar-
ing inoculation effects on rhizosphere and bulk soil, 
before and after nodule senescence, and studies 
from our study area are generally scarce. Our objec-
tives were (1) to asses whether inoculation of cow-
pea with specific strains of rhizobia improve plant 
and nodule growth as well as BNF, (2) to identify 
consequent effects on C and N pools in the rhizos-
phere, and (3) to assess how these effects are influ-
enced by soil water availability and soil origin.

To answer these questions, we conducted an 
experiment under laboratory conditions using 
rhizoboxes to monitor temporal changes in root 
and nodule development after inoculation with 
Bradyrhizobium sp. strain 1–7. Effects on rhizos-
phere soil were assessed by comparing values of N 
pools, SOC content and pH in root adherent soil to 
initial values. These effects were compared between 
two Northern Namibian soils, a loamy sand and 
a sand, under optimum water and water stress 
conditions.

Material and Methods

Studied soils

The study was conducted using mixed topsoil 
(0–10  cm) samples from two study sites, repre-
senting major agricultural regions in Northern 
Namibia. The Mashare study site is located in the 
north-eastern Kavango region at an altitude of 
1068  m a.s.l. (S: 17° 53′ 27’’; E: 20° 10′ 17’’), 
embedded in an old floodplain of the Okavango 
river. The soil was classified as Haplic Luvisol 
(Arenic) according to IUSS Working Group WRB 
(2015), and developed on translocated sands and 
dunes of the Kalahari Basin with interspersed clay 
and silt layers from fluvial deposits. The climate 
is semi-arid with a mean annual air temperature 
of 22.3 °C and an annual precipitation of 571 mm, 
which mainly occurs during the rainy season 
between November and March.

The Ogongo study site is located in the Omusati 
region, central-northern Namibia, at an altitude of 
1108 m a.s.l. (S: 17° 40′ 56’’; E: 15° 17′ 59’’). The 
area is covered by Kalahari sands on slightly elevated 
terraces that are partly flooded by water courses dur-
ing the austral summer arising in the Angolan high-
lands (Jürgens et  al. 2012). The soil was classified 
as Eutric Sideralic Arenosol (Aridic) (IUSS  Work-
ing Group WRB 2015). The climate is semi-arid with 
a pronounced seasonal rainfall pattern. Mean annual 
air temperature is 22.7  °C, with a mean annual pre-
cipitation of 469 mm. The majority of rainfall occurs 
in summer season peaking in February with over 
100 mm (Jürgens et al. 2012).
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Experimental setup

The experiment was conducted in summer 2020 
under controlled conditions at the Institute of Soil 
Science, Universität Hamburg. The study setup fol-
lowed a three factorial approach, comparing three fer-
tilization levels, two water availability levels on two 
soil types. Rhizoboxes (28 × 18 × 1  cm), were filled 
with air-dried, 2  mm-sieved and well homogenized 
bulk soil (Table  1). Three fertilization treatments of 
cowpea (variety: Lutembwe) were applied as follows: 
(1) inoculated with strain 1–7 of Bradyrhizobium sp. 
(inoc), (2) non-inoculated (non-inoc), (3) non-inocu-
lated and fertilised with urea equivalent to 50  kg N 
 ha−1 (N). One box of each soil served as blank and 
unplanted comparison. Four replicates of each treat-
ment and soil type were subjected to a near constant 
water availability of 45% maximum water holding 
capacity (WHC) and 20% WHC, respectively. This 
was ensured by weighting and watering each box 
every 48  h, and reflects optimum water conditions 
for cowpea with moisture and oxygen availability for 
roots to grow (Leenaars et al. 2015), as well as water 
stress conditions. Plants were grown for 40  days 
until reaching flowering stage. Additionally, three 
rhizoboxes per soil type were planted with inocu-
lated seeds and maintained for 75  days until reach-
ing fruit maturity stage (hereinafter: ripening stage). 
The ripening stage was only reached by plants grown 
under optimum water conditions, and one replicate 
plant in Mashare soil died. Seedlings and inoculant 
were prepared by the Department of Microbe-Plant 
interactions of the University of Bremen. The cow-
pea seeds (variety Lutembwe) were surface sterilized 
with freshly prepared 2.5% sodium hypochlorite 
for six minutes, washed repeatedly with sterile dis-
tilled water and allowed to germinate on 1% water 
agar plates for twenty four hours at 30  °C in dark 
before inoculation. Fresh culture of inoculant strain 

Bradyrhizobium sp. 1–7 was adjusted to optical den-
sity of 0.2 at 600 nm with Modified Arabinose Glu-
conate (MAG) medium. For the inoculated treatment, 
germinated seedlings were inoculated with 1  ml of 
bacterial suspension immediately before sowing, 
whereas seedlings treated with 1 ml of sterile liquid 
MAG medium served as non-inoculated control. Dis-
solved urea, equivalent to 50 kg N  ha−1, was injected 
into the fertilised treatment soil at sowing. To ensure 
plant survival and avoid phosphorus deficiency lead-
ing to reduced nodule mass and decreased N produc-
tion (Dhakal et  al. 2016), 100  kg   ha−1 granulated 
superphosphate with 18% phosphorus pentoxide was 
added to each rhizobox soil. The rhizoboxes were put 
in a fixture construction at a 60° angle to ensure root 
growth towards the transparent screen. The screen 
was covered with aluminium foil to exclude light 
from the rooting zone. Plants were grown under arti-
ficial illumination provided through four 1200-Watt 
LED grow lights (Wakyme, Monterey Park, CA, 
USA). Time of illumination was 12 h per day, from 
6am to 6 pm. Temperature was maintained at 25 °C 
and relative humidity was kept at 50%.

Photo documentation

To document root and nodule growth over time, pho-
tos of rhizobox surfaces were taken three times per 
week (2–3  day intervals) until harvest, at the same 
angle and distance with a digital compact camera. 
The photos were analysed using ImageJ software (v. 
1.8.0). Visible nodules were counted, and their cumu-
lative area was measured.

Sampling of soil and plant

Before the rhizoboxes were opened at one side, shoots 
were cut off. Roots were then carefully taken out to 
preserve them in one piece. Root adherent soil (in 

Table 1  Initial soil characteristics in rhizobox soil before planting

SOC = soil organic carbon, N = total nitrogen, C/N = carbon to nitrogen ratio,  Nmin = mineral N,  pHCaCl2 = soil pH in  CaCl2, 
EC = electrical conductivity, BD = bulk density

Site SOC N C/N Nmin pHCaCl2 EC sand/silt/clay BD
[%] [%] [%] [mg  kg−1] [mS/m] [%/%/%] [g  cm−3]

Mashare 0.3 0.03 10 31.2 7.3 100.4 89/4/7 1.45
Ogongo 0.2 0.02 10 9.4 6.9 26.9 91/7/2 1.70



37Plant Soil (2024) 500:33–51 

1 3
Vol.: (0123456789)

this study referred to as’rhizosphere soil’) was sam-
pled by gently brushing off adhering soil from roots 
after being slightly shaken three times by hand. The 
remaining soil in the rhizobox was sieved (2 mm) to 
separate it from roots and was declared as bulk soil. 
Residual fine roots were removed with a tweezer 
under a magnifying glass. Photos of soil-free roots 
including nodules were taken. Next, particular nod-
ules were cut out, sampled onto dried silica gel in 
closed tubes and cooled at 4 °C until use. Fresh soil 
was immediately stored at 4 °C until further analyses 
to minimise the mineralisation of labile rhizodepos-
its. After rhizosphere soil was sampled, roots were 
washed and, as well as shoot samples, dried at 60 °C 
for 72  h. Shoot and root biomass were measured as 
dry mass. Bulk soil of unplanted boxes was sampled 
in triplicates.

Laboratory analyses

In order to analyse which rhizobial symbionts occu-
pied nodules, collected nodules were surface steri-
lized using 5% sodium hypochlorite for 2  min, fol-
lowed by repeated washes with sterile distilled water. 
The nodules were finally crushed in water, and a 
small aliquot streaked on MAG agar plates to obtain 
the pure culture of the nodule symbiont. The rest of 
the nodule lysate was diluted, and a part used directly 
to isolate the genomic DNA of respective nodule 
symbionts with the help of the NucleoSpin Tissue 
Kit (Macherey–Nagel, Düren, Germany) using the 
method described by the manufacturer with some 
modifications. Thereafter, the partial 16S-23S rDNA 
internally transcribed spacer (ITS) region from indi-
vidual isolated template DNA was PCR amplified 
as described by Laguerre et  al. (1996). Amplicons 
were purified by Monarch® Nucleic Acid Purifi-
cation Kit (NEB, Ipswich, Massachusetts, United 
States). Sanger sequencing was carried out by LGC 
Genomics (Berlin, Germany). The obtained nucleo-
tide sequences of respective ITS-PCR products were 
compared with the National Center for Biotechnol-
ogy Information (NCBI) sequence database using 
the Basic Local Alignment Search Tool (BLASTN). 
Phylogenetic analyses were conducted using MEGA7 
free software (Kumar et  al. 2016). Alignments were 
generated by MUSCLE (Edgar 2004; Larkin et  al. 
2007). DNA sequences of selected type species and 
reference strains were retrieved from LPSN database 

(Parte 2014). A Neighbor-Joining Phylogram was 
constructed with the aligned sequences based on the 
number of nucleotide differences without gap penalty 
as suggested by Willems et al. (2001); (2003).

For ammonium and nitrate analysis  (Nmin) an ali-
quot of 25  g both fresh rhizosphere and bulk soil 
was extracted by shaking for 1 h in 100 ml 0.0125 M 
 CaCl2 solution. Ammonium was analysed in a 
2:1-water-extract dilution at 655  nm at photometer 
(Thermo Fisher Scientific, Waltham, MA, USA). To 
determine nitrate content, the same extract (0.0125 M 
 CaCl2) was analysed using high performance liquid 
chromatography (Agilent Technologies, Santa Clara, 
CA, USA). Samples were measured in a 2:1-diluted 
water-extract solution. In case of very low concentra-
tions  (NO3

− content < 0.1 mg  kg−1), extract solutions 
were spiked with a 100  µM  KNO3

−-standard in 1:2 
sample ratio to ensure clear peak separation from 
baseline noise.

Rhizosphere and bulk soil samples were dried at 
105  °C, shoot and root samples at 60  °C until con-
stant weight. Samples were milled and analysed for 
total C and total N content using a vario MAX cube 
(Elementar, Langenselbold, Hesse, Germany). In 
our previous analyses of Mashare and Ogongo soil 
samples, no inorganic carbon was detected, hence 
total carbon was declared as SOC. The δ15N-ratio 
was quantified at an Isotope ratio mass spectrometer 
(Thermo Fisher Scientific, Waltham, MA, USA). The 
bulk soil pH was measured with a pH-electrode in a 
suspension with 0.01 M  CaCl2 (1:2.5).

Data analyses

The amount of biologically fixed N (%Ndfa) was esti-
mated by calculating the difference between δ15N sig-
natures of shoot and root biomass (Δδ15Nshoot-root) and 
inserting this value into an empirical linear equation 
(Khadka and Tatsumi 2015; Wanek and Arndt 2002). 
This method is based on a strong linear relationship 
with the common 15N depletion method and produces 
well representative data for relative group compari-
sons – independent of the mineral N signature in the 
soil (Wanek and Arndt 2002). However, absolute 
values can strongly vary depending on crop species. 
We therefore calculated a specific transfer function 
for cowpea derived from data by Wanek and Arndt 
(2002) (Eq. 1), and interpreted absolute %Ndfa values 
very carefully.
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Group comparisons were conducted using a three-
way-analysis of variance (ANOVA), considering two 
sites (Mashare, Ogongo), two soil water levels (water 
stress: 20% WHC, water optimum: 45% WHC) and 
three fertilization treatments (inoculated, non-inoc-
ulated, mineral N), with factor interaction. Residual 
diagnostics were conducted using Shapiro–Wilk test 
for normality and Levene’s test for variance homoge-
neity (p < 0.05). In case ANOVA assumptions were 
not met, results were verified using robust ANOVA 
with trimmed means. If at least one factor or one fac-
tor interaction was significant, a Tukey’s HSD post-
hoc test was performed to test the significant devia-
tion between means of each group at p-level = 0.05. 
Treatment and water effects on nodule development 
over time were assessed using a generalized additive 
mixed model (GAMM) with rhizobox-ID as random 
factor to account for repeated measurements. Rela-
tionships between variables were assessed by linear 
regression analysis. Simple linear, log-linear and 
quadratic fits were selected according to reduction in 
Akaike Information Criterion values. Spearman rank 
correlation was used to additionally account for clus-
tering and non-linear relationships. Statistical analy-
ses were conducted in R 4.0.3 (R-Core-Team 2021).

Results

Inoculation and water availability effects on plant 
biomass, nodulation and N fixation

Under optimum water, the plants reached flower-
ing stage after 40  days. Under water stress, plants 
did not flower until sampling at day 40. Shoot and 
root biomass under optimum water were 3.4 and 2.7 
times higher than under water stress, respectively 
(Table 2). For shoot biomass, this effect was stronger 
in Mashare compared to Ogongo soil. Roots in all 
treatments established faster under optimum water 
than under water stress (Fig. 1), and reached generally 
higher biomass in Ogongo compared to Mashare soil 
(Table 2). All effects were independent from fertiliza-
tion treatment.

The nodulation increased over time and was 
independent from site and fertilization treatment 
but affected by water content (ANOVA, p < 0.001) 

(1)%Ndfa = 24.7 − 6.0 × Δ�
15Nshoot−root

(Fig.  1). Under optimum water, the first nodules 
appeared about 10  days earlier than under water 
stress, where the first nodules appeared around day 
26 (Fig.  1). However, nodule morphology and dis-
tribution along the root varied between sites. While 
in Mashare soil, nodules distributed evenly along the 
root system, in Ogongo soil nodules formed mainly 
around the root base under both water contents.

The fixation of atmospheric  N2 was reflected by 
calculating the difference between δ15N in shoot and 
root biomass (Δδ15Nshoot-root) and using an empirical 
transfer function to calculate %Ndfa (Eq.  1). Calcu-
lated values of %Ndfa ranged between 32 and 58% 
between groups (Table  2). The inoculation treat-
ment did not enhance  N2 fixation, but had tendency 
for decreased %Ndfa compared to non-inoculated 
treatment. In Mashare soil,  N2 fixation was reduced 
under water stress compared to optimum water 
(ANOVA, p < 0.001). In Ogongo soil, %Ndfa was in 
the same range as in Mashare soil at 45% WHC and 
no differences between water contents were observed 
(ANOVA, p > 0.05).

Treatment and water availability effects on rhizobia 
infection

To evaluate whether the inoculant established in root 
nodules, nodule occupancy was analysed according 
to marker gene sequences. The sequenced ITS DNA-
PCR products from the root nodule isolates collected 
from all rhizoboxes had closest hits to the mem-
bers of the genus Bradyrhizobium. For a good taxo-
nomic assignment with appropriate resolution of the 
branches of the group, phylogenetic analysis of ITS 
sequences was carried out as previously described. 
The ITS sequences from most of the nodule isolates 
were distributed together with two reference species 
in two major clusters supported by high bootstrap val-
ues, cluster I with Bradyrhizobium vignae 36 3–2, and 
cluster 2 with our inoculant strain Bradyrhizobium sp. 
1–7 (Fig. 2). B. vignae 36 3–2 is related to the type 
strain of this species, 7-2  T [DSM  100297  T = LMG 
 28791  T = NTCCM0018T (Windhoek)]. As the gene 
bank submitted partial DNA sequence of ITS region 
from strain 7-2 T is 0.814 kb (KM378504), the rela-
tively long ITS sequence (KM378523) from strain 
36 3–2 was used for constructing the ITS-based phy-
logram although the ITS sequences from both the 
strains, share 99.9% sequence identity with each other 
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over the complete length. B. vignae I in cluster I was 
a dominant cowpea nodule occupant also in previ-
ous Ogongo field trials (Sarkar and Reinhold-Hurek, 
unpublished observations). Apparently, the inoculant 
strain was partially outcompeted in the Ogongo soil, 
since also some inoculated cowpeas were nodulated 
by this strain (red circles of cluster I in Fig. 2). The 
majority of B. vignae induced nodules were from 
non-inoculated and N fertilizer treatments. Prob-
ably the dose of fertilizer treatment used in rhizobox 
experiments was not sufficient to completely elimi-
nate root nodulation. Interestingly, under drought 
conditions (Rb2), after inoculation only the inoculant 
strain in cluster II was found in the inspected nodules 
and not B. vignae. Cluster II represented by our inoc-
ulant strain contained mainly nodules from Mashare, 
irrespective of the treatment (Fig. 2).

Under optimal water conditions with bio-inoculant 
treatment, B. vignae already present in Ogongo soil 
can compete with the inoculant for cowpea nodule 
occupancy. Therefore, strain 1–7 could be less effec-
tive to be applied as bio-inoculant under optimal 
water conditions in Ogongo. However, under drought 

conditions, inoculant treatment was successful in 
yielding cluster II nodule occupants, the bio-inoc-
ulant strain 1–7 could successfully outcompete the 
indigenous Ogongo strains.

Additionally, few of the nodule isolates (Rb2 26 
and Rb2 27) occupied distinct positions in well-sep-
arated branches within the ITS phylogram supported 
by high bootstrap values. They are closely related 
to B. kavangaense, a second bio-inoculant strain 
with potential for enhancement of cowpea growth 
and yield in the field trials in Namibia (Grönemeyer 
et  al. 2015). Members of such novel clusters may 
be interesting candidates for future novel species 
descriptions.

Inoculation and water availability effects on C and N 
in the rhizosphere

The initial SOC and total N contents in the homogenized 
soil were about 30% higher in Mashare compared to 
Ogongo, with CN ratios of 10 at both sites (Table 1). Min-
eral N content was 31.2 mg  kg−1 and 9.4 mg  kg−1 respec-
tively. Changes in the rhizosphere are hereafter presented 

Fig. 1  Development of 
visible nodules over time 
(A) and maximum number 
of visible nodules (B). 
Solid lines and dashed 
lines represent 20% and 
45% water holding capac-
ity (WHC), respectively. 
Lines and shaded areas 
indicate GAMM fit at 95% 
confidence. Small letters 
indicate significant differ-
ences according to ANOVA 
at p-level = 0.05
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as relative changes compared to these initial soil contents. 
For absolute values, please refer to Appendix Table A1.

The total N as well as SOC content in the rhizos-
phere increased by 88% to 112% compared to ini-
tial soil (one sample t-test: df = 47, p-value ≤ 0.001). 
This rhizosphere effect occurred independent of site 
and water availability (Fig.  3). Non-inoculated and 

N-fertilized treatments showed a stronger increase 
than inoculated treatments. The average rhizosphere 
CN ratio increased from 10.0 to 11.8 compared to ini-
tial soil (t-test: df = 47, p-value ≤ 0.001) However, this 
effect did not occur in Mashare under water stress and 
was generally stronger in Ogongo, particularly in the 
inoculated treatment (Fig.  3). The  Nmin concentration 

Fig. 2  Root nodule occupancy by strains of Bradyrhizobium 
spp. in rhizobox experiments of cowpea cv. Lutembwe under 
different treatments. Neighbor-Joining phylogenetic tree from 
16S-23S intergenic spacer (ITS)- sequences) of Bradyrhizo‑
bium strains amplified from DNA extracted from individual 
cowpea nodules. (variety: Lutembwe) root nodules collected 
from two independent Rhizobox experiments under different 
treatments. The percentage of bootstrap test (1000 replicates) 
are shown next to the branches, and values under 50% were 
not considered. ITS sequence of Rhodopseudomonas palus‑
tris AB498825 served as outgroup. The evolutionary distances 

were computed using the Maximum Composite Likelihood 
method. The analysis involved 48 nucleotide sequences. Evo-
lutionary analyses were conducted in MEGA7. Pink or Red 
represent Mashare or Ogongo soil, respectively. Treatment 
with inoculant Bradyrhizobium sp. 1–7 (+ B) and harvested 
either after 40 days (filled circle) or after 75 days (empty cir-
cle); triangle: no inoculant treatment (-B); square: N fertilizer 
treatment without inoculation. Rb1 or Rb2: rhizobox experi-
ments under 45% or 20% soil water holding capacity, respec-
tively. The major inoculant strain, Bradyrhizobium sp. 1–7 is 
indicated by a star (*) in the phylogram
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in the rhizosphere decreased under optimum water con-
ditions. In contrast, an enrichment of rhizosphere  Nmin 
occurred under water stress, reaching 51.33 mg  kg−1 in 
Mashare, and 6.63 mg  kg−1 in Ogongo soil. This effect 
of water availability on rhizosphere  Nmin was stronger 
in Mashare compared to Ogongo soil. Fertilization 
treatments did not influence rhizosphere  Nmin.

Inoculation and water availability effects on C, N and 
pH in bulk soil

Water stress had a major effect on bulk soil condi-
tion (C, total N,  Nmin and pH) during flowering stage. 

The SOC content in bulk soil under optimum water 
decreased by 10–20% compared to pre-planting 
content in Mashare and Ogongo soil respectively 
(Table 3). Under water stress, bulk soil SOC content 
remained at pre-planting content in both soils. Total 
N content in bulk soil under optimum water decreased 
by 40% in Mashare and Ogongo soil compared to 
pre-planting content. Under water stress, this effect 
was reduced to 25% loss in Mashare and 37% loss in 
Ogongo soil, respectively. Mineral N content in bulk 
soil decreased under both water contents on both sites 
(Table 3). The decrease was higher in Mashare than 
in Ogongo soil, with the largest depletion in Mashare 

Fig. 3  Change of SOC 
(A-B), total N (C-D), CN 
ratio (E–F) and mineral 
N (G-H) contents in the 
rhizosphere at flowering 
stage in relation to initial 
soil conditions (zero line). 
Treatments are indicated 
as inoculated (inoc), non-
inoculated (non-inoc) and 
with organic N addition 
(N) for soils from Mashare 
and Ogongo at 20% and 
45% water holding capacity 
(WHC). Small letters (a-c) 
indicate significant differ-
ences according to ANOVA 
at p-level = 0.05
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soil under optimum water with -28.74 mg  kg−1 com-
pared to the initial content. The bulk soil  pHCaCl2 
in both soils decreased compared to initial values. 
This effect was stronger under optimum water than 
under water stress and more pronounced in Ogongo 
compared to Mashare soil. Fertilization treatments 
showed no direct effect on bulk soil.

Growth‑period effects on soil C and N pools

Temporal effects on rhizosphere characteristics were 
compared between maturity (40  days) and ripening 
(75 days) stage in inoculated water-optimum treatments 
(Fig.  4). In the long-term observation, nodule senes-
cence appeared after 68 days for both sites, indicated 

Table 3  Change of soil organic carbon (SOC), total N (N) 
and mineral N  (Nmin) contents as well as CN ratio and pH (in 
 CaCl2) in the bulk soil at flowering stage in relation to initial 

soil conditions from Mashare and Ogongo at 20% and 45% 
water holding capacity (WHC). Small letters indicate signifi-
cant differences according to ANOVA (p-level = 0.05)

Site WHC Treatment ΔSOC ΔN ΔNmin ΔpHCaCl2

[%] [%] [mg  kg−1]

Mashare 20% inoc -0.009 ± 0.001ab -0.006 ± 0.001a -9.23 ± 2.53ab 0.18 ± 0.08a
non-inoc -0.005 ± 0.007ab -0.007 ± 0.001ab -12.70 ± 1.86b 0.08 ± 0.03a
N -0.003 ± 0.007ab -0.008 ± 0.001abc -2.02 ± 4.17a -0.07 ± 0.06ab

45% inoc -0.055 ± 0.003c -0.013 ± 0.001d -28.93 ± 0.16c -0.85 ± 0.05ccd
non-inoc -0.04 ± 0.005bc -0.01 ± 0.001bcd -28.39 ± 0.55c -0.47 ± 0.01bc
N -0.052 ± 0.005c -0.011 ± 0.000 cd -30.63 ± 0.54c -0.74 ± 0.12 cd

Ogongo 20% inoc -0.001 ± 0.004a -0.008 ± 0.001abc -5.88 ± 1.41ab -0.58 ± 0.13c
non-inoc 0.001 ± 0.008a -0.009 ± 0.001abc -6.39 ± 0.80ab -0.58 ± 0.05c
N 0.005 ± 0.008a -0.005 ± 0.001a -5.86 ± 0.74ab -0.80 ± 0.07cde

45% inoc -0.015 ± 0.003a -0.008 ± 0.000abc -9.27 ± 0.02ab -1.10 ± 0.25def
non-inoc -0.022 ± 0.003a -0.008 ± 0.000abc -9.28 ± 0.02ab -1.43 ± 0.07f
N -0.019 ± 0.007a -0.009 ± 0.000abc -9.24 ± 0.02ab -1.27 ± 0.03ef

Fig. 4  Change of SOC 
(A), total N (B), CN ratio 
(C) and mineral N (D) 
contents in the rhizosphere 
compared to initial soil 
conditions (zero line) at two 
growth stages (flowering, 
ripening) for inoculated 
and optimum water treat-
ments. The ripening stage 
in Mashare soil was limited 
to n = 2 and statistical 
significances are accepted 
under reserve. Small letters 
indicate significant differ-
ences according to ANOVA 
at p-level = 0.05
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by visible cavities (Appendix Figure  A1). Rhizos-
phere SOC content increased by 77% after ripening 
compared to maturity stage (Fig.  4A). This increase 
was lower in Ogongo compared to Mashare soil, with 
0.30% to 0.46% in Ogongo, and 0.32% to 0.67% in 
Mashare soil, respectively. The total N content in the 
rhizosphere increased after the ripening stage, reach-
ing a maximum of 0.07%. This effect was stronger 
in Mashare compared to Ogongo soil. After reaching 
ripening stage, CN ratios and mineral N content in the 
rhizosphere developed in the direction of pre-planting 
levels (Fig.  4C-D). In both soils, rhizosphere  Nmin 
increased after ripening compared to flowering stage. 
Particularly in Ogongo soil, rhizosphere  Nmin content 
rose from 4.67 mg  kg−1 at flowering to 5.89 mg  kg−1 at 
ripening stage, exceeding the pre-planting level.

In bulk soil, the effect was less pronounced than in 
rhizosphere soil, and only SOC contents reached pre-
planting levels (Appendix Table A2). However, SOC, 
total N, Nitrate as well as pH values significantly 
increased after ripening compared to flowering stage.

Interactions between soil and plant parameters

During the flowering stage, the number of nod-
ules as well as average nodule size were directly 
related, and nodulation in general (number of nod-
ules as well as average nodule size) was positively 
correlated to plant biomass, plant C and N content 
(Fig.  5, Appendix Figure  A3). Particularly shoot 
biomass was positively related to nodulation and 
%Ndfa, resulting in increased shoot to root ratios. 
Nodulation and %Ndfa were negatively correlated 
to  Nmin in the rhizosphere and bulk soil (total val-
ues as well as changes compared to initial condi-
tion), but showed no relationship with total N 
contents.

The statistical power of correlation analyses at 
ripening stage was limited (n = 5). However, it indi-
cated a tendency for decoupling of nodule amount 
and nodule size (Appendix Figure A4). While nod-
ule size was positively related to  Nmin and %Ndfa, 
the nodule amount was negatively related.

Fig. 5  Relationship 
between nodule amount and 
%Ndfa (A), shoot biomass 
(B), change in rhizosphere 
 Nmin (C) and change in 
rhizosphere pH (D) with 
Spearman rank correlation 
coefficients (ρ). Red lines 
indicate linear or logarith-
mic regression lines with 
95% confidence bands and 
respective coefficients of 
determination  (R2). Rela-
tionships with p > 0.05 are 
denoted as not significant 
(n.s.)

R² = 0.20, p<0.001
ρ = 0.5, p<0.001
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Discussion

Inoculation and water availability effects on 
nodulation and biological  N2 fixation

The application of bio-inoculants to improve N sup-
ply of legume crops is seen as a promising tool to 
improve small-holder agriculture in Sub-Saharan 
Africa (Nyaga and Njeru 2020; Rehman et al. 2019). 
The actual potential of inoculation to improve legume 
nodulation can depend on local site characteristics 
and might affect soil–plant interaction in the rhizos-
phere (Henneron et  al. 2020; Maltais-Landry 2015), 
independent of plant residue inputs. We investigated 
the effects of inoculation on crop and nodule devel-
opment, as well as rhizosphere-soil conditions in a 
rhizobox setup. Inoculation was compared to conven-
tional N fertilization and untreated soil, under two dif-
ferent water availabilities and in two Namibian soils.

The inoculation treatment did not improve nodu-
lation or  N2 fixation in our experiment, neither were 
soil conditions in the rhizosphere largely affected by 
fertilization treatments. The calculated %Ndfa val-
ues were comparatively low but within previously 
reported ranges for cowpea under field conditions in 
Ghana (Belane and Dakora 2009). Previous studies 
explained the absence of an inoculation effect on  N2 
fixation by cowpeas and other legumes with the pres-
ence of an adequate number of native rhizobia exist-
ing in their respective soils (Awonaike et  al. 1990; 
Makgato et  al. 2020). Accordingly, Grönemeyer 
et  al. (2013) and Grönemeyer et  al. (2014) reported 
occurrence of strains of Bradyrhizobium spp.—which 
relatively heat resistant and common in the region—
in nodules in Mashare field soil. They related the 
concurrently low number of rhizobial infections to 
environmental stress, such as high temperatures and 
drought. The latter was also supported by the domi-
nant effect of water availability on nodule develop-
ment in our study. Water scarcity not only reduced 
the maximum number and size of pronounced nod-
ules, but also led to a retarded nodule development. 
Under water stress, nodulation occurred about ten 
days later than under optimum water, reducing BNF 
fixation and consequently plant growth. Inhibited 
nodulation under water stress is well described in 
previous studies (Kurdali et  al. 2006), and com-
monly related to reduced motility and chemotaxis 
of rhizobia in discontinuously water-filled pores 

(Hamdi 1971). Compared to our study, we would 
expect even stronger drought effects under field con-
dition in the Kavango region, where even lower soil 
moisture levels (e.g. 4%vol) are prevalent. Even more 
so, since soil heat effects—which were not covered 
by our approach—might further reduce nodulation 
under field conditions (Andrés et al. 2012). That the 
bradyrhizobium inoculant did not positively affect 
the plant or grain yield in our lab setup was quite sur-
prising, as in a previous field trail in Mashare, grain 
yield had increased by inoculation with our strains 
even over the N-fertilized controls (Chaluma Luchen 
et al. 2018). It is conceivable that under more stress-
ful environmental field conditions in comparison with 
laboratory rhizoboxes under controlled climate and 
constant water supply, inoculants are more important 
for successful nodulation and BNF. Moreover, soil 
samples were well mixed and thus did not contain 
natural gradients; in the field, uppermost layers of soil 
are prone to high temperatures and drying, which are 
adverse conditions for survival of rhizobia during the 
dry season.

Contrary to our expectation, N fertilization did not 
inhibit nodulation or BNF completely. It is already 
known that little to moderate levels of N-fertilization 
can facilitate root nodulation by rhizobia (Getachew 
Gebrehana and Abeble Dagnaw 2020). We calculated 
the added amount of N to reflect 50 kg N  ha−1 under 
field conditions, a common value for small-holder 
farmers in the study region. Apparently, this amount 
was not sufficient to suppress symbiosis with rhizobia 
under strong N limitation. The rate of BNF is strongly 
influenced by the initial soil N content and commonly 
decrease with higher availability of mineral N (Rein-
precht et al. 2020). Given the low N status in Mashare 
and Ogongo soils, the  N2 fixation rates in this study 
are comparably high (Kermah et  al. 2018), and fur-
ther highlight the importance of legume crops for the 
study region.

Biological nitrogen fixation by rhizobium-leg-
ume symbioses constitutes an ecological friendly 
and inexpensive alternative to the use of chemical 
nitrogen fertilizers for legume crops (Herridge et  al. 
2008). Rhizobial inoculants, often applied as bio-fer-
tilizers, play an important role in sustainable agricul-
ture (Kebede 2021; Soumare et  al. 2020). However, 
inoculants often fail to compete for nodule occupancy 
against native rhizobia resulting in low yields (Thies 
et  al. 1991). Strains with excellent performance 
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under controlled conditions are typically selected as 
inoculants, but the rates of nodule occupancy com-
pared to native strains are also important factors that 
need to be investigated (Batista et  al. 2015; Irisarri 
et  al. 2019; Mendoza-Suarez et  al. 2021). There-
fore, knowledge from laboratory studies assessing 
competition and even from field trials, may allow 
us to select climate adapted elite strains specific for 
a certain cultivar and successful in establishing in 
majority of the root nodules. In our study, regional 
separation (Mashare or Ogongo), with different soil 
properties, played a major role for cowpea nodule 
occupancy by our Namibian inoculant strain. Appar-
ently, the inoculant strain originating from sandy soil 
in north-east of Namibia (Mashare in the Kavango 
region (Grönemeyer et al. 2014)) was not fully com-
petitive in the north-west of Namibia (Ogongo with 
loamy soil), except for drought conditions. Existence 
of such site-specific rhizobial genotypes have already 
been reported from different organic fields in Minne-
sota (Wongphatcharachai et  al. 2015). Identification 
of such strains might prove useful as novel inoculants 
for organic bean production systems. Even a study 
involving mycorrhizal fungi inoculant has shown that 
establishment of the fungus inoculant at the two dis-
tant locations was not related to cropping or inocula-
tion practices but site specific (Kokkoris et al. 2019).

Thus, future development of rhizobial bio-inoc-
ulants need to combine effectiveness and competi-
tiveness under field conditions, and perhaps develop 
additional regional inoculant strains, e.g. for North-
West Namibia.

Inoculation and water availability effects on soil C 
and N pools

Rhizobox cultivation of cowpea affected SOC and N 
pools in Namibian soils compared to their initial sta-
tus. Until flowering, these effects followed an oppo-
site direction for bulk and rhizosphere soil, and were 
weakened under water stress. While in bulk soil, SOC 
as well as total and mineral N contents generally 
decreased until flowering stage, rhizosphere contents 
increased – or showed increasing tendencies in most 
treatments. After ripening, SOC and N pools in the 
rhizosphere increased even further and also started to 
re-increase in the bulk soil.

The decrease of bulk-soil total N content dur-
ing plant growth can be explained by microbial N 

mineralization and plant N uptake (Parkin et  al. 
2002). This is supported by a reduction of this process 
under water stress in our study, which inhibits plant N 
uptake (He and Dijkstra 2014) and reduces microbial 
activity (Manzoni et al. 2012). Also, in our unplanted 
controls, total N contents decreased until harvest. In 
turn,  Nmin contents increased by 350—550%, indi-
cating an effective microbial N mineralization – par-
ticularly under optimum water. These effects were 
mitigated or even reversed in the rhizosphere soil. 
Effects of legume cultivation on soil C and N stocks 
are well reported (Drinkwater et al. 1998; Lal 2015b), 
and often associated with the incorporation of N rich 
plant residues and consequent increase of overall soil 
quality (Meena et al. 2018; Webb et al. 2003). How-
ever, the release of rhizodeposits has a direct positive 
effect on SOC contents (Pausch and Kuzyakov 2018), 
and – mainly in form of ammonium, amino acids and 
ureides – on N pools in the rhizosphere (Fustec et al. 
2010). This effect can comprise up to 20% of organic 
C (Kumar et al. 2018), and 10% of total plant derived 
N inputs in legume cover crop systems (De Notaris 
et al. 2019), and also increase gross N mineralization 
(Liu et al. 2022), independent of fertilization (Meier 
et al. 2017). The latter might also explain why ferti-
lization treatments showed no or weak effects in our 
study. Furthermore, water availability hat a stronger 
effect on rhizosphere than bulk soil pH and  Nmin, 
indicating a direct effect of rhizodeposition. However, 
this was not apparent for total C and N contents, and 
previous studies have shown that drought can affect 
rhizodeposition amount and composition in various 
ways –depending on plant species or cultivar (Naylor 
and Coleman-Derr 2018). More research would be 
required to distinguish these effects.

At ripening stage, the rhizodeposition effect was fur-
ther enhanced, as  Nmin, total N and SOC increased com-
pared to flowering stage in rhizosphere but also bulk 
soils of both sites. Rhizodeposition is directly related 
to plant growth, leading to C and N enrichment in the 
Rhizosphere over time (Kumar et al. 2018). However, 
this follows a non-linear relationship and aboveground 
productivity as well as the amount of fresh rhizodepo-
sition decrease after the vegetative stage (Villarino 
et al. 2021). Therefore, it is unlikely that our observed 
increase of SOC and N contents in the rhizosphere from 
flowering to ripening stage is solely a result of continu-
ous inputs. Instead, we expect that the visible nodule 
senescence and dissolution at ripening stage (Appendix 
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Figure  A2, day 75) led to a pulse of rhizodeposits, 
explaining strong increases of SOC and N contents in 
the rhizosphere. Generally, the N rhizodeposition is 
expected to increase with increased senescing of roots 
and nodules (Fustec et  al. 2010). While we are not 
aware of any study that identified the composition of 
shed nodule tissues, legumes are assumed to provide 
highly N-rich deposits (De Notaris et al. 2019), which 
would lead to a pulse of easily available N-rich organic 
matter inputs into the rhizosphere. This effect might 
also occur well before maturity if nodule senescence 
is prematurely induced by water stress (Kasper et  al. 
2019). Consequently, legume effects on soil condi-
tions are undergoing a strong temporal variation, which 
could alter C and nutrient availability in the rhizosphere 
and would be important to consider in multi-cropping 
and cover crop systems (Hassen et al. 2017).

Conclusion

In this study, we used a rhizobox setup to investigate 
the effects of rhizobial inoculation (Bradyrhizobium 
sp.) and water stress on nodule development and BNF 
of cowpea in two Namibian soils and analysed conse-
quent effects on rhizosphere soil C and N content. We 
conclude that inoculation was unable to enhance nod-
ulation, BNF and yields under these well-controlled 
laboratory conditions, in contrast to field studies in 
the Kavango. However, it was able to ensure success-
ful root nodulation by rhizobia, even under drought. 
Identification of site specific strains, which are more 
competitive under extreme conditions, might prove 
useful to improve novel inoculants. Successful nodule 
development was mainly controlled by sufficient soil 
water availability and was independent of soil type.

However, despite the marginal difference, the 
soil type did control the response of SOC and total 
N pools to cowpea cultivation, indicating a strong 
effect of regional soil characteristics. These effects 
were further dependent on soil moisture and growth 
stage, and differed between rhizosphere and bulk 
soil. Microbial activity, mineralization and plant N 
uptake led to a decrease in bulk soil SOC and N pools 
at flowering stage. In the rhizosphere, this effect was 
buffered and partly reversed over time. Eventually, 
SOC and N pools in the rhizosphere increased to pre-
planting levels after ripening. This indicates that leg-
ume cultivation can be able to – at least – maintain 

soil C and N pools without the additional input of 
harvest residues. However, the fate of these deposits 
until the following growing season remains unknown, 
and understanding consequences of farming practices 
on these mechanisms requires further research.
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