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Abstract 
Aims  To understand the species composition, abun-
dance and diversity of nitrogen-fixing bacteria in the 
Cenchrus fungigraminus rhizosphere and to screen 
nitrogen-fixing bacteria to study their potential role in 
plant growth promotion.
Methods  Soil were collected from 4 depths (G1, 
G2, G3 and G4) of the C. fungigraminus rhizos-
phere, and their physical and chemical properties 
were determined. The diversity and abundance of 

nitrogen-fixing bacteria and the nifH gene was ana-
lysed. Nitrogen-fixing bacteria were screened and 
selected to promote growth of C. fungigraminus 
seedlings.
Results  The highest diversity and abundance of 
nitrogen-fixing bacteria was observed in the G2 
samples collected from the C. fungigraminus rhizo-
sphere. These bacteria mainly included Proteobacte-
ria (93.91%), Actinobacteria (0.42%), and Firmicutes 
(0.18%) and were significantly affected by total nitro-
gen, available nitrogen and soil depth. The nifH gene 
copy number was highest (1.56 ± 0.17 × 107 copies/g) 
in G2. Rhizobium pusense No. 8 and No. 28 were iso-
lated from G1 and G2, with nitrogenase activities of 
145.06 ± 4.10 and 199.78 ± 7.50 U/L. The promotion 
experiment revealed that the plant height, root length, 
and leaf length of C. fungigraminus seedlings treated 
with both strains significantly increased by 56.79%, 
76.99% and 55.71%, and the soil moisture and total 
nitrogen were significantly increased compared to the 
control (P < 0.05). The available nitrogen, organic 
matter and organic carbon in soil with strain No. 28 
significantly increased compared to CK.
Conclusion  Rhizobacteria in the C. fungigraminus 
rhizosphere play an important role as plant growth 
promoting rhizobacteria (PGPR). Two strains showed 
potential for the development of biological fertilizers.
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Introduction

Nitrogen is one of the most important elements 
affecting plant growth and development. Plants asso-
ciate with microorganisms that are able to obtain 
molecular nitrogen from the atmosphere and convert 
it into ammonium nitrogen for direct use. Nitrogen-
fixing bacteria are usually classified into symbiotic 
and nonsymbiotic bacteria (Tchan 1952). Symbiotic 
nitrogen-fixing microorganisms that form a sym-
biosis with legumes are the most efficient system for 
nitrogen fixation in nature and were first reported by 
Frank (1889) in stem- and root-nodulating bacteria. 
Furthermore, many rhizobial species, such as Rhizo-
bium oryziradicis, Rhizobium rhizoryzae, Rhizobium 
pseudoryzae, Rhizobium oryzicola, and Rhizobium 
taibaishanense, have a nonsymbiotic association with 
crops (Zhang et al. 2015; Zhao et al. 2017). Currently, 
the problems regarding environmental contamination, 
energy shortages, food safety, etc., threaten sustain-
able agriculture. There is a need to reduce the use of 
chemical fertilizers. Recent studies have demonstrated 
that the host plant and its developmental stages play 
an important role in shaping the rhizosphere micro-
bial community structure (Chaparro et al. 2014; Hou 
and Babalola 2013). The rhizosphere microbiome is 
mainly derived from plant roots and has been shown 
to enhance plant growth and plant stress tolerance 
under certain environmental conditions, such as soil 
type, soil nutrients, plant cultivar, climate change 
and anthropogenic activities (Igiehon and Babalola 
2018; Vejan et al. 2016). Such bacteria are generally 
referred to as plant growth-promoting rhizobacteria 
(PGPR) (Lugtenberg and Kamilova 2009). PGPR 
have been shown to enhance plant growth by direct 
or indirect mechanisms such as biological nitrogen 
fixation, phosphate solubilization, siderophore pro-
duction, rhizosphere engineering, and phytohormone 
production (Chabot et  al. 1996). According to Nak-
keeran et al. (2005) and Swarnalakshmi et al. (2020), 
ideal PGPR should possess high rhizosphere compe-
tence, enhance plant growth capabilities, display a 
broad spectrum of action, be safe for the environment, 
be compatible with other rhizobacteria, and be toler-
ant to heat, UV radiation, and oxidizing agents. PGPR 
have been shown to promote the growth of many 
crops, including maize (Ferrarezi et al. 2022), wheat 
(Majeed et al. 2015) and rice (Barraquio et al. 1997). 
Rhizobia are employed as PGPR to increase plant 

growth through phosphate solubilization, the fixation 
of nitrogen, and the production of ACC deaminase, 
siderophores and indole-3-acetic acid (Cavite et  al. 
2021).

Nitrogen-fixing genes (nif) encode nitrogen-fixing 
enzymes that catalyse nitrogen fixation. Approxi-
mately 149 nitrogen-fixing genes, including nifH, 
nifD, nifK, nifE, nifN and nifB, have been identified 
(Santos et  al. 2012). The nifH gene encodes a key 
enzyme involved in nitrogen fixation, i.e., dinitroge-
nase, which is highly conserved and widely distrib-
uted among nitrogen-fixing bacteria. The nifH gene 
expression in plants at different growth stages was 
consistent with changes in the composition of nitro-
gen-fixing bacteria (Lin et al. 2021). Average annual 
rainfall and temperature were reported to be the main 
factors affecting changes in endophytic nitrogen-
fixing bacteria in different regions (Jia et  al. 2020). 
High-throughput sequencing technology is able to 
overcome the limitation of microbiological studies 
based on traditional pure culture and can be used to 
quantitatively analyse samples of noncultivable, dom-
inant, and rare bacteria and can comprehensively and 
accurately reflect flora composition and abundance 
(Monteiro et al. 2016).

Cenchrus fungigraminus Z. X. Lin & D. M. 
Lin & S. R. Lan sp. Nov. (Pennisetum giganteum 
Z. X. Lin or Giant grass has been used before) is 
a new species and perennial C4 plant of the fam-
ily Gramineae with high yield and arid adaptability 
(Lin et  al. 2022). It was collected in South Africa 
and has been widely used in environmental manage-
ment (Zhou et al. 2021), in the production of edible 
and medicinal mushrooms (Su et  al. 2022), and as 
fodder (Liu et al. 2018), yielding a good economic 
benefit for rural areas. Currently, C. fungigraminus 
is grown in 31 provinces in China, including Inner 
Mongolia, Qinghai, Hainan, Ningxia, Guizhou, 
Sichuan and Fujian, and in 106 countries worldwide 
(Lin and Lin 2018). The total nitrogen content of C. 
fungigraminus may exceed its total nitrogen uptake 
from soil and fertilizer, presumably due to the pres-
ence of the endophytic nitrogen-fixing bacteria. 
Klebsiella and Bradyrhizobium that were shown 
to be the main nitrogen-fixing bacteria present in 
the roots and stems of C. fungigraminus in Hainan 
Province (Lin et al. 2019). In this study, we evalu-
ated the diversity and abundance of nitrogen-fixing 
bacteria in the rhizosphere of C. fungigraminus in 
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Hainan and screened the main PGPR to explore 
their potential effect on C. fungigraminus seed-
lings and soil. We hypothesized that the diversity 
and abundance of nitrogen-fixing bacteria in the C. 
fungigraminus rhizosphere would be significantly 
affected by soil depth and some strains may have 
the ability to promote plant growth as PGPR. Our 
results provide a theoretical basis for the screening 
and development of PGPR from the C. fungigrami-
nus rhizosphere as biological fertilizers.

Materials and methods

Sample collection and processing

C. fungigraminus was planted in 2017 at the Danzhou 
Demonstration Base (22 m × 37 m) of the National 
Engineering Research Center of Juncao Technol-
ogy in Hainan Province, People’s Republic of China 
(109°53’ E and 19°50’ N). In total, 4 groups of soil 
samples were collected in 2021 from the C. fungi-
graminus surface soil (G1), rhizosphere soil (1–5 mm 
from the plant roots; these samples were carefully 
shaken to collect the soil attached to the roots) (G2), 
10 cm depth from the main root of C. fungigraminus 
(G3) and 20 cm depth from the main root of C. fun-
gigraminus (G4). According to Li et  al. (2020) and 
Xomphoutheb et  al. (2020), G2 is rhizosphere soil, 
while G1, G3 and G4 are nonrhizosphere soil sam-
ples. Six natural soil replicates of each group were 
randomly collected from the demonstration base 
using a clean soil auger and placed in clean, labelled 
sample bags. Each sample was divided into two 
parts; one part was stored at 4 °C until physical and 
chemical analyses were performed. The other part 
was stored at -80  °C until further analysis. The col-
lected soil samples were ground and sieved through 
a 2 mm sieve. DNA extraction from the soil samples 
was performed by a Soil DNA Isolation Kit (Invitro-
gen, USA) following the manufacturer’s instructions. 
The integrity of the extracted DNA was determined 
by 1% (w/v) agarose gel electrophoresis with SYBR 
Safe (Invitrogen, USA). The concentration of DNA 
was estimated by a Nanodrop spectrophotometer 
(Thermo, USA). The soil used for the plant promo-
tion experiment was obtained from the National Engi-
neering Research Center of Juncao Technology.

High‑throughput sequencing and diversity analysis

The phylogeny of the nifH gene is significantly con-
sistent with the presence of specific16S rRNA, with 
highly conserved sequences, abundant data informa-
tion, and variable regions; this gene can be used to 
indicated the existence of nitrogen-fixing bacteria 
in samples and to reveal the relationship between 
the community structure of nitrogen-fixing bacte-
ria and the environment (Cantera et  al. 2004; Ter-
akado-Tonooka et  al. 2008). An amplified fragment 
of nifH, a functional gene for nitrogen fixation, was 
selected for subsequent high-throughput sequenc-
ing. The primer sequences were nifH-F: 5′-TGC​GAY​
CCSAARGCBGACTC-3′ and nifH-R: 5′-ATSGCC​
ATC​ATY​TCR​CCGGA-3′. The polymerase chain 
reaction (PCR) conditions were predenaturation at 
98 °C for 5 min, denaturation at 98 °C for 30 s, and 
annealing at 55 °C for 30 s, for a total of 30 cycles, 
and then extension at 72  °C for 5  min. The target 
fragments were approximately 360  bp in size and 
were recovered using a gel extraction kit after 1% 
agarose gel electrophoresis of the amplified products 
for high-throughput sequencing by Shanghai Person-
albio Technology Co., Ltd. (Lin et al. 2021).

The nifH fragments were sequenced and then ana-
lysed using the QIIME2 (v2.13.4) analysis platform. 
The quality of the reads and the effect of splicing 
were filtered by quality control, and the samples were 
effectively distinguished according to the sequence 
at the ends of the fore and aft bar-code and primer 
sequence to calibrate the sequence direction, namely, 
to optimize the data. Sequences for annotation were 
based on the Greengenes database (Release 13.8, 
http://​green​genes.​secon​dgeno​me.​com/) (DeSantis 
et  al. 2006). The alpha diversity was calculated at 
the operational taxonomic unit (OTU) level of each 
sample and evaluated according to the distribution of 
OTUs in different samples, and the appropriateness of 
the sequencing depth was reflected by the rarefaction 
curve. The matrix distance was calculated for each 
sample at the OTU level. Canonical correspondence 
analysis (CCA) is a multivariate technique used to 
relate the composition of a species to environmental 
gradients when species have a bell-shaped response 
curve (Molnar 1998). The CCA in this work was per-
formed by Genescloud tools, an online platform for 
data analysis (https://​www.​genes​cloud.​cn). At the 
species taxonomic composition level, the differences 
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in species abundance and composition between dif-
ferent samples (groups) were further analysed by var-
ious unsupervised and supervised sorting, clustering 
and modelling means, combined with the correspond-
ing statistical test methods, and attempts were made 
to identify marker species by linear discriminant 
analysis (LDA) and linear effect size (LEfSe) analysis 
(Segata et al. 2011; Chang et al. 2022).

Determination of the nifH gene copy number by 
AQ‑PCR

The nifH gene copy number of soil nitrogen-fixing 
bacteria was measured by absolute quantification pol-
ymerase chain reaction (AQ-PCR), which generates 
a standard curve by using a standard with a known 
copy number and determines the Ct value of the 
unknown sample, combining the standard curve to 
obtain the copy number (Walker 2001). The reaction 
system volume was 20 µL, which included 10 µL of 
2 × SYBR real-time PCR premixture, 1 µL of nifH-
F (10 µmmol/L) and 1 µL of nifH-R (10 µmmol/L) as 
primers, 1 µL DNA template, and 7 µL of ddH2O. 
The reaction conditions were denaturation at 95  °C 
for 15 s followed by extension at 60 °C for 30 s, for 
a total of 40 cycles, and then collection of the fluo-
rescence signal starting at 60  °C. AQ-PCR was per-
formed using nifH plasmids with a concentration gra-
dient from 10− 1 to 10− 6 as templates and a standard 
curve, and ddH2O was used as a negative control. The 
gene copy number was calculated by the following 
formula.

where y is the Ct value; k is the slope of the standard 
curve; b is the intercept of the standard curve.

Determination of soil physical and chemical 
characteristics

Research has demonstrated that PGPR play key roles 
in nutrient acquisition and assimilation and improv-
ing soil texture, nutrition, and pH, all leading to the 

y = −k log x + b

Gene copy = x × eluting volume (mL)∕sample weight (g)

enhancement of plant growth (Backer et  al. 2018). 
The physical and chemical properties of the 4 groups 
of soil were analysed. The moisture content (WC) of 
the soil was determined by mass change after oven-
drying at 105 °C until constant weight. The pH value 
was measured by a pH meter (PB-10, Sartorius, Ger-
many) (Yang et  al. 2012). The total nitrogen (TN), 
available nitrogen (AN), organic matter (OM) and 
organic carbon (OC) contents of the soil were deter-
mined following Baeumer (1974) and Schumacher 
et al. (2009).

Isolation and identification of nitrogen‑fixing strains

The screened strains were tested for nitrogenase 
activity, phosphorus-dissolving capacity, ammo-
nia production capacity and siderophores produc-
tion capacity. In addition, indole tests (tryptophan 
in peptone was decomposed to produce indole), 
catalase tests (toxic hydrogen peroxide was decom-
posed to H2O and O2), and NO3

− reduction tests 
(nitrate was reduced to nitrite and ammonia) were 
used to screen the PGPR. Each fresh soil sample 
(2 g) from the 4 groups was added to 18 mL ddH2O, 
mixed well and then diluted to 10− 5. Then, 0.1 mL 
of the diluted solution was inoculated into Ashby’s 
nitrogen-free medium and incubated at 30  °C for 
24–48 h under aerobic conditions (Lin et al. 2020). 
The colonies were picked randomly and inoculated 
in Ashby’s nitrogen-free medium for screening and 
preservation. The nitrogenase activity of the isolated 
bacteria was determined by a soil nitrogenase dou-
ble antibody enzyme-linked immunosorbent assay 
(ELISA) kit (Thermo, USA). The solution changes 
colour from blue to yellow, and the intensity of the 
colour is measured at 450  nm using a spectropho-
tometer. The ammonia production capacity, nitrate 
reduction capacity (Marschner 1995), and catalase 
activity (Kuscu 2019) of the representative strains 
were measured. The selected representative strains 
were inoculated into Chrome Azurol S (CAS) 
test medium and incubated at 30  °C for 24–48  h 
to observe the siderophores around the colonies. 
The selected representative strains were inoculated 
into inorganic phosphorus medium (glucose 10.0, 
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(NH4)2SO4 0.5, yeast extract 0.5, NaCl 0.3, KCl 0.3, 
MgSO4 0.3, FeSO4 0.03, MnSO4 0.03, Ca3(PO4)2 
5.0, agar 15.0, pH 7.0-7.5, g/L) and organic phos-
phorus medium (glucose 10.0, (NH4)2SO4 0.5, 
yeast extract 0.5, NaCl 0.3, KCl 0.3, MgSO4 0.3, 
FeSO4 0.03, MnSO4 0.03, lecithin 0.2, CaCO3 1.0, 
agar 15.0, pH 7.0-7.5, g/L) at 30 °C for 24–48 h to 
observe the phosphorus-solubilized circles around 
the colonies (Madigan and Martinko 1997).

Whole-cell protein pattern analysis by sodium 
dodecyl sulfate‒polyacrylamide gel electrophoresis 
(SDS-PAGE) offers a fairly fast and easy method of 
identifying a large number of strains, and it has an 
adequate level of taxonomic resolution at the spe-
cies and subspecies levels. SDS-PAGE protein pat-
tern analysis has been successfully used to identify 
various types of bacteria (Kim et al. 2010). The iso-
lated bacteria were inoculated into Ashby’s nitro-
gen-free liquid medium (with 30 °C, 150 rpm shake 
cultured) and grown to the logarithmic phase with 
an OD600 value of 1.0, and the bacterial colonies 
were clustered by SDS-PAGE whole-cell protein 
electrophoresis to determine the homology of the 
strains (Lajudie et al. 1994). The Tanon GIS series 
digital gel image processing system and image 
analysis were used to analyse the homology of the 
diversity of strains.

The 16S rDNA sequence PCRs were performed as 
a total reaction system of 25 µL, which contained 2 × 
PCR TaqMix 12.5 µL, template DNA 1.0 µL, primer 
27F (10 µmmol/L) 1 µL, primer 1492R (10 µmmol/L) 
1 µL, and ddH2O 9.5 µL. The 16S rDNA universal 
primers were 27F: 5’-AGA​GTT​TGA​TCC​TGG​CTC​
AG-3’ and 1492R: 5’-GGT​TAC​CTT​GTT​ACG​ACT​
T-3’. The PCR thermal cycling conditions were pre-
denaturation at 94 °C for 5 min, denaturation at 94 °C 
for 60  s, annealing at 60  °C for 60  s, and extension 
at 72  °C for 60  s, for a total of 30 cycles, followed 
by extension at 72 °C for 5 min and detection by 1% 
agar gel electrophoresis. Samples were recovered and 
sent to Fuzhou Boshang Biotechnology Co., Ltd. for 
DNA sequencing. The 16S rDNA sequences of each 
strain were blasted from nucleotide to nucleotide on 
the National Center for Biotechnology Information 
(NCBI) website (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​
cgi) for comparison, and homology was established 
using the neighbour-joining algorithm of MEGA 

(v5.1) software (Saitou and Nei 1987; Tamura et  al. 
2004; Kumar et al. 2016).

Promotional properties of PGPR

To assay growth promotion under different PGPR 
solutions, three treatments were further selected to test 
the ability of the bacteria to promote C. fungigraminus 
seedling growth in pot experiments at 28–30 °C in a 
greenhouse (natural light). During the experiment, 15 
mL of selected bacterial solution (Ashby’s nitrogen-
free liquid medium, 30℃ shake cultured at 150 rpm) 
with a concentration of 2 × 109  cfu/mL was poured 
onto the C. fungigraminus seedlings near the roots. 
Experimental treatment-1 (T1) and experimental treat-
ment-2 (T2) were treated with a single strain solution, 
and experimental treatment-3 (T3) was treated with a 
combined suspension with both strains (1:1, v/v). A 
control group (CK) was treated with the same volume 
of medium solution. There were 20 replicates in each 
group. The C. fungigraminus growth status (including 
the root length, root number, plant height, leaf length, 
and leaf number) and soil physical and chemical char-
acteristics were observed and recorded after 5 weeks 
of treatment.

Data analysis

Statistical analysis of data was carried out by SPSS 
(v9.1) software, and the results were expressed as the 
means ± standard deviations (SDs). The data were 
statistically evaluated using a one-way analysis of 
variance (ANOVA) test, and values presented with 
different lowercase letters are significantly different at 
P < 0.05.

Results

Soil physiochemical properties

The physical and chemical properties of the samples 
collected from different locations of C. fungigrami-
nus soil in Hainan Province are shown in Table  1. 
The soil pH value and contents of TN, AN, OM 
and OC gradually decreased with soil depth, and 
the contents of each parameter were lowest in G4. 
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However, the water content increased gradually and 
was highest in G4.

Determination of the nifH gene copy number

The results of the genomic DNA extracted from the 24 
samples and the electrophoretic amplification of nifH 
were detected by 1% agar gel electrophoresis (Fig. S1). 
The Ct value was obtained by AQ-PCR amplifica-
tion of the nifH gene and was plotted as the ordinate. 
The standard curve equation was Y =-3.59X + 39.89, 
R2 = 0.999, and the amplification efficiency was 89.91% 
(Fig.  S2). The melting curve had a single peak, indi-
cating that there was no nonspecific amplification or 
primer dimer. The copy number of the nifH gene was 
highest in G2 (1.56 ± 0.17 × 107 copies/g) (Fig. S3).

Nitrogen‑fixing bacterial population diversity

Through the prepossessing of the sequences and the 
removal of low-quality and ambiguous sequences, 
a total of 3.28  million raw sequences were obtained 
from the 24 samples. After initial quality filtering, 
noise removal and correction, 3.07  million valid 
sequences remained with sequence lengths ranging 
from 33 to 444 bp; the average sequence length was 

319  bp. Based on the principle of similarity greater 
than 97%, the total OTU numbers of the G1, G2, G3 
and G4 samples were 1650, 1821, 1704 and 1729, 
respectively. The richness of nitrogen-fixing bacteria 
in rhizosphere soil (G2) was higher than that in non-
rhizosphere soil (G1, G3, G4) (Fig. S4a). Four groups 
of sample dilution curves with Observed_species were 
stable as the soil depth deepened; the sequences were 
constructed by QIIME2 (v2.13.4). Nonmetric multidi-
mensional scaling (NMDS) revealed that 6 samples in 
each group were well clustered and indicated that the 
amount of sequenced data was reliable and reflected 
the diversity of the nitrogen-fixing bacterial commu-
nities (Fig.  S4b). Alpha diversity analysis revealed 
the richness and diversity of the microbial communi-
ties in each group of samples. Table 2 shows that the 
Chao 1 index, the number of observed_species, and 
the Shannon index of nitrogen-fixing bacterial species 
were highest in G2. The diversity and abundance of 
the nitrogen-fixing bacterial groups were the highest 
in the C. fungigraminus rhizosphere soil (Table 2).

Species abundance and community structure

The overall structure of the nitrogen-fixing bacteria is 
shown in a circle packing chart (Carrión et al. 2019) 

Table 1   Physical and chemical characteristics of C. fungigraminus’ soil collected from different locations (n = 6, means ± SDs)

Values presented with different lowercase letters are significantly different at P < 0.05

Sources Moisture content
(WC, %)

pH Total nitrogen
(TN, g/kg)

Available nitrogen
(AN, mg/kg)

Organic matter 
(OM, %)

Organic carbon
(OC, %)

G1 8.80 ± 0.04a 6.08 ± 0.02a 0.20 ± 0.12a 88.08 ± 3.64a 7.18 ± 0.39a 4.12 ± 0.22a

G2 8.28 ± 0.12b 6.18 ± 0.05b 0.12 ± 0.01b 53.67 ± 2.67b 4.61 ± 0.46b 2.65 ± 0.27b

G3 8.46 ± 0.18b 5.92 ± 0.01c 0.07 ± 0.02c 35.58 ± 1.01c 2.37 ± 0.11c 1.36 ± 0.06c

G4 8.92 ± 0.07a 5.84 ± 0.02d 0.06 ± 0.06c 32.08 ± 1.01d 1.93 ± 0.22d 1.11 ± 0.13d

Table 2   Alpha diversity index of the nifH gene in C. fungigraminus soil from different locations (n = 6, means ± SDs)

There was a significant difference between G1 and G2 and between G3 and G4 in the Chao1 index and the Goods_coverage percent-
age (P < 0.05). There were significant differences in the Pielou_e index and the Shannon index among the groups. There were no 
significant differences in the Simpson index between G2 and G3 and no significant differences in the Observed_species index among 
the groups (P > 0.05)

Sources Chao1 Goods_coverage (%) Observed_species Pielou_e Shannon Simpson

G1 2028.63 ± 237.27b 99.56 ± 0.05a 1647.05 ± 210.33a 0.72 ± 0.01c 7.69 ± 0.21c 0.98 ± 0.00b

G2 2366.97 ± 142.22a 99.46 ± 0.04b 1825.12 ± 152.10a 0.77 ± 0.02a 8.37 ± 0.12a 0.99 ± 0.00a

G3 2294.24 ± 148.45a 99.43 ± 0.03b 1706.62 ± 111.97a 0.74 ± 0.02b 7.98 ± 0.25b 0.99 ± 0.01b

G4 2307.77 ± 148.12a 99.44 ± 0.03b 1726.88 ± 134.63a 0.77 ± 0.01a 8.31 ± 0.19a 0.99 ± 0.00a
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in which the different domain, phylum, order, family, 
genus and species levels have different microbiota. 
At the phylum level, 90.93–95.98% of the bacteria 
belonged to Proteobacteria, with the greatest abun-
dance occurring in G1 and the least abundance in 
G4. Actinobacteria accounted for 0.12–0.42% of the 
bacteria and had the greatest abundance in G2. Fir-
micutes, Cyanobacteria and Verrucomicrobia were 
present in small amounts in the 4 groups, with abun-
dances of 0.09–0.34%, 0.05–0.29% and 0.06–0.14%, 
respectively. Spirochaetes and Chlorobi were present 
in G2, with abundances of 0.02% and 0.01%, respec-
tively, but did not appear in the other groups. Unclas-
sified clades were also present in the 4 groups with 
abundances of 3.66–5.35% (Fig. 1a).

At the genus level, the community composi-
tion and relative abundance of nitrogen-fixing bac-
teria in the C. fungigraminus rhizosphere soils were 
significantly different between different locations. 
The genera with the high abundance in the 4 groups 
included Bradyrhizobium (29.64–39.71%), Geobacter 
(9.35–28.99%), Azospirillum (1.75–15.15%), Desulfo-
vium (1.75–15.15%), Desulfovibrio (2.67–5.58%), Bur-
kholderia (1.42–6.76%), Halorhodospira (0.68–2.73%), 
Methylosinus (0.51–4.30%), Azotobacter (1.07–2.45%), 
Paraburkholderia (0.30–1.70%), Frankia (0.11–0.34%), 

Rhizobium (0.0023-0.01%) and unidentified bacte-
ria (23.26–31.81%). Phyla with high abundance in 
G1 included Proteobacteria (95.97%), Actinobacteria 
(1.16%), Verrucomicrobia (0.98%), Firmicutes (0.89%), 
Cyanobacteria (0.61%) and other unidentified genera 
(3.65%). In G2, bacterial genera present in high abun-
dance included Proteobacteria (93.91%), Actinobac-
teria (0.42%), Firmicutes (0.18%), Verrucomicrobia 
(0.06%), Cyanobacteria (0.04%), Rhizobium (0.0054%) 
and unidentified genera (5.35%). In group 3, Proteo-
bacteria (90.93%), Actinobacteria (3.10%), Firmicutes 
(0.34%), Cyanobacteria (0.29%), and Verrucomicrobia 
(0.14%) were the main community components. In G4, 
genera with high abundance included Proteobacteria 
(94.10%), Actinobacteria (0.38%), Firmicutes (0.32%), 
Cyanobacteria (0.16%), and Verrucomicrobia (0.09%) 
(Fig. 1b).

As shown in Fig. 2a, the numbers of OTUs in G1, 
G2, G3 and G4 were 1437, 1600, 1489 and 1447, 
respectively, with 445 common OTUs among all 
groups. The numbers of unique OTUs in each group 
were 534 (G1), 399 (G2), 327 (G3) and 326 (G4). 
The overall classification of samples based on R lan-
guage and pheatmap software was plotted as a heat-
map, and the top 50 classification units in terms of 
relative abundance are shown in Fig. 2b. The colour 

Fig. 1   Composition of the nitrogen-fixing bacterial com-
munity at different taxonomic levels in a circle packing chart. 
a shows the composition at the phylum level, and b shows the 
composition at the genus level. Each dot represents the specific 
taxonomic attribution of the OTU at the phylum level. The 
largest circle represents the level of the phyla, and the circles 
with different colours and sizes represent classes, orders, fami-

lies, genera and species. The dots represent the top 100 most 
abundant OTUs, and their area is proportional to the abun-
dance of the OTUs. Therefore, the abundance of taxa corre-
sponding to the circle are also indicated by the area of the ori-
gin in the circle. The larger the sector area of the OTU in each 
group, the higher the abundance of the taxon in each group
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change on the heatmap shows that the nitrogen-fix-
ing bacterial communities of G1 and G2 had analo-
gous compositions, while the nitrogen-fixing bacte-
rial communities of G3 and G4 clustered together. 
The same result is also shown in Fig. S1b. The rela-
tive abundances of Paraburkholderia, Ruficoccus, 
Azonexus, Azohydromonas, Azoarcus, Azospirillum, 
Burkholderia and Rhizobium were higher in G1 than 
in the other groups, while the relative abundances of 
Azotobacter, Methylococcus, Rhizobium and Burk-
holderia were highest in G2. Azotobacter, Methylo-
cystis, Methylosinus, Beijerinckia, and Geobacter had 
relatively high abundances in G3, while in G4, Ral-
stonia, Pelomonas, Desulfovibrio, Halorhodospira, 
Magnetospirillum, Frankia, and Bradyrhizobium had 
higher relative abundances.

TN, AN and depth (DP) explained more than 
80% of the bacterial community variation. In C. 
fungigraminus surface soil (G1), TN, AN, OM 
and OC were the main factors and were positively 
affected by Azospirillum, Burkholderia and Rhizo-
bium. Compared to G1, DP was the only signifi-
cant main factor and contributed nearly 40% of 
the total nitrogen-fixing bacterial community var-
iation in G2, G3 and G4 (Fig.  2c). LEfSe analy-
sis showed an abundance that was plotted based 
on the overall classification of the samples. With 
an LDA value of 3 (species diversity and richness, 
P < 0.001), Actinobacteria and Proteobacteria had 
higher abundance at the phylum level, and at the 
genus level, Bejerinckia, Bradyrhizobium, Methy-
locystis, Rhizobium and Azospirillum had higher 

Fig. 2   a is a Venn diagram of the OTU distribution of all sam-
ples, and the number in the Venn diagram indicates the number 
of OTUs that were shared or unique between samples from dif-
ferent locations. b Heatmap of the top 50 most abundant gen-

era (darker green indicates higher abundance, lighter yellow 
indicates lower abundance). c Canonical correspondence anal-
ysis (CCA) based on the nitrogen-fixing bacterial community 
composition and physicochemical variables
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abundance (Fig.  S5). The distributions of Bejer-
inckia and Methylocystis in G2 were significantly 
higher than those of other genera, and these gen-
era were the most abundant in this group and can 
be used as marker species. These results are con-
sistent with the composition taxonomic statistics 
in Fig. 1.

Isolation, purification, identification and performance 
of PGPR

The bacterial suspension was spread on Ashby’s 
solid medium, and bacterial morphotypes with high 
colony number and vigorous growth were selected. 
Through microscopic examination and nitrogenase 
activity determination, 28 bacterial morphotypes 
were selected for further physiological and biochemi-
cal tests (Table  3). Of these, 7 representative strain 

classes were divided by SDS-PAGE electrophoresis 
analysis (Fig. 3a).

Eleven representative strain determination experi-
ments included the indole test, catalase test, methyl 
red test, and NO3

− reduction test. The ammonia pro-
duction capacity, phosphorus solubility activity and 
iron-producing carrier ability were also measured to 
determine the basic functions of the representative 
strains. Table  4 shows that none of the 11 selected 
strains had the ability to decompose glucose and 
tryptophan, which indicated the absence of intestinal 
pathogens. Strains No. 8 and No. 28 had the ability to 
convert the fixed nitrogen into ammonia. Both strains 
also displayed a positive ability to catalyse hydro-
gen peroxide, produce H2O and O2−, reduce NO3

− to 
NO2

− and even produce nitrogen compounds for plant 
growth. Strains No. 8 and No. 28 produced sidero-
phores, and it was inferred that they may have the 

Table 3   Colony characteristics and nitrogenase activity (n = 3, means ± SDs) of bacterial morphotypes in C. fungigraminus soil from 
different locations

Sources Stain 
number

Colony  
characteristic

Nitrogenase 
activity (U/L)

Stain 
number

Colony  
characteristic

Nitrogenase 
activity (U/L)

Stain 
number

Colony  
characteristic

Nitrogenase 
activity (U/L)

G1 1 Purple,
rod shaped

143.74 ± 4.20 2 Purple,
rod shaped

156.31 ± 5.80 3 Purple,
rod shaped

143.52 ± 6.20

4 Purple,
rod shaped

157.64 ± 1.80 5 Purple,
rod shaped

129.62 ± 7.10 6 Red,
rod shaped

173.97 ± 2.20

7 Red, rod 
shaped

140.87 ± 5.40 8 Red,
rod shaped

145.06 ± 4.10 9 Red,
rod shaped

117.04 ± 3.30

G2 10 Purple,
rod shaped

119.25 ± 11.60 11 Purple,
rod shaped

107.55 ± 9.50 12 Red,
rod shaped

141.31 ± 6.10

13 Purple,
rod shaped

140.65 ± 5.80 14 Purple,
short rod-

shaped

100.27 ± 6.40 15 Red,
rod shaped

105.35 ± 5.40

16 Purple,
short rod-

shaped

122.11 ± 3.80 17 Purple,
short rod-

shaped

94.75 ± 7.70 18 Purple,
globular

146.39 ± 7.50

19 Red,
rod shaped

134.25 ± 1.50 20 Red,
short rod-

shaped

141.53 ± 1.60

G3 21 Red,
short rod-

shaped

163.82 ± 6.30 22 Red,
long rod

164.26 ± 8.10 23 Purple,
rod shaped

200.67 ± 6.20

24 Purple,
rod shaped

187.65 ± 3.80 25 Purple,
short rod-

shaped

171.76 ± 3.90

G4 26 Purple,
short rod-

shaped

179.92 ± 4.30 27 Red,
rod shaped

192.28 ± 5.80 28 Red,
rod shaped

199.78 ± 7.50
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ability to dissolve unavailable calcium phosphate salts 
into bioavailable phosphate salts for plant absorption. 
In all, these capabilities suggest that strains No. 8 and 
No. 28 may have good promotion potential for plant 
growth as PGPR.

PGPR strains No. 8 (GenBank Accession No.: 
OQ119905) and No. 28 (GenBank Accession 
No.: OQ119906) homologous sequences were 

downloaded from NCBI and compared; the likeli-
hood with known strains exceeded 97%, and the 
sequences belonged to Rhizobium. The 2 typical 
strains clustered with MK241857.1, ON358080.1, 
NR169377.1, and NR144599.1, and the bootstrap 
value exceeded 97%, which indicated that the 2 
strains belonged to Rhizobium pusense (Fig.  3b). 
Rhizobium pusense No. 8 and Rhizobium pusense 

Fig. 3   a  SDS-PAGE electrophoretic clustering analysis of 
whole-cell proteins of 28 bacterial morphotypes into 7 classes; 
b  evolutionary tree constructed by the neighbour-joining pro-

cedure in MEGA (v5.1) software. The length and bootstrap 
confidence values of each branch are above or below the 
sequence branch
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No. 28 clustered together and were screened in G1 
and G2, respectively (Fig. 3b, Table 3).

C. fungigraminus seedling promotion test of PGPR

The plant height, leaf length, number of leaves, 
root length, and tiller number of C. fungigraminus 

seedlings after watering with R. pusense No. 8 bac-
terial solution (T1), No. 28 bacterial solution (T2), 
and the mixed bacterial solution (T3) are shown 
in Table  5; Fig.  4. Compared to the CK, the root 
length, height, and leaf length of C. fungigraminus 
in T3 significantly increased by 56.79%, 76.99% 
and 55.71% (P < 0.05), respectively. The AN, OM 

Table 4   Physiological and biochemical characteristics of representative strains

“+” indicates a positive reaction, “-” indicates a negative reaction

Class Representative 
strain No.

Indole 
test

Catalase test Methyl 
red test

NO3
−reduction 

test
Ammonia 
production 
test

Iron 
carrier 
capacity

Phosphorus-dissolving 
capacity

Inorganic 
phosphorus

Organic 
phosphorus

I 1 - + - + + - - -
6 - - - - + - - +
8 - + - + + + - +

13 - - - + + - - +
18 - + - + + + - +

II 23 - + - - - - + -
III 24 - - - + + - + -
IV 25 - - - - + - + -
V 20 - - - + + + - +
VI 28 - + - + + + - +
VII 26 - + - + + - - -

Fig. 4   Effects of R. pusense solutions on the soil and growth of C. fungigraminus seedlings
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and OC of C. fungigraminus soil in T2 significantly 
increased by 3.09 times, 5.77 times and 5.77 times, 
respectively. T1, T2 and T3 significantly increased 
the WC and TN in the soil.

Discussion

Microorganisms have been shown to be able to form 
many biological communities in soil ecosystems. 
The formation and function of soil ecosystems at 
different depths are greatly influenced by microbial 
communities (Amundson et  al. 2015). Soil depth 
significantly affected the abundance of dominant 
groups such as Actinomycetes and Proteobacte-
ria (Li et  al. 2014). The soil microbial community 
composition was shown to be closely correlated to 
the soil physical and chemical properties (Araújo 
et al. 2013; Wei et al. 2013) and is greatly affected 
by the vertical distribution of the soil texture. An 
important objective of research on rhizosphere 
microbes that fix nitrogen is to extend biological 
nitrogen fixation as a significant source of nitrogen 
for plants (Singh et al. 2020). Soil microorganisms 
are essential for biogeochemical cycles, colonizing 
plant roots, improving soil fertility and plant health 
and increasing crop production (Hayat et al. 2010). 
In the present study, the physical and chemical 
properties of the soil and the diversity of nitrogen-
fixing bacteria from different soil locations of C. 
fungigraminus were compared. With increasing soil 
depth, the concentrations of soil TN, AN, OC and 
OM gradually decreased, reaching their lowest val-
ues at 20 cm depth from the rhizosphere soil. Anal-
ysis of the α diversity of nitrogen-fixing bacteria 
in the 4 groups showed that the Shannon index of 
rhizosphere soil was significantly higher than that 
of the other soil samples, while depth was the most 
significant factor, and the other groups were sig-
nificantly different from surface soil in terms of the 
Chao1 index, Shannon index and Simpson index. 
Soil depth represents a strong physio-chemical gra-
dient that greatly affects soil-dwelling microorgan-
isms. More intensive interkingdom cooccurrence 
patterns were observed in the upper mineral layer 
(0–5 cm) than in the above organic and lower min-
eral soils, signifying a substantial influence of soil 
depth on biotic interactions (Mundra et  al. 2021). 
Plant roots release a variety of secretions, including Ta
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sugars, organic acids, amino acids, hormones, and 
extracellular enzymes; these substances have been 
shown to provide sufficient nutrition and energy for 
microorganisms (Zhang et  al. 2004). Highly abun-
dant genera in the four soils included Bradyrhizo-
bium, Geobacter, Azospirillum, Desulfovibrio, 
Burkholderia, Halorhodospira, Methylosinus, and 
Azotobacter. The abundances of Paraburkholderia, 
Frankia and Rhizobium in rhizosphere soil were 
higher than those in the other groups. We also found 
that the diversity of the nifH gene in the rhizosphere 
soil was higher than that in the nonrhizosphere soil 
of C. fungigraminus, which was consistent with 
the trend observed in high-throughput sequencing 
results. nifH is an ideal genetic marker to detect 
diversity and phylogeny (Hamelin et al. 2010).

There are many species of PGPR, including 
Rhizobium, Bacillus, Klebsiella and Pseudomonas. 
They are generally capable of fixing nitrogen, pro-
ducing plant growth hormones and secreting antibi-
otics (Kloepper et al. 1989). According to Lin et al. 
(2019), Klebsiella variicola mainly colonizes the 
endothelial layer of C. fungigraminus roots as a plant 
endophyte. The contents of organic matter and total 
nitrogen in soil are the main criteria for evaluating 
soil fertility and quality. It has been widely reported 
that Rhizobia were able to promote the growth of 
crops and increase soil fertility (Shota et  al. 2022). 
In our work, 11 representative strains were isolated, 
and their nitrogenase activity, ammonia production 
capacity, siderophore production capacity and phos-
phorus solubilization capacity were detected. Of 
these, 2 strains with high nitrogenase activity and 
soluble phosphorus activity were selected. Further-
more, TN, AN and OM had significant effects on the 
nitrogen-fixing bacterial community under different 
treatments and had positive effects on Azospirillum, 
Burkholderia and Rhizobium. The similar results of 
CCA between the environmental factors and distri-
bution of rhizobial genospecies showed that soil pH 
and the contents of total phosphorus, total potassium 
and total organic carbon were the main determinants 
of the community structure of S. davidii rhizobia 
(Cao et al. 2021). Two strains clustered with R. puse-
nse, and the bootstrap value exceeded 97%. Previous 
studies indicated 16S rDNA sequence analysis as an 
authenticated technique used to study bacterial iso-
lates at the species level (Imran et  al. 2010; Alam 
et al. 2011). R. pusense is a gram-negative bacterium 

belonging to the Rhizobiaceae family. It was able to 
degrade glycosylated phenols and flavonoids secreted 
by plant roots and can produce phytohormones (Bad-
hai et al. 2017). R. pusense MB-17 A, a PGP rhizo-
bium isolated from mung beans, showed significant 
siderophore production, ammonia production and 
phosphorus-solubilizing ability, and the fresh weight 
and nodule number of mung bean were significantly 
increased 60 days after inoculation (Chaudhary et al. 
2020). Nitrogen-fixing bacteria with phosphorus 
solubilizing ability can dissolve some unavailable 
calcium phosphate salts in the soil and convert them 
into bioavalable phosphorus salts for absorption and 
utilization by plants; Phosphorus solubilizing bac-
teria aslo can improve the efficiency of phosphorus 
absorption and utilization by plants by releasing 
organic acids to dissolve inorganic phosphorus in the 
soil, or by secreting metabolites to degrade organic 
phosphorus (Chauhan et al. 2017; Mehta et al. 2013). 
However, according to Bashan et al. (2013), we need 
more work on phosphorus-solubilizing ability of 
2 R. pusense strains in future. Plant growth promo-
tion could be the result of the beneficial functions 
of applied PGPR isolates, such as plant growth hor-
mone production, nitrogen fixation, and P solubiliza-
tion (Majeed et  al. 2015). R. pusense No. 8 and R. 
pusense No. 28 were selected from the surface soil 
and rhizosphere soil in the present study, respec-
tively, as potential soil improvers. Both strains pro-
moted plant height, leaf length and root length 
growth of C. fungigraminus. Meanwhile, the growth 
promotion effect of the 2 strains solution was greater 
than that of the single strains. However, R. pusense 
No. 8 increased the concentrations of available nitro-
gen, organic matter and organic carbon in the soil 
more than R. pusense No. 28 and the mixture. The 
increase in the available nitrogen content is able to 
directly enhance the absorption of nitrogen by plants. 
Organic matter can provide nutrients for plants, pro-
mote plant growth, improve the soil structure, and 
improve the water retention ability of soil (Kiba and 
Krapp 2016). Furthermore, the inoculation of PGPR 
with multifunctional traits is better than inoculation 
of PGPR with single traits (Imran et  al. 2014). The 
response of plants to different isolates was variable, 
which may be attributed to their individual traits and 
rhizospheric competencies, and most of the bacteria 
displayed good survival and plant promoting ability 
in the rhizosphere.
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Conclusion

In summary, this foundational work examined the 
composition and diversity of nitrogen-fixing bacte-
ria in C. fungigraminus rhizosphere soil, which were 
significantly affected by depth. R. pusense has plant 
growth-promoting ability as a PGPR. C. fungigraminus 
is becoming an important plant and is spreading world-
wide. The use of effective PGPR is an opportunity for 
improving production in addition to maintaining soil 
structure and fertility. The study provides a theoretical 
basis for the development of plant growth-promoting 
rhizobacteria and the development of biological fer-
tilizers. However, in the future, R. pusense should be 
applied so as to restore soil fertility, phosphorus solu-
bilizing ability and safety to the environment, humans 
and animals, and the impact of long-term application 
on soil physical and chemical properties and microor-
ganisms needs to be monitored and further studied.
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