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Abstract 
Aims Livestock grazing greatly affects the soil envi-
ronments and soil microbial community, potentially 
driving significant biodiversity losses. Yet, how soil 
microbial communities respond to grazing remains 
relatively unknown in southern grasslands. This study 
hypothesized that long-term grazing alters soil micro-
bial community composition and reduces microbial 
diversity by changing underlying soil properties.
Methods To assess the impact of long-term grazing 
on soil properties, bacterial and fungal diversity and 
microbial community composition were investigated 

in replicate grazed (38  years of moderate intensity 
grazing) and ungrazed plots in a subtropical grass-
land, China.
Results Fungal β-diversity was more sensitive to 
long-term grazing than bacterial β-diversity, with fun-
gal β-diversity decreasing by 28.8%. No significant 
differences in soil bacterial or fungal α-diversity were 
detected between grazed and ungrazed plots. Addi-
tionally, long-term grazing altered microbial com-
munity composition, altering the relative abundance 
of specific microbial taxa. For bacteria, the relative 
abundance of Actinobacteriota (41.9%) increased 
and Acidobacteriota decreased (−22.3%). For fungi, 
grazing increased the relative abundance of Mortiere-
llomycota (108.1%) and decreased Basidiomycota 
(−79.5%). Changes in both bacterial and fungal com-
munity composition were well explained by available 
phosphorus, dissolved organic nitrogen, dissolved 
organic carbon, soil organic carbon, total soil nitro-
gen, and  NH4

+-N.
Conclusions Our study showed that fungal 
β-diversity decreased after long-term grazing, neces-
sitating changes to grazing management practices to 
foster soil biodiversity conservation and functions in 
southern grasslands.
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Introduction

Grassland ecosystems provide important functions 
and services, such as biodiversity conservation and 
carbon (C) sequestration (Filazzola et  al. 2020; 
Koerner et al. 2018; Lorenz and Lal 2018). However, 
grasslands are increasingly subject to grazing world-
wide (Fetzel et  al. 2017; Kemp et  al. 2013; Zhang 
et  al. 2022a). Intensive, long-term grazing can lead 
to vegetation and soil degradation (Gao and Car-
mel 2020; Pulido et  al. 2018; Zhang et  al. 2022b). 
Degraded grasslands are not only incapable of meet-
ing the needs of livestock and their human keepers, 
but can also show altered soil community functions 
(Ren et al. 2017; Stark et al. 2015; Zhao et al. 2017), 
threatening soil biodiversity and ecosystem functions 
(Buisson et  al. 2022; Eldridge et  al. 2016; Zhang 
et al. 2022a).

Soils harbor an enormous diversity of microor-
ganisms, among which bacteria and fungi play criti-
cal roles in ecosystem functions, including organic 
matter decomposition and soil C dynamics, as well 
as mediating nutrient cycling (Bahram et  al. 2018; 
Yang et al. 2022). Generally, soil bacterial and fungal 

diversity promote plant nutrient uptake via acceler-
ating nutrient mineralization, potentially enhancing 
plant productivity (Delgado-Baquerizo et  al. 2020; 
Wagg et al. 2019). Given the enormous diversity and 
importance of soil microbial communities to ecosys-
tem functions, understanding the response of micro-
bial diversity and composition to grazing is crucial 
for conserving soil biodiversity (Delgado-Baquerizo 
et al. 2016; Garcia-Palacios and Chen 2022).

Grazing can influence soil microbial communi-
ties in multiple ways (Fig.  1). First, grazing may 
modify soil conditions via animal trampling, which 
then directly affect soil microbial communities (Liu 
et  al. 2015; Yang et  al. 2013). Also, animal tram-
pling results in soil compaction, disturbance, and 
erosion and increased soil pH (Bagchi et  al. 2017; 
Qu et  al. 2021). Previous studies have demon-
strated that soil pH is an important factor altering 
soil microbial diversity and community composi-
tion (Rousk et al. 2010; Zhalnina et al. 2015). Sec-
ond, grazing can also indirectly affect soil microbial 
communities by increasing soil nutrient availabil-
ity via the deposition of urine and feces (Liu et al. 
2018). Soil nutrients are another vital driver of 

Fig. 1  Conceptual diagram 
showing the potential 
mechanisms of microbial 
diversity and community 
composition in response to 
grazing. AGB, aboveground 
biomass; SOC, soil organic 
carbon; TN, total soil nitro-
gen; TP, total soil phospho-
rus; DOC, dissolved organic 
carbon; DON, dissolved 
organic nitrogen; AP, avail-
able phosphorus
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microbial diversity and community composition 
(Koyama et  al. 2014; Pan et  al. 2014). For exam-
ple, nitrogen and phosphorus additions have been 
reported to reduce microbial diversity (Leff et  al. 
2015; Ling et  al. 2017). Third, grazing can influ-
ence soil microbial communities by changing the 
plant productivity and community composition 
(Chen et  al. 2021). Grazing can greatly reduce the 
biomass of aboveground vegetation (Hao et  al. 
2018; Li et al. 2017; Yang et al. 2018) and result in 
less carbon allocated to roots and the soil (Bai et al. 
2015). The carbon limitation then decreases soil 
microbial biomass and diversity (Veen et al. 2014). 
Low microbial diversity is an “early warning sign” 
of biodiversity losses and is therefore important to 
future biodiversity conservation (Wang et al. 2022). 
Though many studies have investigated the mecha-
nisms underlying grazing effects on microbial com-
munity composition and diversity, most have only 
focused on short-term grazing effects (Bezemer 
et al. 2006; Zhao et al. 2019). The lack of research 
on long-term grazing effects limits our understand-
ing of grazing effects on grassland ecosystems.

Grasslands in southern China are located in tem-
perate and subtropical regions influenced by the mon-
soon climate, unlike the radiation-driven seasonal 
climates of northern China. Southern grasslands also 
have different vegetation and soils compared to alpine 
meadows and temperate steppes (Wang et al. 2019b). 
Thus, they may respond differently to environmental 
disturbance. Most studies of the southern grasslands 
to date have focused only on how grazing affects 
plant and soil properties, with relatively few studies 
examining how grazing affects soil microbial com-
munity composition and diversity, despite the impor-
tance of soil microbes for ecosystem functions (Chen 
and Sinsabaugh 2021; Delgado-Baquerizo et  al. 
2016). In this study, soil samples were collected from 
grazed soils (grazed continuously for 38  years) and 
adjacent non-grazed soils to explore how long-term 
grazing affects soil microbial diversity and commu-
nity composition in the southern grasslands of China. 
Based on previous studies, the following hypotheses 
were tested: (1) long-term grazing alters microbial 
diversity and community composition and results in 
lower microbial diversity in southern grasslands; and 
(2) soil microbial community responses to long-term 
grazing may be mediated by soil properties in south-
ern grasslands.

Materials and methods

Site description

This experiment was conducted at the Yunnan Acad-
emy of Grassland and Animal Science in Kunming 
City, Yunnan Province, China. The study site is 
located at 25°21′N, 102°58′E and has an elevation 
of 1962  m  a.s.l. The area experiences a subtropical 
plateau monsoon climate with a mean annual tem-
perature of 13.4  °C (minimum average temperature 
of 6  °C) and mean annual precipitation of 990  mm 
(Gao et  al. 2013). Most precipitation occurs during 
the monsoon months of June to October. The precipi-
tation is particularly low in winter and spring (Tang 
et  al. 2013). Soils are silty loam mountain red soils 
with pH of 5.0, organic matter content of 2.28%, 
available nitrogen content of 23.10  mg   kg−1, and 
available phosphorus content of 7.58  mg   kg−1 (Wu 
et  al. 2013). Before 1983, the vegetation was domi-
nated by Pteridium revolutum, Rubus pectinellus, 
Arundinella hookeri, and Heteropogon contortus. An 
artificial grassland was established in 1983. Woody 
plants and most of the understory community were 
clear cut, and grass species (i.e., Trifolum repens, 
Setaria sphacelate, Dactylis glomerate, Penniselum 
elandestinum, and Lolium multiflorum) were broad-
casted. After 38 years of grassland managements, the 
vegetation is now dominated by Pennisetum clandes-
tinum cv. Whittet, Setaria sphacelata (Schum) Stapf 
ex Massey cv. Narok and Trifolium repens L. cv. 
Haifa (Gao et al. 2013).

Experimental design, soil sampling and 
measurements

From 1983 until April 2021, the study area has been 
continuously grazed by cattle (throughout the year). 
Stocking rates were 2 AU  ha−1 (moderate intensity). 
Paddocks adjacent to grazed plots, where no grazing 
had taken place for more than 38 years, were selected 
as controls. A random block design was used with 
ten replicates of both grazed and ungrazed plots. A 
total of ten blocks and 20 plots were established with 
an area of 10 × 10 m, and the distance among blocks 
was more than 50 m. A composite soil sample con-
sisting of five cores (depth 0-10  cm) was randomly 
obtained from each plot using a soil auger. Each 
composite soil sample was mixed thoroughly and 
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sieved and then divided into two subsamples. Fresh 
soil was used to determine soil ammonium nitrogen 
 (NH4

+ -N), soil nitrate nitrogen  (NO3
− -N), dissolved 

organic carbon, dissolved organic nitrogen, soil mois-
ture, and soil microbial community. Air-dried soil 
was used to determine soil organic carbon, soil pH, 
total soil nitrogen, total soil phosphorus, and avail-
able phosphorus.

DNA extraction and high-throughput sequencing

Bacterial 16S rRNA sequences were amplified with 
the primer pair 515F and 806R (Caporaso et  al. 
2011), and fungal 18S rDNA was amplified with the 
primer pair ITS5-1737F and ITS2-2043R (Jiao et al. 
2018). Soil microbial alpha (α)-diversity was quan-
tified as the observed amplicon sequence variants 
(ASV) diversity, the Chao1 index, Shannon-Wiener 
index, and Simpson index; beta (β)-diversity were 
also recorded.

Statistical analyses

Soil properties and microbial alpha (α) diversity were 
compared using t-tests. Microbial community com-
position was estimated using non-metric multidimen-
sional scaling (NMDS) based on the Bray–Curtis dis-
tances among samples; NMDS was performed using 
the “vegan” package (Oksanen et  al. 2020). PER-
MANOVAs were then performed to test how long-
term grazing affected soil bacterial and fungal com-
munity composition. Random forest (RF) analyses 
were used to estimate the relative importance of graz-
ing-induced changes in soil bacterial and fungal com-
munities. Relative importance was expressed as per-
centage increases in the mean squared error (MSE). 
The significance of each predictor was assessed via 
the “rfPermute” package (Archer 2021). All statistical 
analyses were conducted in R 4.0.2.

Results

Soil physicochemical properties

Long-term grazing had a positive effect on soil mois-
ture and pH. Long-term grazing increased most soil 
nutrient concentrations (soil organic carbon, total soil 
nitrogen, available phosphorus,  NH4

+-N, dissolved 

organic carbon, and dissolved organic nitrogen). In 
contrast,  NO3

−-N was significantly lower in grazed 
plots. Total phosphorous and soil bulk density were 
not affected by long-term grazing (Table 1).

Soil microbial diversity and community composition

Almost all alpha-diversity indicators for soil bacterial 
and fungal communities did not respond to long-term 
grazing, except that the Simpson index decreased for 
bacterial communities (Fig.  2). Fungal communities 
showed lower β-diversity in grazed plots versus con-
trol plots, while the β-diversity of bacterial commu-
nities did not differ between grazed and control plots 
(Fig. 3).

Across the soil samples, bacterial sequences pri-
marily comprised the phyla Proteobacteria (30.9%), 
Actinobacteria (18.4%), Acidobacteria (15.4%), 
Firmicutes (6.9%) and Verrucomicrobiota (7.9%) 
(Fig. 4). The most abundant fungal phyla were Asco-
mycota (50.4%), Basidiomycota (19.3%) and Mor-
tierellomycota (18.1%) (Fig.  4). As shown in the 
NMDS for the ASV data, long-term grazing sig-
nificantly affected both bacterial and fungal com-
munity composition (Fig. 4a and c). Grazing altered 
bacterial community composition by increasing the 
relative abundance of Actinobacteriota (41.9%) and 
Firmicutes (179.7%), and by decreasing the relative 
abundance of Verrucomicrobiota (−57.7%), Acido-
bacteriota (−22.3%), and Planctomycetota (−40.8%) 
(Fig.  4b). Similarly, grazing altered fungal commu-
nity composition by increasing the relative abundance 
of Mortierellomycota (108.1%) and by decreasing 
the relative abundance of Basidiomycota (−79.5%) 
(Fig. 4d).

Edaphic factors shaped soil microbial community 
composition

In Mantel tests, multiple soil properties were sig-
nificantly correlated with soil microbial community 
composition (Fig.  5). Increases in the bacterial taxa 
Actinobacteriota and Firmicutes were mainly driven 
by soil organic carbon and soil pH, respectively. Aci-
dobacteriota was correlated with soil organic carbon 
and dissolved organic carbon. Verrucomicrobiota was 
correlated with soil organic carbon, available phos-
phorus, dissolved organic carbon, dissolved organic 
nitrogen, and pH (Fig.  5a). Additionally, significant 
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correlations were found between the fungal taxa 
Basidiomycota and soil organic carbon, total soil 
nitrogen, available phosphorus, dissolved organic 
carbon, soil moisture, and pH. Changes in soil mois-
ture and soil organic carbon explained the positive 
response of Mortierellomycota to grazing (Fig. 5b).

The random forest (RF) analysis found that 
changes in both bacterial and fungal community com-
position were best explained by available phosphorus. 
Other important variables for predicting soil micro-
bial community composition were dissolved organic 
nitrogen, dissolved organic carbon, soil organic car-
bon, total soil nitrogen, and  NH4

+-N (Fig. 6).

Discussion

Grazing has a major impact on microbial communi-
ties, but there is a lack of consistency in the existing 
reports on the actual effects of grazing on microbial 
diversity due to diverse study areas, herbivore types, 
grazing intensities and regimes. Our study provided 
a clear evidence that long-term grazing reduced 
fungal β-diversity, but did not change the microbial 
α-diversity in southern grasslands. Overall, this study 
highlights the risk of grassland microbial community 
homogenization with biodiversity reduction due to 
grazing disturbance.

Grazing effects on soil properties and microbial 
α-diversity

Our results showed that long-term grazing resulted 
in increased nutrient concentrations, suggesting that 
this grassland management practice may affect nutri-
ent cycling in southern grasslands. However, previous 
studies have found grazing decreased soil nutrients 
(Wu et al. 2022; Yang et al. 2019). Two pathways may 
primarily determine how grazing affects soil nutrient 
concentrations. In the first pathway, grazing directly 
increases carbon, nitrogen, and phosphorus concen-
trations due to accumulation of dung and urine (Bai 
et al. 2012; Chen et al. 2021). In the second pathway, 
grazing indirectly decreases nutrient concentrations 
by reducing above- and belowground plant biomass 
(Chen et  al. 2021). Our findings may largely result 
from the first pathway.

Our study suggested that long-term grazing did 
not change microbial α-diversity, consistent with Ta

bl
e 

1 
 E

ffe
ct

s o
f g

ra
zi

ng
 o

n 
so

il 
pr

op
er

tie
s

SO
C

 s
oi

l o
rg

an
ic

 c
ar

bo
n,

 T
N

 to
ta

l s
oi

l n
itr

og
en

, T
P 

to
ta

l s
oi

l p
ho

sp
ho

ro
us

, N
H

4+
-N

 a
m

m
on

iu
m

 n
itr

og
en

, N
O

3−
-N

 n
itr

at
e 

ni
tro

ge
n,

 A
P 

av
ai

la
bl

e 
ph

os
ph

or
ou

s, 
D

O
C

 d
is

so
lv

ed
 

or
ga

ni
c 

ca
rb

on
, D

O
N

 d
is

so
lv

ed
 o

rg
an

ic
 n

itr
og

en
. D

iff
er

en
t l

ow
er

ca
se

 le
tte

rs
 in

di
ca

te
 a

 st
at

ist
ic

al
ly

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

 b
et

w
ee

n 
gr

az
ed

 a
nd

 c
on

tro
l t

re
at

m
en

t (
P 

<
 0.

05
)

Tr
ea

tm
en

t
pH

M
oi

stu
re

So
il 

B
D

 
(g

  c
m

−
3 )

SO
C

 (g
  k

g−
1 )

TN
 

(m
g 

 kg
−

1 )
TP

 
(m

g 
 kg

−
1 )

N
H

4+
-N

 
(m

g 
 kg

−
1 )

N
O

3−
-N

 
(m

g 
 kg

−
1 )

A
P 

(m
g 

 kg
−

1 )
D

O
C

 
(m

g 
 kg

−
1 )

D
O

N
 (m

g 
 kg

−
1 )

C
on

tro
l

5.
70

 ±
 0.

06
a

0.
27

 ±
 0.

01
a

0.
84

 ±
 0

.0
3

44
.4

0 ±
 1.

57
a

3.
66

 ±
 0.

43
a

1.
04

 ±
 0

.1
2

6.
42

 ±
 0.

24
a

2.
34

 ±
 0.

77
b

2.
45

 ±
 0.

39
a

49
.3

4 ±
 8.

25
a

7.
90

 ±
 3.

17
a

G
ra

ze
d

5.
95

 ±
 0.

05
b

0.
34

 ±
 0.

02
b

0.
74

 ±
 0

.0
5

79
.7

9 ±
 4.

38
b

8.
06

 ±
 0.

52
b

1.
16

 ±
 0

.1
7

18
.2

8 ±
 2.

63
b

0.
80

 ±
 0.

13
a

48
.5

 ±
 7.

33
b

15
1.

6 ±
 18

.5
9b

14
5.

70
 ±

 22
.8

4b



 Plant Soil

1 3
Vol:. (1234567890)

previous findings from Atlantic mountain grasslands 
(Aldezabal et  al. 2015) and Qinghai-Tibetan Plateau 
grasslands (Qin et  al. 2021). Grazing also had only 
marginal effects on bacterial or fungal α-diversity, 
which might be explained by the resilience of micro-
bial communities to environmental disturbances, thus 
sustaining a certain α-diversity (Brown and Jump-
ponen 2015; Qin et  al. 2021). However, previous 
studies have found that grazing significantly increased 
(Wang et  al. 2019a; Wu et  al. 2022) or decreased 
(Zhang and Fu 2021) bacterial α-diversity, inconsist-
ent with our findings. This discrepancy may result 

from the following reasons. First, it is due to the vari-
ation in study climate and vegetation type. The study 
area used here has a monsoon climate, unlike the 
radiation-driven seasonal climate of northern China. 
Also, southern grasslands have different vegetation 
and soils compared to alpine meadows and temper-
ate steppes (Wang et  al. 2019b). Second, the minor 
changes in bacterial or fungal α-diversity may result 
from grazing intensity (Delgado-Baquerizo et  al. 
2016). The effects of grazing on soil microbial com-
munity were largely depended on the grazing inten-
sity. A global meta-analysis suggested that light and 

Fig. 2  Effects of grazing on soil bacterial and fungal α-diversity. NS, not significant. *, **, and *** indicate P<0.05, P<0.01, and 
P<0.001, respectively

Fig. 3  Effects of graz-
ing on soil bacterial and 
fungal β-diversity. NS, not 
significant. *, **, and *** 
indicate P<0.05, P<0.01, 
and P<0.001, respectively
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moderate grazing intensity did not significantly affect 
soil bacterial and fungal community, but heavy graz-
ing intensity had negative on soil bacterial and fun-
gal community (Zhao et  al. 2017). In our study, the 
grazing intensity was moderate. Thus, no significant 
grazing effect on bacterial or fungal α-diversity was 
observed. Third, grazing regime (i.e., seasonal graz-
ing or continuous grazing) may drive this discrep-
ancy. For example, soil microbial community was 
more stable in continuous grazing than winter grazing 
(Yang et  al. 2019). Our study provides evidence for 
how soil microbial α-diversity responds to grazing in 
southern grasslands, broadening our understanding of 
the effects of grazing on grassland ecosystems.

Grazing effects on soil microbial β-diversity and 
community composition

Grazing had different effects on bacterial and soil 
fungal β-diversity. Our study showed that long-term 
grazing caused a decline in soil fungal β-diversity, but 
not soil bacterial β-diversity. This suggests that soil 
fungi may favor less perturbed ecosystems than soil 

bacteria (Chen et  al. 2021; Tolkkinen et  al. 2015). 
Soil fungi have a faster growth rate, while bacteria are 
more resilient to disturbances (Wardle 2002); there-
fore, fungi might respond more rapidly to grazing, 
maintaining relatively stable communities. Mean-
while, filamentous fungi have more limited dispersal 
owing to their larger size, and therefore disturbed 
environments can reduce soil fungal diversity (Das-
sen et  al. 2017). Here, fungal communities became 
more similar in composition over time due to grazing. 
Additionally, the decline in fungal β-diversity might 
have resulted from a concomitant decline in plant 
productivity; fungal and plant communities are often 
tightly linked, especially for arbuscular mycorrhizal 
fungi (Chen et al. 2018; Yang et al. 2019).

Grazing significantly altered microbial commu-
nity composition, in large agreement with the first 
study hypothesis. Consistent with previous stud-
ies, grazing resulted in increases in the relative 
abundance of Actinobacteriota and Firmicutes, and 
decreases in the relative abundance of Acidobac-
teriota and Verrucomicrobiota (Qin et  al. 2021; 
Wu et  al. 2022). As a dominant bacterial phylum, 

Fig. 4  Effects of grazing 
on soil bacterial and fungal 
community composition. 
The symbols ‘+’ and 
‘-’ indicate significant 
(P < 0.05) increases and 
decreases, respectively
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Fig. 5  Relationships between dominant microbial community 
phyla and soil properties. SOC, soil organic carbon; TN, total 
soil nitrogen; TP, total soil phosphorous;  NH4

+-N, ammonium 

nitrogen;  NO3
−-N, nitrate nitrogen; AP, available phosphorous; 

DOC, dissolved organic carbon; DON, dissolved organic nitro-
gen
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Actinobacteriota are widely distributed gram-
positive bacteria that play key roles in microbial 
metabolism and organic matter turnover (Camp-
bell et al. 2010; Qin et al. 2021; Stach et al. 2010). 
Increases in the relative abundance of copiotrophic 
Actinobacteriota may suppress subdominant micro-
bial phyla, such as Acidobacteriota and Verrucomi-
crobiota, due to competitive exclusion. In addition, 
oligotrophic Acidobacteriota and Verrucomicro-
biota prefer low nutrient environments (Eldridge 
et al. 2017; Maestre et al. 2015; Trivedi et al. 2012). 
Therefore, these phyla may be adversely affected 
by increases in soil nutrients (carbon, nitrogen and 
phosphorus) caused by grazing.

Additionally, grazing reduced the relative abun-
dance of Basidiomycota, but increased the relative 
abundance of Mortierellomycota, thus resulting in 
changes in fungal community composition. This find-
ing is supported by previous global studies (Angel 
et al. 2013; Manzoni et al. 2012). Basidiomycota are 
particularly sensitive to environmental disturbances 
and could be regarded as a fungal indicator of distur-
bance (Xun et al. 2018). Previous studies have iden-
tified soil fungal phyla, such as Basidiomycota, that 
favor resource-poor environments (Zechmeister-Bolt-
enstern et al. 2015). Grazing-related increases in soil 
nutrients may be the main reason for the observed 
decrease in Basidiomycota abundance (Chen et  al. 
2021). Moreover, the increase in soil pH caused by 
grazing might impose physiological constraints on 
some soil fungi (e.g., Basidiomycota) (Maestre et al. 
2015), as suggested by the Mantel tests here.

Changes in soil nutrient variables (i.e., available 
phosphorus, dissolved organic nitrogen, dissolved 
organic carbon, soil organic carbon, total soil nitrogen 
and  NH4

+-N) well explained the responses of bacte-
rial and fungal community composition to grazing. 
These findings support the second study hypothesis 
that grazing-induced shifts in soil properties play an 
essential role in shaping soil microbial communi-
ties. The significant increase in soil nutrients under 
grazing might result from the direct effect of cattle 
dung and urine inputs, accelerating nutrient cycling 
and ultimately affecting soil microbial community 
composition (Bai et  al. 2012; Chen et  al. 2021). 
Although some studies have reported that soil pH 
was important factor affecting how microbial com-
munity composition responds to grazing (Qin et  al. 
2021; Zhalnina et  al. 2015; Zhao et  al. 2019), here, 
grazing-induced changes in pH had a negligible effect 
on microbial community composition. The reason for 
the lack of effect may be that grazing indirectly rather 
than directly altered soil microbial community com-
position via alterations to the plant community due to 
increasing pH (Wang et al. 2020).

Conclusions

This study provides insights into how microbial 
diversity and community composition react to 
long-term grazing in southern grasslands. First, our 
results found that grazing altered soil properties 
and soil microbial community composition, while 

Fig. 6  Relationships between microbial community composi-
tion and soil properties. SOC, soil organic carbon; TN, total 
soil nitrogen; TP, total soil phosphorous;  NH4

+-N, ammonium 
nitrogen;  NO3

−-N, nitrate nitrogen; AP, available phosphorous; 

DOC, dissolved organic carbon; DON, dissolved organic nitro-
gen. *, **, and *** indicate P<0.05, P<0.01, and P<0.001, 
respectively
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decreasing microbial β-diversity (fungal β-diversity) 
but not α-diversity in the southern grasslands of 
China. Second, by altering soil nutrient availability, 
grazing shifted the relative abundance of dominant 
microbial phyla and altered soil microbial commu-
nity composition. These findings suggest that long-
term grazing could alter belowground microbial 
communities; as such, grazing management prac-
tices should consider soil biodiversity conservation 
and functions in southern grasslands.

Although this study provided important insights 
into microbial performance within a long-term 
grazing ecosystem, there are some uncertainties 
and limitations. First, the study area experiences a 
subtropical plateau monsoon climate, with obvious 
wet and dry seasons. As such, the microbial com-
munity may respond differently to grazing in differ-
ent seasons. Thus, sampling across seasons should 
be considered in future studies. Second, grazing can 
affect soil microbial community composition by 
reducing plant species diversity. Unfortunately, the 
plant community was not surveyed here. Plant data 
should be included in further work to better under-
stand the mechanisms underlying grazing effects on 
microbial communities.
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