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the diversity and dynamics of the microbial community 
in the vicinity of the extraradical hyphae.
Conclusions As a critical interface between AM fungi 
and soil, hyphosphere processes and their important 
ecological functions have begun to be understood and 
appreciated, and are now known to be implicit in impor-
tant soil processes. Recent studies provide new insights 
into this crucial zone and highlight how the hyphosphere 
might be exploited as a nature-based solution, through 
understanding of interactions with the microbiome and 
the impacts on key processes governing resource avail-
ability, to increase sustainability of agriculture and mini-
mize its environmental impact. Uncovering hyphosphere 
chemical and biological processes and their subsequent 
agricultural, ecological and environmental consequences 
is a critical research activity.

Keywords Arbuscular mycorrhizal (AM) fungi · 
Hyphosphere · Extraradical hyphae · Physiochemical 
process · Biological interaction · Nutrient cycling

Abstract 
Background Most plants have a hyphosphere, the thin 
zone of soil around extraradical hyphae of arbuscular 
mycorrhizal (AM) fungi, which extends beyond the rhizo-
sphere. This important interface has critical roles in plant 
mineral nutrition and water acquisition, biotic and abiotic 
stress resistance, mineral weathering, the formation of soil 
macroaggregates and aggregate stabilization, carbon (C) 
allocation to soils and interaction with soil microbes.
Scope This review focuses on the hyphosphere of AM 
fungi and critically appraises the important findings 
related to the hyphosphere processes, including physi-
cal, chemical and biological properties and functions. 
We highlight ecological functions of AM fungal hyphae, 
which have profound impacts on global sustainability 
through biological cycling of nutrients, C sequestration 
in soil, release of greenhouse gas emissions from soil and 
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Introduction

It is well-known that the rhizosphere, defined by Hilt-
ner (1904) as the thin layer of soil surrounding the liv-
ing roots, is a critical and active zone due to the physi-
cal, chemical and biological changes induced by roots 
(Marschner 1995). Subsequently, a large number of 
studies about rhizosphere processes have demonstrated 
that the rhizosphere differs from the bulk soil regard-
ing pH (George et al. 2002), water and redox potential 
(York et  al. 2016), porosity (Koebernick et  al. 2017, 
2019), concentrations of soluble carbohydrates and 
nutrients (Lambers et al. 2006, 2009; Lambers 2022), 
biochemical properties (Zhang et  al. 2010), and the 
structure and functioning of microbial communities 
(Besset-Manzoni et  al. 2018). However, this active 
zone of soil is not influenced only by plant roots.

Arbuscular mycorrhizal (AM) fungi are obligate 
biotrophs that colonize more than two thirds of terres-
trial plant species to establish a symbiotic relationship 
(Smith and Read 2008); they have been forming rela-
tionship with plants ever since plants first colonized 
land approximately 450 million years ago (Delaux 
and Schornack 2021). As pivotal members of the soil 
microbiome, AM fungi provide multiple services to 
their host plants, such as mineral nutrition (especially 
phosphorus uptake), water acquisition, biotic and abi-
otic stress resistance, and other ecological functions, 
such as improving ecosystems diversity and produc-
tivity (van der Heijden et  al. 2015). Importantly, AM 
fungi provide an alternative and important nutrient 
acquisition pathway to that of plant roots from soil 
(Bucher 2007; Smith et  al. 2011; Smith and Smith 
2011). For example, in many cases, the contribution 
of the mycorrhizal pathway to total P uptake is greater 
than that of direct root pathway (Chu et al. 2020; Nagy 
et al. 2009), and can even completely replace the direct 
root pathway (Smith et al. 2003, 2004).

When plant roots are colonized by AM fungi, the 
rhizosphere includes not only roots but also myce-
lium of AM fungi, whereby mycelial activity signifi-
cantly changes the rhizosphere properties; moreover, 
the mycelium extends beyond the rhizosphere, thus 
influencing soil properties in the zones beyond the 
reach of the root impacts. It has been demonstrated 
that colonization of roots with AM fungi influ-
ences plant metabolism and causes changes in plant 
assimilates, which strongly inhibits activity of man-
ganese (Mn)-reducing bacteria, for example, at the 

interface between soil and the fungi-root symbionts 
and decreases Mn concentration in plants (Arines 
et al. 1992; Kothari et al. 1991b; Posta et al. 1994). A 
large number of researches further demonstrated that 
the biodiversity, abundance and assembly of micro-
bial community located in the inner root space, rhizo-
sphere and hyphosphere are completely different (Bai 
et  al. 2015; Bulgarelli et  al. 2012; Toljander et  al. 
2007). Moreover, different AM species co-colonizing 
a single plant root system recruit distinct microbi-
omes in the hyphosphere (Zhou et  al. 2020). There-
fore, it is necessary to re-examine the definitions of 
the soil zones/volumes that are directly influenced by 
plant roots or AM fungal hyphae or where they inter-
act. The following terms are suggested as a nomen-
clature for the range of habitats in and around roots 
(Table 1). The endosphere is defined as inner root tis-
sues (including rhizodermis, cortex and stele) inhab-
ited by microorganisms. Rhizosphere is defined as 
the thin layer of soil surrounding the living roots not 
colonized by mycorrhizal fungi. This zone (includ-
ing the root surface and the adjoining soil) is directly 
influenced by root exudates. Mycorrhizosphere is 
defined as a zone of soil surrounding the living roots 
colonized by mycorrhizal fungi. This zone (including 
the root and hyphal surface, and the soil adjoining the 
roots and hyphae) is directly modified by mycorrhizal 
fungi mediating root exudates and hyphal exudates. 
The unique feature of the mycorrhizosphere is an 
overlap of mycorrhized roots and hyphae. The width 
of mycorrhizosphere was reported to be broader than 
that of rhizosphere, and the biochemical activities 
were stronger than those in rhizosphere, at least in 
terms of phosphorus depletion and pH changes (Li 
et al. 1991a, c; Joner and Jakobsen 1995; Song et al. 
2000). Hyphosphere is defined as a critical and active 
zone of soil surrounding the living extraradical myce-
lium of mycorrhizal fungi beyond the rhizosphere 
and mycorrhizosphere. This zone (only including the 
hyphal surface and the soil adjacent to the hyphae) is 
directly influenced by exudates of mycorrhizal fungi 
(Fig. 1, Table 1). This more precise nomenclature will 
allow us to highlight the specific effects of AM fungi 
on the metabolism of plant roots and will be helpful 
to understanding of the in  situ biological, physical 
and chemical process in the plant root-mycorrhiza-
microbe-soil continuum.

Another important consideration is that the 
diameter of AM hyphae (2–10  μm) is up to two 
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orders of magnitude thinner than that of fine roots 
(around 0.2 mm or less); hence, the hyphal length 
density in soil (exceeding  108  m/m3) is much 
greater than that of roots (ca.  104  m/m3) (Allen 
2007; Miller et  al. 1995) (Table  2). Moreover, 
hyphae of AM fungi produce numerous branches 
(Friese and Allen 1991), thus enlarging the effec-
tive root surface area and its contact with the soil 

(Lanfranco et  al. 2018). Compared with the root, 
morphological advantages of mycelia imply that 
the hyphosphere, in addition to rhizosphere/myc-
orrhizosphere, is a critical and active soil zone 
providing a hotspot of activity in which physical, 
chemical and biological changes and functions are 
controlled mainly by the hyphae of AM fungi.

Table 1  The definition of the different spheres

Glossary Definition

Endosphere inner root tissues (including rhizodermis, cortex, and stele) inhabited by microorganisms
Rhizosphere the thin layer of soil surrounding the living roots not colonized by mycorrhizal fungi. This zone (including the 

root surface and the adjoining soil) is directly influenced by root exudates
Mycorrhizosphere a zone of soil surrounding the living roots colonized by mycorrhizal fungi. This zone (including the root and 

hyphal surface, and the soil adjoining the roots and hyphae) is directly modified by mycorrhizal fungi mediat-
ing root exudates and hyphal exudates

Hyphosphere a critical and active zone of soil surrounding the living extraradical mycelium of mycorrhizal fungi beyond the 
rhizosphere and mycorrhizosphere. This zone (only including the hyphal surface and the soil adjacent to the 
hyphae) is directly influenced by exudates of mycorrhizal fungi

Fig. 1  Definition of the 
range of spheres influ-
enced by root or by AM 
fungi in soil, forming the 
endosphere, rhizosphere, 
mycorrhizosphere and 
hyphosphere
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Even though the ecology of the rhizosphere has 
been investigated for more than 100 years, exploring 
the nature of hyphosphere interactions has received 
attention only in the last 30 years. Nevertheless, many 
ecological processes and functions in the hypho-
sphere have been characterized using innovative 
research methodologies (e.g. rhizoboxes, root and 
AM fungi dual culture, 13C-SIP-DNA/RNA analysis, 
NanoSIMS, quantum dot labelling, microfluidic chip, 
etc.). This Marschner review aims to critically evalu-
ate the current knowledge on the processes, ecologi-
cal functions and importance of the AM hyphosphere.

Hyphosphere processes

Until recently the limitations of research methods 
meant it was difficult to differentiate the effects of 
AM fungi and plant roots in the mycorrhizosphere 
because the fungi and roots grew in the same compart-
ment. In the last 30 years specific techniques have been 
employed to disentangle the effects in the rhizosphere/
mycorrhizosphere and hyphosphere. For example, 
development of compartmented systems (Kothari et al. 
1990; Li et al. 1991a, b, c), using nylon mesh to sepa-
rate the physical spaces that plant roots and AM fungal 
hyphae can occupy, has provided new insights into how 
the extraradical mycelium mediates soil processes. The 
most compelling findings show that the fungal hyphae, 
invisible to the naked eye, can cause a range of pro-
found physical, chemical and biological changes to the 
hyphosphere. Moreover, these changes are of the suf-
ficient magnitude for the hyphosphere to be considered 
significant within the context of the global carbon (C), 
nitrogen (N) and phosphorus (P) cycles and their con-
sequent environmental impacts.

Hyphosphere: physical processes

Soil macroaggregate formation and stabilization

Hyphae of AM fungi can promote soil aggregate 
formation and stabilization by mechanical entan-
glement or by promoting stickiness (He et al. 2020; 
Rillig and Mummey 2006) through the production 
of gelling exudates (Table 2, Fig. 2), independently 
of the soil organic C (Leifheit et al. 2014; Peng et al. 
2013), soil texture and carbonate content (Kohler 

et al. 2017). In a similar fashion to plant roots, ext-
raradical hyphae of AM fungi serve to enmesh and 
entangle soil particles, organic materials and small 
aggregates, facilitating macroaggregate (> 250  μm 
diameter) formation and enhancing soil struc-
ture stabilization (Morris et  al. 2019; Rillig et  al. 
2010). For example, Degens et  al. (1996) reported 
that increases in aggregate stability could be attrib-
uted largely to the increased growth of hyphae in a 
sandy soil. The stabilization of soil aggregates was 
apparently increased with the increasing propor-
tion of macroaggregates when the hyphae of six 
different species of the genus Glomus were present 
in the hyphosphere (Bearden and Petersen 2000). 
The recent results from a two-compartment system 
showed that greater hyphal length contributed to 
the formation and stability of soil water-stable mac-
roaggregates under both well-watered and drought 
stress conditions (Ji et al. 2019).

Some compounds (e.g. glomalin or glomalin-
related soil proteins (GRSP), mucilage, polysaccha-
rides, etc.) released by extraradical mycelia of AM 
fungi are involved in soil aggregate formation and 
stabilization (Rillig 2004; Rillig and Mummey 2006; 
Rillig et al. 2001; Singh et al. 2013) (Fig. 2). Although 
these compounds are not uniquely produced by AM 
fungi, they are regarded as “glue” tightly binding to 
soil particles and play a dominant role in converting 
clay mineral to structured aggregations. For exam-
ple, exudation of glomalin (a specific immunoreac-
tive glycoprotein secreted into the soil by hyphae and 
spores of AM fungi, Wright and Upadhyaya 1998) or 
GRSP correlated positively with soil aggregate sta-
bility in natural systems. A recent review suggested 
that glomalin is a 60 kDa heat shock protein (HSP60), 
both AM fungi and other soil organisms can pro-
duce HSP60 (Irving et  al. 2021). Path model analy-
sis showed that the easily extractable GRSP and total 
GRSP exhibited significant positive effects on mean 
weight diameter of water-stable aggregates (Ji et  al. 
2019). Additionally, total GRSP content and the pro-
portion of soil water-stable macroaggregates > 5 mm 
in diameter were significantly increased in an experi-
mental hyphal compartment under both well-watered 
and drought stress conditions (Ji et al. 2019). In brief, 
GRSP can improve aggregate formation and enhance 
soil stability by binding to soil particles.
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Fig. 2  The AM hyphae-mediated physical, chemical and bio-
logical changes and nutrient cycling in the hyphosphere. The 
lines with different colors on the left depict physical, chemical 
and biological processes at the hyphae-soil interface. Physical 
processes (red line) include soil aggregate formation and stabi-
lization, physical weathering, acquisition, utilization and redis-
tribution of soil water. Chemical processes (blue line) involve 
metal cation adsorption, nutrient depletion, acidification and 
oxidation–reduction. Biological processes (green line) include 
exudates, enzymes, small peptides and microorganisms. The 
cylinder in the centre depicts the hyphae and contains informa-
tion on the internal carbon, nitrogen and phosphorus cycling 
mediated by transporters, permeases and metabolic pathways 
in the extraradical hyphae. The four zones on the right depict 
carbon, nitrogen and phosphorus cycling and their subsequent 

environmental consequences in the hyphosphere mediated by 
exudates of extraradical hyphae. These mycelial exudates con-
tain low-molecular-weight compounds, such as glucose, fruc-
tose, oligosaccharides and amino acids, and they could serve 
as a C sources substrate or signalling molecules to stimulate 
growth and activity of AM fungi-associated bacteria. These 
bacteria are involved in decomposing organic matter through 
decomposing enzymes, and consequently release  CO2. The N 
cycle in the hyphosphere is primarily controlled by microor-
ganisms (saprotrophic fungi, bacteria, protists, etc.), and they 
are involved in transformation of inorganic and organic N 
forms by different pathways. The AM fungi-associated bacte-
ria stimulated by mycelial exudates secrete phosphatase and 
organic acid anions to mobilize sparingly soluble inorganic and 
organic P, and consequently promote plant P uptake
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Mineral weathering by AM hyphae

AM fungal hyphae can play an active role in parent 
mineral weathering (Koele et  al. 2014; Quirk et  al. 
2012; Thorley et  al. 2015; Verbruggen et  al. 2021) 
(Table  2, Fig.  2). Fossil evidence for biotite etching 
and weathering by AM fungal hyphae in the Miocene 
(5–23 Mya) was found (Sanz-Montero and Rodríguez-
Aranda 2012). Moreover, laboratory experiments have 
also demonstrated that inoculation with AM fungi 
accelerated biotite weathering and formation of low-
potassium clay minerals (Arocena et al. 2012).

The mechanisms of mineral weathering by AM 
hyphae are diverse (Verbruggen et al. 2021). On the 
one hand, they can trace the contours of particle sur-
faces or strongly adhere to mineral surfaces and exert 
forces using high turgor pressures, subsequently 
entering pores and fissures in minerals (Thorley et al. 
2015) and acting as efficient sinks for ions released 
by the mineral weathering (Quirk et al. 2015). On the 
other hand, AM hyphae may also form weathering 
trenches in silicate mineral surfaces buried in proxim-
ity to roots of trees (Quirk et al. 2012, 2014). How-
ever, hyphal tunnelling appears to be slow and con-
tributes only modestly to weathering, accounting for 
around 2% of total feldspar weathering in a temper-
ate coniferous forest (Smits et al. 2005). Additionally, 
GRSP secreted by extraradical mycelia of AM fungi 
(Wright and Upadhyaya 1998) may play important 
roles in mineral weathering by increasing the amount 
of soil aggregates, or by enhancing biological and 
chemical weathering of small soil particles.

AM fungal mycelium mediated redistribution of soil 
water

Arbuscular mycorrhizal fungi are well known for 
improving water acquisition and utilization by plants, 
enhancing drought tolerance of plants through exten-
sion of root growth and greater hyphal water absorp-
tion rate (Allen 2007). They therefore play a major 
role in water redistribution processes in the soil–plant 
system (Table 2, Fig. 2). The external hyphae can also 
directly absorb and transport water to their host plants 
from the soil (and even from the bulk soil beyond 
the influence of roots by extension of the extraradi-
cal mycelium) via penetration into soil pores and 
enlargement of the absorptive surface area (Allen 
2007; Faber et  al. 1991; Querejeta 2017), although 

contribution from extraradical mycelium to plant 
water metabolism is relatively smaller than roots 
(Hallett et al. 2009; Khalvati et al. 2005; Püschel et al. 
2020; Ruiz-Lozano and Azcon 1995). Using mycor-
rhiza-resistant mutants and wild type plants, Bitter-
lich et  al. (2018) found that arbuscular mycorrhiza 
improved hydraulic conductivity of the substrate 
(with root excluded) in the range of plant-relevant 
water availabilities.

Hyphosphere: chemical processes

Precipitation‑dissolution and adsorption–desorption

In neutral or alkaline soils, P ions precipitate as cal-
cium phosphates, whereas Fe and Al have a high 
capacity to combine with P ions under acidic condi-
tions. The dissolution of these types of P minerals 
depends on the soil pH and anion exchange reac-
tions. Decreased soil pH is associated with increased 
solubility of calcium phosphates, whereas soil alka-
linization results in Fe–P and Al-P solubilization 
(Hinsinger 2001). Mycorrhizal hyphae are known to 
change the pH of the hyphosphere and thus influence 
P availability. By contrast, there is no convincing evi-
dence to demonstrate that AM fungi have a capacity 
to mobilize sparingly soluble phosphates by releasing 
organic ligands or anions to compete with P ions for 
adsorption on the soil exchange complex.

Arbuscular mycorrhizal hyphae are implicated 
in detoxification of metals and have strong metal 
adsorption capacity relative to other microorganisms 
(Table 2, Fig. 2). The competition between  Cd2+,  Ca2+ 
and  Zn2+ ions for adsorption sites on AM hyphae 
seems to favour  Cd2+ over  Ca2+ and  Zn2+ (Joner et al. 
2000). This may be due to the presence of cysteine 
ligands in AM fungi, forming a class of "metallothio-
nein" binding substances. In addition to these organic 
ligands, metals were also adsorbed to inorganic bind-
ing sites in the cell walls of AM fungal hyphae. Some 
free amino acids and carboxyl, hydroxyl, phosphate 
and sulfhydryl groups in mycelium cell walls are all 
negatively charged and can adsorb metal cations, thus 
preventing them from entering the fungal cells (Meier 
et al. 2012). Another possibility is that the mycelia of 
AM fungi immobilize Cd and consequently reduce 
Cd concentrations and accumulation in shoots (Luo 
et al. 2017; Rask et al. 2019). In this way, AM fungi 
substantially reduce the harmful effects of Cd for 
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human health. Additionally, the glomalin was incor-
porated in the cell wall of AM mycelia and spores. 
Upon release of glomalin into soil, it formed GRSP 
(Rillig 2004). The content of GRSP in soil was sig-
nificantly positively correlated with the concentration 
of metals (Vodnik et al. 2008). In metal-contaminated 
soils, GRSP can adsorb metals and decrease their 
availability.  This has implications for the increasing 
use of poor-grade rock-phosphates as fertilizer, which 
tend to have relatively high metal contamination. By 
promoting crops colonized with mycorrhizal hyphae, 
there is opportunity to increase the utilization of the 
remaining sources of rock phosphate and extending 
the timespan of global phosphate reserves.

Chemical weathering of parent material

Most minerals are dissolved in acidic microenviron-
ments, and acidification is one of mechanisms under-
pinning mineral weathering by AM fungi and leads 
to the replacement of cations with protons on the 
mineral surface. Arbuscular mycorrhizal hyphae can 
release protons (Wang et al. 2013), influencing min-
eral weathering. Alkali cations such as  Na+,  K+ and 
 Ca2+ on rock surfaces can be released via exchange 
with protons (Table 2).

Other mechanisms by which AM fungi stimulate 
weathering are chelation reactions. Some organic acid 
anions chelate metal ions  (Fe3+,  Al3+,  Cu2+,  Zn2+, 
 Mn2+, etc.), significantly increasing the mobility of 
these elements (Landeweert et  al. 2001). Arbuscular 
mycorrhizal hyphae can exude sugars and organic acid 
anions (Bharadwaj et  al. 2012; Luthfiana et  al. 2021; 
Toljander et al. 2007) that can act as chelators to desta-
bilize mineral surfaces, increasing weathering poten-
tial. Moreover, the turnover of organic compounds, 
hyphae and bacteria associated with them increases 
respiration on mineral surfaces, which further stimu-
lates silicate weathering (Verbruggen et al. 2021).

pH variation

It is generally recognized that acidification is one of 
the important mechanisms of mobilization of spar-
ingly soluble phosphates in the rhizosphere (Anders-
son et al. 2015, 2016; Ding et al. 2011) or hyphosphere 
(Li et al. 1991b; Wang et al. 2013) in neutral-to-alka-
line soils (Table 2, Fig. 2). Many studies have reported 
that the imbalanced uptake of anions and cations by 

plant roots or AM mycelia induce variation of pH in 
the rhizosphere (Andersson et  al. 2016) or hypho-
sphere (Wang et  al. 2013). Reduction of soil pH (by 
0.2–0.5 units) was detected at both the root-soil and 
the AM hyphae-soil interfaces when the soil was sup-
plied with  NH4

+ under axenic conditions (Bago et al. 
1996; Ding et al. 2011; Li et al. 1991b; Villegas and 
Fortin 2001, 2002; Villegas et  al. 1996; Wang et  al. 
2013). The fungi prefer ammonium to nitrate because 
of the greater costs of metabolic energy associated 
with absorption and assimilation of nitrate compared 
to ammonium (Hawkins et al. 2000). Acidification in 
the hyphosphere induced by  NH4

+ uptake enhanced 
mobilization of sparingly soluble inorganic phos-
phates through releasing phosphate ions combined 
with  Ca2+ or mineralization of organic phosphates by 
increasing phosphatase activity in calcareous soils (Li 
et al. 1991b; Wang et al. 2013).

Redox reactions

For some metal elements with polyvalent states, such 
as Mn and Fe, their availability in soil usually depends 
on a soil oxidation–reduction potential and protons 
and electron-carrying reducing agents excreted by 
plant roots and microorganisms (Table 2, Fig. 2). The 
reduced forms of these elements are available to plants 
(Marschner 1988). Generally, oxidation reactions are 
mostly biological, but Mn reduction may be either 
biological or chemical in nature (Rengel 2000).

Depletion of oxygen in the growing medium 
changes the redox potential, with Mn and Fe serving 
as alternative electron acceptors for microbial respi-
ration and are transformed into reduced ionic forms. 
This process increases the solubility and availability 
of Mn and Fe, but their availability is a complex vari-
able that depends on plant genotypes, soil chemistry 
and microbial activity (Rengel 2015). For instance, 
an increase in the number of Mn-oxidizing bacteria 
in the wheat mycorrhizosphere affected quantity of 
exchangeable Mn rather than available Mn (Arines 
et al. 1992). Similarly, Nogueira et al. (2004) reported 
that stimulation of Mn-oxidizing bacteria and sup-
pression of Mn-reducing bacteria in the rhizosphere 
of mycorrhizal (Claroideoglomus etunicatum or Glo‑
mus macrocarpum) soybean plants may have contrib-
uted to the lower Mn concentration in these plants. 
However, Nogueira et  al. (2007) found the Mn-
reducing bacteria were stimulated in the rhizosphere 
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of mycorrhizal soybean plants, but Mn-oxidizing 
bacteria were diminished, suggesting exudation of 
carbohydrates from mycorrhizal roots may have 
been responsible for such an opposite effect. For the 
hyphosphere, AM fungi were found to decrease the 
number of Mn-reducing bacteria in the hyphal com-
partment (Kothari et  al. 1991b; Posta et  al. 1994), 
thereby indirectly diminishing the reducing potential 
and availability of Mn in the mycorrhizosphere or 
hyphosphere. This was thought to be the main cause 
of AM-colonized plants having relatively low Mn 
concentration (Arines et al. 1989).

The capacity of Fe-reducing bacterium Klebsiella 
pneumoniae strain L17 to enhance Fe(III) reduction in 
the mycorrhizosphere was up-regulated by exogenous 
application of labile C added as a pulsed input under 
the dual inoculation of Fe-reducing bacterium and 
arbuscular mycorrhizal fungus Funneliformis mosseae 
(Ding et al. 2014), suggesting that organic molecules 
can shuttle electrons from organisms to solid phase 
Fe(III) minerals and therefore affect Fe(III) reduction 
rates. Hence, the release of Fe–P was closely linked to 
the reduction of Fe oxide by Fe-reducing bacteria.

Hyphosphere: biochemical and biological processes

Metabolites in AM hyphal exudates

Symbioses between plants and AM fungi are based 
predominantly on an exchange of plant C for soil P 
(Genre et  al. 2020; Smith and Read 2008). Isotopic 
tracing studies showed that AM fungi utilize 5–20% 
of the net C fixed by plants (Jakobsen and Rosendahl 
1990; Pearson and Jakobsen 1993), and the flows of 
C to extraradical mycelia via roots have been deter-
mined by several studies. Two-compartment micro-
cosms were employed to trace the C fluxes from host 
plant to the extraradical mycelial network of AM 
fungus in  situ using pulse labelling by 13CO2. This 
demonstrated for the first time the C flux from plants 
to the AM mycelium-associated phosphate-solubi-
lizing bacteria (Kaiser et al. 2015; Zhou et al. 2020), 
increasing the δ13C of hyphosphere soil from -22.1‰ 
to + 176.6‰ (Wang et al. 2016). Therefore, exudation 
of carbohydrates by AM fungal extraradical mycelia 
may be an important source of energy for microor-
ganisms associated with hyphae (Table 2, Fig. 2).

By combining the mycorrhizal root organ cul-
ture in the split Petri dish system and proton nuclear 

magnetic resonance spectrometry, low-molecular-
weight compounds, such as formate, acetate, glucose 
and oligosaccharides, were detected in mycelial exu-
dates (Toljander et  al. 2007). Similarly, exudates of 
Rhizoglomus irregulare extraradical mycelium con-
tained carbohydrates, amino acids and unidentified 
compounds, and all these C sources could serve as 
a substrate to stimulate growth of AM fungi-associ-
ated bacteria (Bharadwaj et al. 2012; Luthfiana et al. 
2021). In addition, fructose exuded by the extraradical 
hyphae of Rhizophagus irregularis may be a key sig-
nalling molecule (Zhang et  al. 2018a). Even though 
these studies provide evidence that the metabolites 
detected in hyphal exudates have a positive effect on 
growth of mycelium-associated bacteria, the full suite 
of chemical forms and functions of hyphal exudates is 
poorly understood due to technical difficulties in col-
lecting and quantifying the hyphal exudates (Table 3).

Activity of microorganisms

Studies on microorganisms in the hyphosphere began 
with microscopic inspection and revealed a num-
ber of important findings. First, soil bacteria, such 
as Paenibacillus brasilensis, Pseudomonas fluores‑
cens and Bacillus cereus, were shown to be attached 
to AM hyphae (Artursson and Jansson 2003; Battini 
et  al. 2016; Scheublin et  al. 2010; Toljander et  al. 
2006) and spores (Levy et  al. 2003; Roesti et  al. 
2005), and formed biofilms on the surface of AM 
hyphae (Lecomte et  al. 2011). Moreover, a  recent 
study showed that bacteria could move in a thick 
water film formed around extraradical hyphae of 
AM fungi, which suggests that AM hyphae can act 
as a “highway” for bacteria to move along to reach 
organic P patches, therefore enhancing utilization of 
these discrete sources of organic P (Jiang et al. 2021) 
(Fig. 3c, d). Second, the hyphae-associated bacteria, 
called mycorrhiza helper bacteria (MHB), have been 
shown to stimulate mycelial growth, spore germina-
tion and mycorrhization (Artursson et al. 2006; Frey-
Klett et  al. 2007; Xavier and Germida 2003). Third, 
hyphae-associated bacteria have also been shown 
to inhibit growth and activity of extraradical myce-
lium (Leigh et  al. 2011; Svenningsen et  al. 2018). 
In return, AM hyphae or hyphal exudates were dem-
onstrated to stimulate bacterial growth and activity 
(Filion et al. 1999; Mansfeld-Giese et al. 2002; Tol-
jander et al. 2007), and alter the bacterial community 
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structure (Nuccio et  al. 2013; Scheublin et  al. 2010; 
Toljander et  al. 2007). There is a clear role for AM 
hyphae in influencing bacterial abundance and func-
tion in the hyphosphere, but the underlying mecha-
nisms and ecological functions of AM fungi-bacteria 
associations are not well understood. Most of what 
is known has been derived from axenic experiments, 
which may not correctly reflect the actual interactions 
in the environment and their effects on plant and/or 
soil biological processes. Therefore, studies on AM 
fungal hyphae-associated bacteria and their function 
and interactions in soil are critical for understand-
ing responses of agricultural and natural systems to 
environmental change and are likely to become a hot 
research topic in the future (Table 3).

Biological cycling of elements in the hyphosphere

Nutrient cycling

Nitrogen

The extraradical hyphae of AM fungi can effectively 
acquire nitrate  (NO3

−), ammonium  (NH4
+) and amino 

acids (AAs) from soil (Bonfante and Genre 2010; Jin 

et al. 2012). It has been found that N uptake and trans-
port in AM symbiosis is offset by a C flux from the 
plant, a similar reward mechanism to that described 
for P and C exchange (Fig.  2). In detail, various N 
sources are absorbed and transformed into arginine 
(Arg) by extraradical hyphae. Ammonium, nitrate and 
amino acid transporters and permeases in the extra-
radical hyphae of AM fungi participate in N absorp-
tion. The glutamine synthetase-glutamate synthase 
pathway (GS-GOGAT) is involved in the urea cycle 
and Arg biosynthesis. Arginine is then transferred 
from extraradical to intraradical hyphae combined 
with Poly P and catabolized through a urea cycle in 
the intraradical hyphae, releasing  NH3/NH4

+ into 
arbuscules. Because of the acidic environment in the 
periarbuscular space, the  NH4

+ ion is deprotonated 
prior to its transport across the plant membrane via 
the ammonia channels and released in its uncharged 
 NH3 form into the plant cytoplasm (Govindarajulu 
et al. 2005; Jin et al. 2005, 2012).

The N cycle in soil is primarily controlled by bac-
teria and archaea (Rozmoš et al. 2022). Even though 
AM hyphae predominantly take up inorganic N as 
either  NH4

+ or  NO3
− (Hodge and Storer 2015; Tan-

aka and Yano 2005), they also have the capacity to 
acquire N from organic sources such as glutamate 
and glycine (Hawkins et  al. 2000). In the presence 

Table 3  Critical areas for further research in the hyphosphere

Research areas Specific aims of future research

Methodology Quantify the physical, chemical and biological processes in both the direct and mycorrhizal nutrient 
uptake pathways;

Quantify the dynamics of AM fungal biomass and content of C, N, P, etc.;
Develop new in situ visualization and analysis methods for exploring the interactions between AM 

hyphae and hyphosphere microbiota;
Confirm whether AM fungi have capacity to secrete phosphatase;
Collect and quantify the hyphal exudates

Mechanisms Quantify the recruitment of distinct bacterial communities by different AM fungal species and host 
plants;

Understand how AM fungi and bio-/abiotic environmental factors interact;
Quantify AMF-promoted organic N cycling

Biological interactions Develop understanding of the interactions in the AM fungi-microbiome-plant continuum
Ecological functions Assess the impact on metabolites in exudates of AM hyphae due to variation in soil conditions and 

environment;
Assess impacts of microbiome in the hyphosphere on AM performance;
Quantify the cycling of key resources in plant-soil system, particularly the role of AMF in C seques-

tration and nutrient cycling;
Establish how interactions between AM fungi and bacteria influence the growth and development of 

AM fungi and host plant
Environmental consequences Assess the environmental impact on ecosystem function of AMF and the hyphosphere
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of oxygen,  NH4
+ can be oxidized to  NO3

− through 
the action of ammonia-oxidizing bacteria (AOB) 
and ammonia-oxidizing archaea (AOA), whereas in 
the absence of oxygen,  NO3

− can be used by many 
microbes as a respiratory electron acceptor in the 
process known as dissimilatory nitrate reduction to 
 NH4

+ during denitrification (Canfield et  al. 2010; 
Kuypers et  al. 2018). It seems that extraradical 

hyphae of AM fungi could potentially compete for 
 NH4

+ and  NO3
− with other microorganisms involved 

in nitrification and denitrification (Bollmann et  al. 
2002). Therefore, the content of available  NH4

+ and 
 NO3

− in the hyphosphere is decreased; nitrification 
and/or denitrification may also be impaired with 
consequent reductions in NOx emissions from soil 
(Table 2, Fig. 2).

Fig. 3  The mesh-based microcosm for investigating AM 
hyphae-mediated ecological functions in the hyphosphere. 
(a) The in-growth tubes (10 cm in diameter, 6 cm in length), 
sealed with 30  μm mesh (permitting AM fungal hyphae but 
not roots to grow into) or 0.45 μm membrane (excluding both 
AM fungal hyphae and roots) at the two ends, were buried near 
the roots (in the layer 20–30  cm deep and 15  cm away from 
a maize plant) in the field to study the hyphosphere interac-
tion effects (Zhang et al. 2018b). (b) Spatial separation of soil 
zones for root and hyphal growth and soil zones. The chamber 

has five compartments, a central one for root growth (including 
mycorrhizal structures) separated from the two adjacent ones 
by 30  μm mesh. The bulk soil compartments are separated 
from the hyphal compartments by 0.45 μm mesh. (c, d) Sche-
matic diagram describing the underground ‘hyphae highway’ 
formed by mycorrhizal network of AM fungi. The phosphate-
solubilizing bacteria can quickly migrate toward an organic P 
patch along the hyphae highway (Jiang et al. 2021; Sun et al. 
2021)
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Accumulating evidence indicates that extra-
radical mycelia of AM fungi can obtain substan-
tial amounts of N from decomposing organic mat-
ter and increase N capture for host plants (Hodge 
et  al. 2001; Hodge and Fitter 2010; Leigh et  al. 
2009, 2011). This phenomenon likely relies on the 
other microorganisms (saprotrophic fungi, bacte-
ria, protists, etc.) influenced by AM fungal hyphae 
(Bukovská et al. 2018; Hestrin et al. 2019; Rozmoš 
et al. 2022) because AM fungi have no known sap-
rotrophic capacity (Smith and Read 2008). Studies 
in soil have shown that plant N uptake from a litter 
patch was significantly increased when AM fungi 
accessed the patch compartment, and 15 N analysis 
of the plant material indicated that 2–4% of plant N 
originated from litter decomposed by bacteria asso-
ciated with extraradical AM hyphae (Herman et al. 
2012; Leigh et  al. 2011). Recent in  vivo experi-
ments with 15 N isotope tracing provided direct evi-
dence that organic N utilization by an AM fungus 
is mediated by a soil bacterium Paenibacillus  sp. 
and a protist Polysphondylium pallidum (Rozmoš 
et  al. 2022). Further research is therefore needed 
to understand the mechanisms and pathways of 
organic N cycling in the hyphosphere (Table 3).

Free-living diazotrophs, colonizing the surface of 
extraradical hyphae of AM fungi, can fix  N2 from the 
atmosphere (Shi et al. 2021), suggesting specific bac-
teria interacting with AM hyphae could improve the 
N status of host plants grown on a low-N soil. Results 
from a recent study featuring root- and AMF-exclu-
sion plots around leguminous Faidherbia albida trees 
in smallholder fields using the 15 N natural abundance 
technique showed that one-third of tree-derived N 
in maize leaves was attributed to AMF-mediated N 
uptake from beyond the maize rooting zone (Dierks 
et al. 2022). Therefore, AM fungi quantitatively con-
tribute to the crop uptake of legume-derived N and 
enhance agroecosystem functioning, which is indis-
pensable in attaining sustainable agroecosystems.

Phosphorus

Extraradical mycelia enlarge the absorptive area of 
plant roots and profoundly influence biochemical 
properties of the hyphosphere, resulting in improved 
availability of the poorly mobile soil P and increased 
plant P uptake (Fig. 2, Fig. 3b). In addition to hyphal 
extension, the external hyphae of AM fungi also 

exude protons to mobilize sparingly soluble inorganic 
P by acidification of the alkaline hyphosphere soil 
(Li et al. 1991b; Wang et al. 2013; Yao et al. 2001). 
However, for the hydrolysis of organic phosphates, it 
must be catalyzed in the presence of phosphatases to 
release free orthophosphate. Previous studies using 
either an in  situ histochemical method (van Aarle 
et  al. 2002; Feng et  al. 2002), a split-dish in  vitro 
carrot-mycorrhiza system (Koide and Kabir 2000; 
Sato et al. 2015, 2019) or a compartmented pot cul-
ture (Joner and Jakobsen 1995; Joner and Johansen 
2000) were conducted to demonstrate that extraradi-
cal hyphae of AM fungi could release phosphatase, 
moreover, transcriptome analyses suggested that AM 
fungi had the potential to secrete phosphatases (Liu 
et  al. 2013; Tisserant et  al. 2012), but there is still 
no strong evidence that AM hyphae have capacity to 
secrete phosphatase. Therefore, organic P mineraliza-
tion, particularly of inositol phosphates (the predom-
inant form of organic P in soils), in the AM fungal 
hyphosphere is likely to be driven by microbially 
derived phosphatases and phytases.

Recently, several important findings regarding inter-
actions between AM fungi and phosphate-solubilizing 
bacteria (PSB) to promote mineralization of soil P in 
the hyphosphere have been reported. For example, the 
AM fungus Rhizophagus irregularis was shown to 
interact with a phosphate-solubilizing bacterium Pseu‑
domonas alcaligenes in the hyphosphere, increasing 
hyphosphere soil phosphatase activity and enhancing 
Na-phytate mineralization (Zhang et  al. 2014). The 
photosynthates from 13CO2-labelled maize were trans-
located to hyphosphere PSB via the extraradical AM 
hyphae, and extraradical mycelium-associated PSB 
enhanced mineralization and turnover of soil organic P 
in the hyphosphere (Wang et al. 2016).

The cooperation between AM fungi and PSB was 
influenced by the initial P availability and C:P ratio 
in the hyphosphere soil (Zhang et  al. 2016). Fruc-
tose, one component of hyphal exudates, was shown 
to be not only a C source, but also a signal mole-
cule to trigger mineralization of organic P mediated 
by a single PSB Rahnella aquatilis (Zhang et  al. 
2018a). In a rhizobox study in greenhouse, fruc-
tose was found to change the bacterial community 
by increasing the relative abundance of specific taxa 
(Zhang et al. 2020). However, the finding of various 
PSB on mycorrhizal hyphae in  vitro (Taktek et  al. 
2015) suggest that a wide range of microorganisms 
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found in the rhizosphere and hyphosphere may have 
similar function. A recent study in the field demon-
strated that AM fungi and their hyphae-associated 
microbiome play a role in promoting mineralization 
of soil organic P in the hyphosphere (Zhang et  al. 
2018b) (Fig. 3a).

Co-inoculations with AM fungus Rhizoglomus 
irregulare strain QS69 and PSB belonging to the 
genus Pseudomonas in a two-compartment experi-
mental system showed the potential for mobiliza-
tion of inorganic and organic phosphate along with 
other plant growth-promoting traits (Sharma et  al. 
2020). Moreover, addition of fructose to the soil 
of hyphal compartment in a greenhouse set-up was 
shown to (i) act as an energy source to stimulate 
bacterial phosphatase activity by altering soil bacte-
rial community structure and (ii) promote organic P 
mineralization, thus enhancing the utilization of P 
accumulated in organic forms in soils (Zhang et al. 
2020). Interestingly, the extraradical hyphae may 
facilitate the transport of bacteria to soil nutrient 
patches. A phosphate-solubilizing bacterium was 
found to move in a water film along the AM fun-
gal hyphae, being nourished by hyphal exudates on 
its way towards the phytate patch, where it extended 
the functional capacity of the fungus to utilize this 
otherwise inaccessible P source (Jansa and Hodge 
2021; Jiang et al. 2021).

The interaction between AM fungi and other 
(non-PSB) bacteria to promote P nutrient turnover 
and plant uptake has also been reported. For exam-
ple, extraradical hyphae of Funneliformis mosseae 
and Fe-reducing bacteria Klebsiella pneumoniae 
L17 in the hyphal chamber showed a competitive 
interaction in low-P soil, and a complementary, or 
possibly a C-dependent synergistic, function at high 
P availability (Zhang and Ding 2018). It is likely 
that P released from Ferralsols by Fe-reducing bac-
teria may be enhanced by additions of exogenous C.

Micronutrients

Arbuscular mycorrhizal fungi also play a crucial role 
in micronutrient acquisition by plants. The uptake of 
Cu and Zn by the external hyphae (in hyphal com-
partments) may account for about 53–62% of the 
total Cu uptake by white clover and 25% of the total 
Zn uptake by maize (Kothari et  al. 1991a; Li et  al. 
1991c). Subsequently, Jansa et  al. (2003) quantified 

the contribution of the mycorrhizal pathway for 
uptake of Zn by maize plants inoculated with the 
AM fungus Glomus intraradices (syn. Rhizopha‑
gus irregularis) using the proportion of labelled Zn 
taken up. More recently, Watts-Williams et al. (2015) 
used 65Zn to quantify the total amount of Zn and the 
relative contribution of Zn delivered via the mycor-
rhizal pathway of uptake in shoots of tomato plants 
inoculated with R. irregularis. Results showed that 
the highest relative contribution of the mycorrhizal 
pathway to Zn uptake was up to 24% in the low Zn 
concentration treatments. In more recent studies the 
mycorrhizal pathway of Zn accumulation in the edi-
ble portion of wheat and barley contributed up to 24% 
of total above-ground Zn in wheat, and up to 13% in 
barley. The greatest contribution by the mycorrhizal 
pathway was observed in barley at the lowest Zn addi-
tion, and in wheat at the highest one (Coccina et al. 
2019). It is likely that the contribution by the mycor-
rhizal pathway to plant Zn uptake is highly dependent 
on the host plant species and soil Zn availability.

Mycorrhizal inoculation had a significant influ-
ence on the concentration of 59Fe in shoots of sor-
ghum plants, suggesting extraradical AM hyphae 
can mobilize Fe and promote both its uptake from 
the hyphal compartment and translocation to the host 
plant (Caris et  al. 1998). By contrast, a decrease in 
Mn uptake by mycorrhizal plants could be due to 
decreased uptake and transport of Mn in the exter-
nal hyphae or a decline in Mn availability due to 
decreased abundance of Mn-reducing bacteria 
(Kothari et al. 1991b).

Elements such as Zn and Fe are also essential 
micronutrients for humans, and studies indicate that 
AM fungi play a positive role on improving Zn and 
Fe concentrations in edible parts for a variety of crops 
(Ercoli et al. 2017; Lehmann et al. 2014). The role of 
AM fungi in food security therefore goes beyond just 
allowing more sustainable production of crops, but 
also by impacting the nutritional quality of food, pro-
moting nutritional security by improving micronutri-
ent nutrition and health for humans through the food 
chain.

Cycling of C between plants and hyphosphere

As obligate biotrophs, the AM fungi are an impor-
tant sink for organic C fixed by the plant through 
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photosynthesis, with a portion of that C transferred 
by the AM fungus into the soil (Genre et  al. 2020) 
(Fig.  2). In addition, AM hyphae can contribute to 
priming of soil organic matter mineralization (Pat-
erson et  al. 2016). Apart from stimulating litter 
decomposition, mycorrhizae can also stabilize litter 
C by reducing the abundance and activity of other 
soil microbes (Leifheit et al. 2015; Verbruggen et al. 
2016). Nevertheless, AM hyphae may have a quick 
turnover, potentially acting as a rapid pathway for 
returning C to the atmosphere (Staddon et al. 2003). 
The AM hyphae not only accelerate decomposition 
of complex organic materials like grass litter, lead-
ing to enhanced  CO2 emission, but also contribute to 
additional C respired back to the atmosphere (Cheng 
et al. 2012); this net emission of  CO2 was likely due 
to increased C fixation by plants and transport of this 
C to the soil via AM fungi (Kowalchuk 2012).

Nitrous oxide emissions

Nitrous oxide  (N2O), a potent greenhouse gas, is a prod-
uct of a disrupted N cycle caused by incomplete denitri-
fication in soils. Nitrification and denitrification of inor-
ganic N  (NH4

+ and  NO3
−) feed the N cycle to produce 

 N2O, and this process is driven by nitrifying and denitri-
fying bacteria (Hino et al. 2010). Recent meta-analysis 
has concluded that AM fungi can significantly decrease 
soil  N2O emission (Shen and Zhu 2021) (Fig.  2). For 
example, a microcosm experiment demonstrated that 
AM fungi suppressed  N2O emissions in sandy but not 
clay soils amended with rice straw (Zhai et  al. 2021). 
The intense competition for inorganic N between AM 
fungi and nitrifying/denitrifying bacteria could decrease 
the availability of N substrates for  N2O producers and 
consequently lead to a reduction in  N2O emissions. In 
fact, AM fungi have been demonstrated to reduce  N2O 
emissions from soil through increasing the number of 
copies of nosZ gene that encodes nitrous oxide reduc-
tase, the enzyme that reduces  N2O to  N2 (Bender et al. 
2014, 2015; Kuypers et al. 2018).

Recent studies with compartmented microcosms 
have demonstrated that extraradical AM hyphae also 
decrease  N2O emissions from soil. For example, Storer 
et al. (2018) found that production of  N2O from organic 
patches decreased due to diminished nitrification rates 
in the presence of AM hyphae. Gui et al. (2021) found 
that extraradical AM hyphae reduced  N2O emission by 

decreasing the abundance of key genes responsible for 
denitrification (nirK and nosZ).

Bacterial community composition

There is evidence in the literature that root- or 
hyphae-associated bacteria utilize root or hyphal 
exudates as easily available C and energy sources 
for fast growth and reproduction, contributing to an 
increase in the number of bacteria in the rhizosphere 
and hyphosphere (Toljander et al. 2007; Zhang et al. 
2016) (Fig. 2). In vitro, the addition of exudates pro-
duced by AM extraradical mycelia to a bacterial com-
munity extracted from soil not only stimulated bacte-
rial growth and activity, but also changed community 
composition (Toljander et  al. 2007). Similarly, in a 
chamber microcosm in  situ under both greenhouse 
and field conditions, the presence of AM extraradi-
cal hyphae altered the soil bacterial community (Her-
man et al. 2012; Nuccio et al. 2013; Wang et al. 2019; 
Zhang et al. 2018b). However, when only extraradical 
AM hyphae had access to an organic patch in a com-
partmented microcosm, there was a limited impact on 
bacterial community structure due to bacterial com-
petition for resource (Leigh et al. 2011).

Because hyphal exudates are found in smaller quan-
tities than root exudates (Qin et  al. 2022), the influ-
ence of extraradical hyphae on bacterial community 
in the hyphosphere is possibly less than that of roots 
in the rhizosphere. Qin et al. (2022) compared the dif-
ferences in P-mobilizing bacterial community between 
rhizosphere and hyphosphere using compartmented 
rhizoboxes. The mycorrhizal regulation was greater in 
the mycorrhizosphere than the hyphosphere, and the 
P-mobilizing bacterial community in the hyphosphere 
was not the subset of that in the mycorrhizosphere. 
Likewise, results of alkaline phosphatase genes (phoD) 
and pyrroloquinoline quinone biosynthesis gene (pqqC) 
expression indicated that the P-mobilizing bacterial 
community in the rhizosphere differed from that in the 
hyphosphere. Consequently, the importance of bacte-
rial community in the hyphosphere for promoting the 
P uptake of host plants should be investigated further.

Many bacterial phyla, such as Proteobacteria, Act-
inobacteria, Firmicutes, Gemmatimonadetes, Bacte-
roidetes, Chloroflexi, Acidobacteria, Cyanobacteria, 
Planctomycetes and Fusobacteria, have been identi-
fied in the hyphosphere. The hyphal effect on soil 
bacterial community resulted in the enrichment of 
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some bacterial phyla such as Proteobacteria (Emmett 
et  al. 2021). These enriched bacteria played a posi-
tive role as mycorrhiza helper bacteria (Frey-Klett 
et  al. 2007). Interestingly, the abundance of bacte-
ria harbouring genes that encode enzymes involved 
in organic P mineralization [alkaline phosphatase 
(phoD) and β-propeller phytase (BPP)] increased due 
to the presence of extraradical AM hyphae (Wang 
et al. 2019; Zhang et al. 2018b).

The bacterial community composition and function 
were also influenced by interaction with some abiotic 
factors such as P forms (Wang et al. 2019) and concen-
trations of phytate (Zhang et  al. 2018b) and fructose 
(Zhang et  al. 2020) in the hyphosphere. Some biotic 
factors also influenced the hyphosphere bacterial com-
munity significantly. Using a split-root culture system 
and simultaneous inoculation with two different AM 
fungal species, Zhou et  al. (2020) found that differ-
ent AM fungi co-colonizing a single plant root system 
recruited distinct microbiomes. Emmett et  al. (2021) 
also found that the host plant species strongly influ-
enced the hyphosphere bacterial community. However, 
the mechanisms involved in the recruitment of these 
distinct bacterial communities by different AM fungal 
species and host plants are still unknown. In addition, 
how the interaction between AM fungi and bacterial 
community assemblage influenced the growth of AM 
fungi and eventually the host plant growth and devel-
opment also warrants further studies (Table 3). Moreo-
ver, some AM fungi also harbour endobacteria that 
have important influence on the functions of AM fungi, 
which merits further research (Salvioli et al. 2016).

Future research perspectives

Although the AM hyphae are not visible to the 
naked eye, the biophysical, biochemical and biologi-
cal reactions driven by AM fungi make the fungi-
soil interface a unique critical zone affecting eco-
system functions that have global consequences. 
It has become clear in recent years that AM fungi, 
which form one of two nutrient acquiring path-
ways of plant in soil, not only influence the nutri-
ent uptake efficiency of the mycorrhizal plants, 
but also have significant impacts on C balance and 
greenhouse gas emissions. However, many questions 
still remain about the full impact of this microscale 
interface harbouring highly complex ecological 

processes. We propose several key areas for further 
research (Table 3).

First, we should integrate better the research on 
effects of mycorrhizosphere, rhizosphere (influ-
enced by non-AM colonized roots) and hyphosphere 
in mycorrhizal plants. How plants balance differ-
ent strategies in these ‘spheres’ to acquire resources 
based on the optimized C economy is a fundamental 
question in biology and ecology. Therefore, an inte-
grated approach to quantify the trade-off between 
physical, chemical and biological processes in both 
the direct and mycorrhizal uptake pathways is needed 
in further studies.

Second, a single plant root system is usually colo-
nized by diverse AM species simultaneously, form-
ing common mycorrhizal networks with overlapping 
hyphospheres in the plant-soil continuum in nature. 
Different AM fungal species showed diverse capacity 
to influence hyphosphere functions (such as mobiliz-
ing sparingly soluble mineral nutrients or promoting 
soil aggregate formation) through recruiting distinct 
microbiome (Zhou et al. 2020). Despite this substan-
tial ecological footprint, we know little about some 
fundamental aspects of the biology, ecology and 
agricultural significance of the hyphal exudates driv-
ing hyphospheric biological interactions, ecological 
functions and their subsequent environmental conse-
quences. We need to shed more light on:

 (i) The molecular mechanisms through which the 
fungi and biotic/abiotic environmental factors 
interact;

 (ii) How the composition of AM hyphal exudates 
responds to soil conditions and environmental 
variation;

 (iii) How the hyphosphere microbiome plays a role 
of an extended genome and impacts AM per-
formance; and

 (iv) How and to what extent the fungi-microbiome-
plant interactions govern the cycling of key 
resources in plant-soil system and therefore the 
environmental impact of ecosystem functions.

Third, it is widely accepted that the Glomero-
mycota fungi are crucial for crop production, fruit 
quality, plant health and soil fertility, but we know 
almost nothing about the biomass and nutrient 
demand of this agriculturally crucial taxon. It is 
essential and urgent to develop new methodologies 
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to quantify the dynamics of biomass of the fungi 
and the content of C, N, P, etc. in their biomass. 
Such information will help design improved ferti-
lizer management regimes to feed not only the crop 
but the fungi first.

Finally, one of the most prominent methodol-
ogy innovations in the last four decades of studying 
mycorrhizal hyphospheric effects is the mesh-based 
compartmented rhizobox. By using meshes with 
pore diameter of 30  µm or 0.45  µm, this approach 
has successfully separated the zones that are influ-
enced by mycorrhizal roots or only by mycorrhizal 
hyphae. In  vitro culture of AM fungi together with 
roots or whole plant is another prominent approach 
that provides a way to test the effects of hyphal exu-
dates on nutrient mobilization or microbiome in the 
hyphosphere. New in  situ analysis methods need to 
be developed that can facilitate sampling, measur-
ing or imaging at the nano- to micrometer scale. 
For example, integration of microfluid chip system, 
nanoSIMS, nanoDESI and single cell transcriptomic 
methods may uncover new mechanisms governing the 
interactions between AM hyphae and hyphosphere 
microbiota.

We think that the application of modern scientific 
techniques to these key knowledge gaps regarding 
the function of the hyphosphere will underpin a bet-
ter understanding of the role of AM fungi in solving 
some of the most pressing issues that the human race 
currently faces, such as agricultural sustainability, cli-
mate change mitigation and adaptation, and reversing 
biodiversity loss.
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