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reported in Abedi et  al. (Plant Soil 374:485-495, 
2014).
Results  No seeds of R.  acetosa were found viable 
after 1.5 years. Seeds of R. acetosella retained viabil-
ity after 11.5  years mostly in dry-loam (~ 60%) and 
moist-sand (~ 25%) test conditions and moisture lev-
els were identified as the main driver. R.  maritimus 
retained ≥ 80% viability in moist and wet test condi-
tions and > 40% in the dry test conditions.
Conclusions  For one (R. acetosella) of the three 
investigated species, the classification of soil seed 
bank type depended on environmental conditions, 
emphasizing the need to introduce a more detailed 
classification scheme for soil seed persistence and 
to include the information about extrinsic param-
eters in databases. However, in the other two species 
with transient (R. acetosa) and long-term persistent 
(R. maritimus) seed banks, there are rather intrin-
sic parameters that affect seed viability. Hence, both 
site-specific environmental factors as well as seed 

Abstract 
Aims  Seeds are usually classified as short- or long-
term persistent. It is still hardly understood how envi-
ronmental conditions influence seed persistence. The 
study aimed to monitor the long-term effects of dif-
ferent moisture and substrate on seed persistence.
Methods  Seeds of three Rumex species buried in 
autumn 2009 in combinations of moisture and sub-
strate were exhumed in spring 2015 and 2021 to test 
their persistence in the soil after 5.5 and 11.5 years, 
respectively. Long-term persistence data were com-
pared with data from previous short-term experiment 
for the same species and environmental conditions 
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germination traits need full consideration in the clas-
sification of future soil seed bank studies.

Keywords  Burial seed bank · Rumex spp. · Seed 
longevity in soil · Seed persistence · Soil seed bank 
classification · Soil substrate type

Introduction

Seed bank persistence plays a crucial role in popula-
tion dynamics (Grubb 1977) since it allows the plant 
to disperse through time by remaining viable and 
avoiding germination in unfavorable environmental 
conditions (Kiss et  al. 2018; Long et  al. 2015). Per-
sistence classification schemes categorize species 
as forming either of three types of soil seed bank: 
(1) transient seed banks—if viable seeds are pre-
sent in the soil for < 1 year, (2) short-term persistent 
seed bank—if viable seeds are present in the soil 
for > 1 but < 5  years, and (3) long-term persistent 
seed banks—if viable seeds are present in the soil 
for > 5  years (Bakker 1989; Maas 1987; Thompson 
and Fenner 1992; Thompson and Grime 1979). How-
ever, even within a species and among seeds of the 
same cohort, there is variability in the time seeds may 
survive in the soil seed bank (Genna and Perez 2021; 
Saatkamp et  al. 2014). The post-dispersal environ-
ment influences seed persistence that includes micro-
climate (temperature, moisture), soil properties (phys-
ical, chemical, biological), and other features (e.g., 
burial depth, light, disturbance, predation) of the site 
into which seeds are dispersed (Long et al. 2015; Ma 
et al. 2017).

It is now well known that seeds of some species 
can persist and remain viable for millennia if hid-
den or buried under relatively stable, cool, dark, and 
dry or wet conditions, as evident from the germina-
tion of 2000-years old date palm seed (Phoenix dac-
tylifera) excavated from Masada near the Dead Sea, 
Israel (Sallon et al. 2008) or of a 1300-years old lotus 
seed (Nelumbo nucifera) from the sediment from an 
ancient lake bed at Pulantien, Liaoning Province, 
China (Shen-Miller et  al. 1995). Dr. William Beal’s 
famous seed burial experiments showed that some 
plant species’ seeds (Malva rotundifolia, Verbas-
cum blattaria, and Verbascum sp.) could retain their 
viability even under semi-ambient field conditions 
for at least a century, in that case, buried in a glass 

bottle with dehydrated soil (Telewski and Zeevaart 
2002; another viable seed sample was excavated in 
2021, i.e., after 142 years). After Beal’s experiment, 
many studies have been carried out in which freshly 
matured viable seeds were buried in soil under ambi-
ent natural conditions, and their viability was deter-
mined after various periods (see table 7.1 in Baskin 
and Baskin 2014).

For most of these seed burial studies, it was hard 
to distinguish which individual environmental fac-
tors (extrinsic parameters such as moisture level, 
soil substrate type, or temperature) have the most 
pronounced effect on seed longevity in soil. On the 
other hand, several burial experiments have been car-
ried out involving older stages of seed banks to distin-
guish the impact of an individual environmental fac-
tor on seed longevity. However, attention has rarely 
been focused on how the interaction of two or more 
factors affects seed longevity in the soil in a longer 
time span (but see Abedi et  al. 2014; Chen et  al. 
2021; Long et  al. 2009; Schafer and Kotanen 2003; 
Skálová et  al. 2019; Van et  al. 2005, for relatively 
short-term experiments). Nevertheless, to the best of 
our knowledge, there is still no long-term experiment 
carried out to address this issue. Abedi et al. (2014) 
varied two environmental factors and detected signifi-
cant soil moisture and substrate types interactions on 
seed longevity based on 1.5 years of burial duration. 
However, a burial time of only 1.5  years was likely 
not sufficiently informative as far as the point of the 
longevity of seed survival is concerned. Also, the 
relative effects of intrinsic and extrinsic parameters 
on seed survival might differ when examined for the 
long-term instead of the short-term.

Exact measurement of seed persistence in the soil 
may only be possible through long-term burial exper-
iments (Poschlod et  al. 2013), as seed persistence 
potential, in the long run, depends on the overall 
quality of the seeds and soil conditions at the burial 
sites (Schafer and Kotanen 2003). Hence, the gen-
eral aim of the present study is to investigate the long 
timescales changes in seed viability of three Rumex 
species, i.e., closely related species differing substan-
tially with respect to the natural conditions in which 
they typically grow (especially precipitation regimes 
and soil types). Abedi et al. (2014) reported findings 
for the initial three burial time-steps (up to 1.5 yrs). 
However, it is known that seeds of these species can 
persist in the soil much longer. The specific aim of 
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the study is to (1) monitor a decline in seed viabil-
ity after 5.5 and 11.5 years of burial, and (2) evaluate 
the effect of moisture level, soil substrate, and their 
interaction on soil seed persistence in a long-run. We 
hypothesized that species reported to be short-term 
persistent (R. acetosella) and long-term persistent (R. 
maritimus) by Abedi et al. (2014) will show different 
persistence behaviour, e.g., less impact of extrinsic 
parameters on seed viability for long-term persis-
tent species. This may be affected either by intrinsic 
(e.g., storage physiology, germination ecophysiology) 
or extrinsic (i.e., moisture level, soil substrate type) 
parameters.

Materials and methods

We used three native Rumex species with differ-
ent specific habitat requirements (R. acetosella from 
dry-sandy grasslands communities, R. acetosa from 
mesic-loamy meadows, and R. maritimus from wet-
muddy amphibious habitats such as ponds and river 
banks) to test the long-term effect of soil conditions 
and moisture regime to seed viability. Ripe fruits of 
R. acetosella, R. acetosa, and R. maritimus were col-
lected in Siegenburg, Regensburg, and Charlotten-
hof (all Southern Germany), respectively, in summer 
2009. In autumn 2009, an outdoor pot experiment was 
set up using the water-basin facilities of the Botanical 
Garden of Regensburg University, Germany.

Eight rain-water-filled basins were used to adjust 
desired water levels throughout the long-term experi-
ment. Three different soil substrates (sand, loam, 
mud) and moisture levels (dry, moist, wet) were used. 
These soil types and moisture levels were chosen to 
match the natural conditions in which the three study 
species typically occur. A block design represent-
ing 8 basins*3 soil substrate types*3 water levels*5 
burial-time steps for seed excavation was set up. In 
each pot, 25 seeds of each species were separately 
buried in three nylon bags at 5 cm depth to minimize 
light and fluctuating temperature effects on seed ger-
mination. Metal grids in two different positions were 
placed into the basins to carry the pots, allowing that 
the water level within the pots was adjusted either to 
1  cm above (wet treatment) or 10  cm below (moist 
treatment) seed position. The pots with dry treatment 
were placed directly next to the respective basin, 
hence receiving water only from rainfall. Further 

details about the choice of species, experimental 
strategy, and experimental setup can be found in 
Abedi et al. (2014). In the present study, seeds of all 
three species for the fourth and fifth burial-time steps 
were exhumed in spring 2015 and 2021 after 5.5 and 
11.5 yrs of burial, respectively. Obtained long-term 
data were analyzed together with data of the previ-
ous short-term investigation described in Abedi et al. 
(2014).

Exhumed seeds were sterilized for two minutes 
with sodium-hypochlorite (5%) before incubating in 
90-mm-diameter Petri-dishes at 22/14  °C alternat-
ing temperature and 14/10 h day/night light regimes 
in the laboratory for 45 days. Seeds of all three spe-
cies were in the non-dormant stage, as they already 
cold-stratified during winter seasons. Still, some 
seeds remained non-germinated at the end of the test 
period. These were then cold stratified again at 4 °C 
for six weeks and then exposed once more for another 
45 days to germinating conditions as described above. 
If seeds still failed to germinate, then their viability 
was evaluated by tweezer-testing the seed coat for 
integrity and (if intact) by tetrazolium (TTZ) test 
(Moore 1985). Seed viability was calculated as per-
centage of all seeds that were viable (number of ger-
minated seeds before and after stratification + number 
of seeds found viable in TTZ test).

Soil moisture in the pots was measured by use of a 
moisture meter (Theta Probe ML2x Delta-T Devices 
Ltd, UK) before seed excavation. Soil samples were 
collected from about the same soil depth as from 
where the seeds were retrieved. These samples were 
analyzed to monitor changes in physiochemical prop-
erties after 5.5 and 11.5 yrs of using the same pro-
cedure as described in Abedi et al. (2014). The dried 
and sieved soil samples were extracted using calcium 
lactate and analyzed for phosphorus content (Thermo 
Spectronic UV1), potassium, sodium, and magne-
sium content (Solaar Atomic Absorption Spectrom-
eter Thermo Elemental). Nitrogen and carbon content 
were measured with a C/N analyzer Vario EL (Ele-
mentar Analysentechnik GmbH, Germany).

Statistical analysis

Effects of different sets of moisture levels and sub-
strate types on seed viability after 5.5 and 11.5 yrs of 
burial-time were analyzed using an independent sam-
ple Kruskal–Wallis one-way ANOVA for k samples. 
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Further, to evaluate the effect of burial time-steps, 
species, moisture level, substrate types, and their 
interactions on seed viability, present data (5.5 and 
11.5 yrs) along with data collected by Abedi et  al. 
(2014) for the three earlier burial time-steps (0.5, 1.0, 
and 1.5 yrs) were pooled and analyzed using a gen-
eralized linear model (GLM) with binomial family. 
To not over-parametrize the model, separate models 
were performed for individual Rumex species. Post-
hoc Tukey tests were used if glm showed significant 
differences. No seeds of R. acetosa were found viable 
in the fourth and fifth burial-time steps. Therefore, 
to avoid of repeating the statistical analysis made by 
Abedi et al. (2014), R. acetosa was excluded from the 
long term investigation. All statistical analyses were 
carried out using R software (version 4.1.2; R core 
Team 2021).

Results

No seeds of R. acetosa were found viable after 1.5 
yrs of burial. In R. acetosella, different substrate 
and soil moisture combinations resulted in signifi-
cant differences in viability after 5.5 yrs of burial 
(Kruskal–Wallis one-way ANOVA, H = 54.40, df = 8, 
p < 0.001). The species retained high viability in dry-
muddy soil but low viability in the wet-loamy and 
wet-muddy substrate, while the other treatments lay 
in between (Fig. 1A). Similarly, after 11.5 yrs of bur-
ial, the viability of R. acetosella seeds significantly 
differed (H = 45.17, df = 8, p < 0.001) in different 
combinations of substrate and soil moisture with the 
highest viability in the dry-loamy and moist-sandy 
substrate and almost no viable seeds in all other con-
ditions (Fig. 1C). Quite different to this, seeds of R. 
maritimus retained ≥ 85% and 70% viability in all 
combinations of moisture and soil substrate, except 
for in the dry-sandy and dry-muddy substrates after 
5.5 and 11.5 yrs, respectively (H = 25.79, H = 41.43, 
df = 8, p < 0.001; Fig. 1B and 1D).

Separate glms were performed individually for 
seed viability of the two Rumex species for the 
effects of moisture levels, substrate types, bur-
ial-time steps, and their respective interactions 
(Table  1). For R. acetosella, burial-time steps, 
moisture levels, and their interactions had strong 
and significant effects on seed viability. For R. 

maritimus, all interactions between moisture levels, 
substrate types and burial-time steps were signifi-
cant. R. acetosella retained the highest seed survival 
in dry-mud and least in wet-mud consistently over 
initial four burial time-steps, but showed no or low 
seed survival in all combinations of soil and mois-
ture (with the exception in dry-loam and moist-
sand) after 11.5 yrs of burial (Fig. 2). R. maritimus 
retained comparatively high viability consistently 
over all five burial time-steps in all test conditions 
(Fig. 3).

R. acetosa had lost viability dramatically within 
one year of burial. It was already reported by 
Abedi et  al. (2014), that even within a short sur-
vival period, R. acetosa retained significantly 
higher viability in wet conditions than in the other 
moisture conditions. In the case of R. acetosella, 
seed viability declined significantly during the 
first two burial time-steps, thereafter remaining 
constant and after 11.5  years almost completely 
losing viability. Under dry conditions and in sandy 
substrate seeds retained high viability (Fig. 2). On 
the contrary, seeds of R. maritimus were almost 
unaffected by duration up to the fourth burial 
time-step, however a slight decrease was detected 
during 11.5  years of burial time, mostly due to a 
decreased viability in dry conditions and in the 
muddy substrate (Fig. 3).

The physicochemical properties of soil varied 
considerably among substrate types (Appendix S1). 
The overall difference in soil moisture level between 
the dry substrate and moist substrate was about 
252 ± 42%, and between dry and wet substrate, it 
was about 318 ± 35%. These increases also varied 
considerably between substrate types (see Appen-
dix S1). Soil contents in mineral nutrients (P, K, 
and Mg) ranked as follows: loam > mud > sand after 
5.5 yrs and mud > loam > sand after 11.5 yrs, while 
N, C, and C/N-ratio ranked as mud > loam > sand 
after 5.5 yrs and loam > mud > sand after 11.5 yrs. 
The pH of the muddy substrate was slightly acidic 
(mean overall moisture levels for pH in water = 6.4) 
as compared to sand and loam (6.9) after 5.5 yrs 
and slightly increased over time (6.6, 7.4, and 7.1 
after 11.5 yrs for loam, mud, and sand substrate 
type, respectively). Soil conductivity decreased 
from loam > mud > sand after 5.5 yrs and from 
mud > loam > sand after 11.5 yrs.
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Discussion

Species‑specific soil seed bank persistence

No seeds of R. acetosa stayed viable after the third 
burial time-step in any test condition, further con-
firming a transient nature of soil seed bank (Abedi 

et al. 2014), although there were several entries in the 
database of Thompson et al. (1997) and Kleyer et al. 
(2008), respectively, where the soil seed bank was 
classified as long-term persistent. Under ex-situ gene 
banking conditions (Royal Botanical Garden Kew 
2021), seeds of R. acetosa show orthodox storage 
behavior (i.e., seeds survive considerable desiccation 

Fig. 1   Box plots illustrating median and quartiles of overall 
mean seed viability percentage in different combinations of 
moisture and soil substrate after 5.5 and 11.5 yrs of burial in 

R. acetosella (A and C) and R. maritimus (B and D). Letters 
represent subsets with significant differences (Kruskal–Wallis 
test, n = 8, p < 0.05)

Plant Soil (2022) 477:475–485 479



1 3
Vol:. (1234567890)

and their longevity is increased with decrease in mois-
ture content and temperature) and retained 88–95% 
viability for 13  years of storage. However, the stor-
age physiological attributes of R. acetosa seeds do 
not appear to correlate with their inability to persist 
in the soil in our experiment. Rather than extrinsic, 
it is more likely that another intrinsic parameter, i.e., 
seed germination ecophysiology, seems to be primar-
ily responsible for the low persistence of R. acetosa 
seeds. Their ability to germinate both under light/dark 
and entirely dark conditions does not allow building 
up a soil seed bank. We suggest that this is the main 
reason for this species not to form short- to long-term 
persistent soil seed banks despite of its orthodox 
seeds (see Abedi et  al. 2014). Grime (1989), Saat-
kamp et al. (2011), and Mašková and Poschlod (2022) 
already suggested that a species’ demand for light to 
germinate (as a mechanism to detect depth of burial 
or gaps in vegetation) explains the potential to estab-
lish a persistent seed bank.

Our results show that seeds of R. maritimus persist 
in all studied moisture and soil substrate types more 
than 11.5  years. Under ex-situ gene banking condi-
tions, seeds of R. maritimus show an orthodox storage 
behavior by retaining 88–100% viability for 15 yrs 
(Royal Botanical Garden Kew 2021). Together with 
our results, we can conclude that seed longevity in 

this species is rather affected by intrinsic than extrin-
sic parameters. This interpretation is also supported 
by studies showing that seed persistence in the field 
or uncontrolled storage conditions tend to be posi-
tively correlated with their longevity under controlled 
storage conditions (Bekker et  al. 2003; Long et  al. 
2008; Nagel and Börner 2010). Seeds of R. maritimus 
with a long-term persistent seed bank were found to 
be non-sensitive to post-dispersal site-specific envi-
ronmental factors (here: soil moisture and substrate 
type). This indicates that neither conditions resem-
bling the species natural habitat nor conditions differ-
ent to that have effects on their seed persistence, but 
rather, intrinsic germination ecophysiology will gov-
ern their persistence. Another study by our research 
group investigating the impact of constant vs. fluc-
tuating temperatures, light vs. dark, and hypoxia vs. 
oxic conditions on seed germination of R. mar

itimus reveals that its seeds germinate well at a 
range of alternating temperature regimes with 14/10 h 
light/dark and oxic conditions. However, seed ger-
mination was significantly retarded at constant tem-
perature regimes both with 14/10  h light/dark and 
complete dark and hypoxia conditions (Phartyal et al. 
2020). Further, the fully imbibed seeds of R. marit-
imus were found to be very sensitive to light. They 
required a short flux of white light exposure (at least 
15  min) to achieve a high (> 90%) germination per-
centage (Phartyal et  al. unpublished). These find-
ings confirm that the seed longevity of R. maritimus 
in the soil is governed by its storage physiology and 
germination ecology since most of the burial condi-
tions (e.g., constant temperature, complete darkness) 
in the present study were unfavorable for its seed 
germination.

In contrast to the other two studied species, long-
term burial results reveal that R. acetosella dem-
onstrates a long-term persistent seed bank under 
optimum dry conditions. Under suboptimal wet con-
ditions, it is merely indicated to form a short-term 
persistent or even transient seed bank. This confirms 
previous results of Abedi et  al. (2014), who found 
moisture as the most important factor for R. aceto-
sella seeds’ persistence and highlighted the impact 
of extrinsic parameters in the long-term. On the 
other hand, this pattern coincides with the results of 
another burial experiment with eight fen meadow 
species which showed a substantial decrease in soil 
seed bank persistence with increasing groundwater 

Table 1   Results of two generalized linear models performed 
individually for each of the two Rumex species for effects of 
moisture level, substrate type, burial time-step, and their 
respective interactions on seed viability; boldface indicates 
significance

Species Factors df LR Pr(> Chisq)

R. acetosella Moisture (M) 2 372.84  < 0.001
Substrate type (S) 2 0 1
Burial time-step (T) 4 973.76  < 0.001
M × S 4 68.04  < 0.001
M × T 8 225.03  < 0.001
S × T 8 198.27  < 0.001
M × S × T 16 343.74  < 0.001

R. maritimus Moisture (M) 2 38.63  < 0.001
Substrate type (S) 2 78.63  < 0.001
Burial time-step (T) 4 21.82  < 0.001
M × S 4 23.6  < 0.001
M × T 8 22.61 0.004
S × T 8 36.72  < 0.001
M × S × T 16 60.88  < 0.001
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levels (Kaiser and Pirhofer-Walzl 2015). Therefore, 
soil seed bank persistence of R. acetosella and of 
those species examined by Kaiser and Pirhofer-Walzl 
(2015) appear to be driven by extrinsic parameters. 
Our study reveals that seeds of R. acetosella can per-
sist for long-term periods only under moisture con-
ditions similar to the natural habitat of the species. 

Under ex-situ gene bank conditions, the storage 
physiology of seeds of R. acetosella is still uncertain 
and reported as ‘probable orthodox’ considering their 
ability to withstand desiccation (Royal Botanical Gar-
den Kew 2021).

Our findings confirm that both, species-specific 
intrinsic characteristics as well as post-dispersal 

Fig. 2   Comparison of seed viability percentage in R. aceto-
sella after each time step (0.5, 1.0, 1.5, 5.5 and 11.5 yrs) of 
seed excavation from burial in different moisture and soil sub-

strate types. Bars represent means, n = 8. Factors responsible 
for variation in seed viability percentage are statistically ana-
lysed as shown in Table 1

Plant Soil (2022) 477:475–485 481
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site-specific extrinsic factors (Long et al. 2015) like 
moisture, substrate types, and their interactions, 
determine seed longevity in a soil seed bank 
persistence (compare Abedi et  al. 2014; Benvenuti 
and Mazzoncini 2019; Van et  al. 2005; Volis and 
Dorman 2019). Nevertheless, intrinsic parameters 
seem to be of higher importance for transient 
and very long-term persistent species, while 

short- to long-term persistent species rather depend 
on extrinsic parameters.

Soil properties

Parameters other than moisture and substrate such 
as soil pH and C:N ratio also might have affected 
the survival of buried seeds as well, with high 

Fig. 3   Comparison of seed viability percentage in R. mariti-
mus after each time step (0.5, 1.0, 1.5, 5.5 and 11.5 yrs) of seed 
excavation from burial in different moisture and soil substrate 

type. Bars represent means, n = 8. Factors responsible for vari-
ation in seed viability percentage are statistically analysed as 
shown in Table 1

Plant Soil (2022) 477:475–485482
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values of these factors generally being associated 
with decreased seed longevity (Pakeman et al. 2012). 
However, there are contrasting results concerning the 
impacts of these factors in other experiments (Yang 
et al. 2021). Basto et al. (2015) studied the effect of 
soil pH on the persistence of seeds of grassland spe-
cies in a seed burial experiment. They concluded that 
the size and longevity of grassland plants’ soil seed 
banks decrease as soil pH increases. Our results indi-
cate that the potential of soil seed bank persistence 
over time was significantly reduced in loam and mud 
substrate under moist and wet conditions for R. ace-
tosella and in mud substrate under dry conditions 
for R. maritimus, respectively. However, Long et  al. 
(2009) did not find an effect of soil substrate on seed 
persistence. A closer look at soil properties (Appen-
dix S1) reveals that muddy substrate was more acidic 
at the initial (0.5 yrs) stage of burial; later (5.5 yrs) 
turned slightly acidic than the two other substrates; 
after 11.5 yrs its pH was comparable with that of the 
others substrates. Initial acidity of muddy substrate 
could potentially retards seed longevity of both R. 
acetosella and R. maritimus. Further, loam and mud 
substrates have a higher C:N ratio than sand, which 
could also contribute to a reduction of soil seed bank 
persistence. These results agree with Pakeman et  al. 
(2012) but contradict Basto et al. (2015).

Conclusion

We conclude that soil seed bank longevity of spe-
cies with long-term persistent (R. maritimus) or 
transient (R. acetosa) seed bank depends mainly on 
intrinsic parameters. In contrast, soil seed bank lon-
gevity of species with short- to long-term persistent 
seed bank (R. acetosella) rather depends on extrinsic 
parameters. For the latter species, seed persistence 
was increased by moist conditions similar to the con-
ditions from natural habitat. To better understand the 
relevant processes, we need a more extensive over-
view of soil seed bank persistence of target species 
under long-term conditions and with combinations of 
several outdoor burial conditions. Information about 
extrinsic parameters should also be included in data-
bases on soil seed bank persistence. Finally, transient 
soil seed banks of many species may often be simply 
explained by their seed germination characteristics, 

such as light and diurnally fluctuating temperature 
requirements for germination (Grime 1989; Mašková 
and Poschlod 2021; Saatkamp et al. 2011).
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