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response to elevated  CO2 and N addition in a Tibetan 
meadow.
Methods A 5-year manipulation experiment was 
conducted in an alpine meadow (4585  m above sea 
level) to explore the responses of plant carbon (C), 
nitrogen (N), and biomass dynamics, as well as their 
allocation schemes, to elevated  CO2 (from 380 ppm 
to 480 ppm) and N fertilization.
Results Elevated  CO2 alone significantly enhanced 
aboveground plant biomass by 98%, exhibiting a 
stronger  CO2 fertilization effect than the global aver-
age level (20%) for grasslands. Elevated  CO2 favored 
N accumulation in aboveground parts despite the 
declined concentration. Nitrogen fertilization allevi-
ated the N constraints on  CO2 fertilization effects, 
which strengthened C sequestration capacity for the 
aboveground plant tissues. Moreover, our results indi-
cate a decoupling between C and N cycles in alpine 
ecosystems under elevated  CO2, especially in the 
N-enrichment environments.
Conclusions Overall, this study shows a high sen-
sitivity of aboveground plant biomass and decoupled 
C-N relationships under elevated  CO2 and N fertiliza-
tion for high-elevation alpine ecosystems, highlight-
ing the need to incorporate altitude effects into Earth 
System Models in predicting C cycle feedbacks to cli-
mate changes.

Keywords Biomass allocation · Nitrogen 
deposition · Stoichiometry · Alpine ecosystem · C:N 
ratio

Abstract 
Aims Vegetation in high-altitude regions is hypothe-
sized to be more responsive to increasing atmospheric 
 CO2 concentrations due to low  CO2 partial pressure. 
However, the underlying mechanisms driving this 
response at an ecosystem scale are poorly under-
stood. We aimed to explore the plant carbon (C) and 
nitrogen (N) relationships and biomass allocation in 
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Introduction

From molecular metabolism to ecosystem nutrient 
cycling, carbon (C) and nitrogen (N) are biologically 
coupled because of the conserved elemental stoichiom-
etry of plants and microorganisms (Finzi et al. 2011). 
Carbon and N are crucial to many aspects of plant 
physiological function and microbial metabolism, 
through their biochemical controls on primary pro-
duction, respiration, and decomposition in terrestrial 
ecosystems (Evans and Burke 2013). However, global 
changes, such as elevated  CO2 and N deposition, have 
drastically altered the biogeochemical cycles of C and 
N in Earth’s ecosystems. These disturbances are sug-
gested to decouple C and N cycles (eliminate the inter-
relationship between them), owing to the different 
degrees of controls by biological and geochemical pro-
cesses (Peñuelas et al. 2012; Delgado-Baquerizo et al. 
2013).

Human activities have raised  CO2 concentrations 
in the atmosphere more than 40% above their pre-
industrial levels, and this rising trend is projected 
to continue for the coming decades (Terrer et  al. 
2018). Elevated  CO2 can stimulate the rate of  CO2 
assimilation by plants (Leakey et  al. 2009; Franks 
et  al. 2013), and potentially reinforce the C seques-
tration abilities of terrestrial ecosystems (Ainsworth 
and Long 2005), which may counterbalance the 
increasing  CO2 in the atmosphere released by human 
activities (Schimel et  al. 2015). This  CO2 fertiliza-
tion effect on the terrestrial C sink is supposed to be 
largely hampered by N availability (Luo et al. 2004; 
Reich and Hobbie 2013; Langley and Megonigal 
2010). Decades of increased atmospheric N deposi-
tion across various ecosystems may partially lessen 
the N constraints on  CO2-induced enhancement of 
terrestrial productivity (Eastman et  al. 2021). This 
human-induced C and N fertilization may cause the 
asynchrony in C and N supply and the biogeochemi-
cal cycles of C and N could be uncoupled, with sub-
sequent consequence on terrestrial ecosystem C stor-
age and cycling (Asner et al. 1997; Evans and Burke 
2013). For example, many studies have reported an 
increase C:N ratio of plant tissue as a result of ele-
vated  CO2, and N deposition generally decreases the 
C:N ratio (Wang et al. 2021). Both litter decomposi-
tion and herbivory are shown to be at least in part a 
function of tissue C:N ratios in many studies (Knops 
et  al. 2007; Burghardt et  al. 2018). Therefore, if an 

unbalanced C and N supply and demand decouple 
the C and N cycles, and further affect tissue and litter 
chemistry, elevated  CO2 and N deposition may accel-
erate or decelerate litter decomposition rates and eco-
system C cycles (Knops et al. 2007; Park et al. 2020).

The altered C and N cycles under environmen-
tal disturbance are found to affect plant C, N, and 
biomass allocation between the above- and below-
ground portions (Valentine and Mäkelä 2012), 
which reflects evolutional strategies for resource 
acquisition and adaptation to environments (Dietze 
et  al. 2014; Dickman et  al. 2015). The above- and 
belowground plant structures are exposed to dra-
matically different temperatures and moisture con-
ditions, largely determining the decomposition of 
plant litter and thus the permanence of sequestered 
C in the ecosystem (Wang and Taub 2010; Schmidt 
et  al. 2011). Consequently, the tradeoff of plant C, 
N, and biomass between short-lived organs (above-
ground parts) and long-lived organs (belowground 
parts) can produce significant effects on the path-
way for ecosystem C reentering the atmosphere 
(Friedlingstein et  al. 1999). Current empirical and 
theoretical methods have demonstrated distinct 
strategies of plant C, N and biomass allocation, 
which varies with environments and plant species 
(Peichl et al. 2012; Poorter et al. 2012). To optimize 
growth and survival, plants conventionally respond 
to global changes by altering the ratio of C, N and 
biomass allocation to shoots or roots (Poorter et al. 
2012; Bachofen et al. 2019; Zhou et al. 2020). For 
example, some ecosystems increased N and biomass 
allocation to roots to alleviate  CO2-induced N limi-
tation in soils (Suter et al. 2002; Iversen et al. 2008; 
Leuzinger and Hättenschwiler 2013). Conversely, 
some forests decrease belowground components in 
response to elevated  CO2, likely because elevated 
 CO2 can mitigate water limitation by reducing plant 
water consumption (Franks et  al. 2013). Nitrogen 
fertilization increases biomass allocation to above-
ground parts more strongly than to belowground 
parts (Li et al. 2020). Furthermore, a growing body 
of reports from long-term observations and manipu-
lative experiments have demonstrated that elevated 
 CO2 and N deposition are not occurring separately, 
and their combined effects will likely be more 
complex (Reich et  al. 2006b; Sillen and Dieleman 
2012; Zhao et al. 2020). Despite these advances, we 
know little about the response of C and N cycles 
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associated with biomass allocation to the interac-
tion of elevated  CO2 and N deposition for alpine 
ecosystems.

Because of the non-uniform environmental 
stresses worldwide, elevated  CO2 and N deposition 
may have regional, but not global, effects on the 
plant C and N cycles associated with their alloca-
tion (Wang and Taub 2010), emphasizing the high 
uncertainty in projecting future global C budgets. 
Alpine ecosystems at high elevation, with an area 
of approximately 2,847,868  km2, are extremely vul-
nerable to global changes (Elser et al. 2020). High-
elevation plants are supposed to be more responsive 
to increasing  CO2 concentrations in the atmosphere 
due to their low  CO2 partial pressure (Hätten-
schwiler et  al. 2002). Although some experiments 
in alpine regions have been designed to test the 
co-regulations of elevated  CO2 and N addition on 
plant C and N dynamics and allocation, inconsistent 
conclusions from these studies constrain the incor-
poration of altitude effects of  CO2 fertilization into 
Earth System Models (Schäppi and Körner 1997; 
Dawes et al. 2011; Inauen et al. 2012). Further field 
experiments are needed to complement our knowl-
edge in those under-represented ecosystems (Curtis 
and Wang 1998; Zhang et al. 2014; Bachofen et al. 
2019).

As the highest plateau in the world, the Tibetan 
Plateau hosts the largest alpine grassland ecosystem 
worldwide (Zhang et al. 2019). It is an ideal region 
to investigate the responses of plants to global 
changes. The Tibetan Plateau is currently experienc-
ing significant anthropogenic environmental change, 
including increased N deposition. Understanding 
how these two primary global change factors (e.g., 
rising  CO2 and N deposition) affect plant C and N 
dynamics and the biomass allocation are critical to 
understanding ecosystem C cycling in facing the 
accelerated global changes on the plateau. In this 
study, we explored the responses of plant C and N 
dynamics, and the biomass allocation to treatments 
in an elevated  CO2 and N deposition study (simu-
lated by N addition) in a Tibetan meadow over five 
years. We aimed to test the two hypotheses: (i) 
alpine plants may exhibit stronger responses to ele-
vated  CO2 as they grow at lower  CO2 partial pres-
sure, and (ii) altered  CO2 and N availability may 
decouple the C:N relationships in plant tissues due 
to the imbalanced nutrient supply.

Materials and methods

Study site

The study was conducted in a typical alpine meadow 
ecosystem in the North Tibetan Plateau, China 
(31°38.513′N, 92°0.921′E, 4585 m a.s.l.). This study 
constitutes the highest-elevation  CO2 enrichment 
experiment conducted on grassland worldwide (Zhu 
et al. 2020). The climate is characterized by a mean 
annual temperature of approximately −1.16 °C and a 
mean annual precipitation of ~ 430 mm, mainly fall-
ing during the summer season from June to Septem-
ber (Zhu et  al. 2017). Moreover, the area has gale-
force winds lasting nearly a quarter of each year. The 
vegetation community is dominated by Kobresia pyg-
maea, with companion species including Potentilla 
saundersiana, Potentilla cuneata, Youngia simulatrix 
and Saussurea stoliczkai. The growing season nor-
mally starts in mid-May and ends in mid-September.

Experimental design

Due to the gusty winds and low stature vegetation 
on the Tibetan Plateau,  CO2 enrichment could not 
be implemented using a free-air  CO2 enrichment 
(FACE) design. Instead, eight semi-FACE designed 
open-top chambers (OTCs) were constructed with 
steel frames and glass in 2013 (Fig. 1). Each octago-
nal OTC measures 1.5 m in length for each side and 
has a height of 2 m, covering a surface area of 10.86 
 m2. The  CO2 concentration within the  CO2-enriched 
chambers (480 ppm) was designed to be 100 ppm 
higher than the ambient levels (380 ppm) (Fig.  2). 
From 2014 to 2018, enriched  CO2 was injected into 
the OTCs to artificially increase  CO2 concentrations 
during the growing season of each year.

The experiment follows a full-factorial split-
plot design, with elevated  CO2 as the primary fac-
tor and N addition as the secondary factor. Among 
them, four octagons were exposed to ambient  CO2 
concentration (380 ppm), and the other four were 
exposed to rising  CO2 concentrations (480 ppm). 
Each octagon was divided into four plots with a size 
of 1.25  m×1.25  m, with one supplemented with N 
and one without N (the remaining two plots had no N 
fertilizer and were not considered in the study). For 
each N deposition treatment (simulated by N fertili-
zation), 5  g N  m− 2  year− 1 in the form of urea was 
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dissolved in 200 ml water and sprayed on the plots 
during June from 2014 to 2018. To prevent possible 
active N transfer along the soil profile between adja-
cent plots, a stainless-steel plate was inserted to the 
depth of 30 cm soil in 2013.

In OTCs with  CO2 enrichment, polyvinyl chloride 
(PVC) pipes had 1 mm pinholes drilled every 0.1 m 
along the pipe and were framed 0.3 m aboveground, 
to transport pressured  CO2 from tanks to chambers. 
The  CO2 flux from the tank was controlled by a flow 

Fig. 1  Open-top chamber (OTC) designed for enriching  CO2 in the Tibetan Plateau (4585 m above sea level). N, nitrogen addition; 
CK, control check
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meter carrying the Vaisala GMP222 sensor (Vaisala, 
Helsinki, Finland), which monitored  CO2 concen-
trations in the middle of chambers every 15  min. 
To account for shading effects, the same pipes were 
installed for the ambient  CO2 chambers. Rainfall 
shielded by the OTCs was supplemented by spraying 
equal amounts of water in the chambers.

Plant and soil sampling

In the middle of each growing season (late August) 
from 2015 to 2018, a 10  cm×10  cm quadrat was 
randomly selected in each plot, and all aboveground 
plants within the selected quadrat were harvested. 
After collecting the aboveground biomass, a cylin-
der auger (7 cm in diameter) was used to take a soil 
core to a depth of 30  cm. Collected soil cores for 
each treatment were passed through a 2-mm sieve to 
remove roots, organic debris, and rocks. Root sam-
ples were then collected from soil cores, which were 
cleaned and dried for belowground biomass meas-
urements. To reduce the influence of soil sampling 
on plot, the cores were filled with local soil each 
time after sampling. All above- and belowground 
plant samples were oven-dried at 65 ℃ for 48 h to a 
constant weight. Then, soil and plant samples were 
ground and analyzed for C and N concentration using 
the elemental analyzer (Vario MAX CN analyzer, 

Germany). Above- and belowground plant C and N 
storage were calculated as the product of biomass and 
corresponding tissue C and N concentrations.

Statistical analysis

In assessing responses of plant biomass and C:N stoi-
chiometry to elevated  CO2 and N fertilization in dif-
ferent tissues, the “relative change” index was applied 
and calculated as:

Xa represents the average value of a specific vari-
able in the control group, and Xe represents the aver-
age values of a specific variable in each experimental 
group.

Repeated measures analysis of variance was 
applied to evaluate the effect of elevated  CO2, N dep-
osition, and year on plant biomass from 2015 to 2018. 
A split-plot analysis of variance was used to assess 
the effects of elevated  CO2 and N fertilization on plant 
and soil C and N concentrations using statistical soft-
ware 20.0 (SPSS Inc., Chicago, IL, USA). Regression 
analysis and Pearson’s correlation were used to evalu-
ate the relationship between C and N concentrations 
as well as the relationship of the biomass allocation 

Relative change(%) =
(X

e
− X

a
)

X
a

× 100%

Fig. 2  CO2 concentrations in atmosphere for open-top chambers (OTC) with or without  CO2 enrichment treatment, respectively, 
from 2014 to 2018
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and the C:N ratio. All the differences and effects were 
considered statistically significant at P < 0.05.

Results

Biomass, C and N allocation in plant above- and 
belowground components

For this alpine meadow, the above- and belowground 
biomass range during 2015–2018 was 51–410 g  m2, and 
6649–13,340 g  m2, respectively (Fig. 3). In general, plant 
belowground biomass accounted for 94–99% of the com-
munity total. Elevated  CO2 significantly increased above-
ground biomass (P < 0.05) but showed no significant 
effects on belowground parts (Fig. 3; P > 0.05). Nitrogen 
fertilization alone significantly increased aboveground 
biomass by 36–166% (P = 0.018), with no significant 
effect on belowground biomass (P = 0.310). Combined 
elevated  CO2 and N fertilization significantly enhanced 
aboveground plant biomass by 84–340% (P < 0.05).

Plant above- and belowground biomass presented 
a significant relationship under control treatment, but 
the correlations were nonsignificant under elevated 

 CO2 or N addition treatment (Fig.  4). The ratios of 
belowground biomass (BGB) to aboveground bio-
mass (AGB) varied between 31 and 74. Elevated  CO2 
alone altered the biomass allocation between above- 
and belowground plant components (P = 0.001), 
causing a significant decrease (40%) in the ratio of 
BGB to AGB. N fertilization alone significantly low-
ered the ratio of BGB to AGB by 35% (P = 0.006). 
Combined elevated  CO2 and N fertilization signifi-
cantly decreased the ratio of BGB to AGB by 58% 
(P < 0.05), while there were no significant interaction 
effects of elevated  CO2 and N fertilization on the bio-
mass allocation (P = 0.337). For the biomass alloca-
tion strategy (Fig. 4), the relative changes in the ratios 
of BGB to AGB were caused more by the changes 
in AGB (percentage changes between −0.47% and 
3.90%) rather than the changes in BGB (percentage 
between −0.47% and 0.69%).

The plant C and N storage range varied from 
2819 g  m− 2 to 3479 g  m− 2, and from 66 g  m− 2 to 80 g 
 m− 2, respectively (Fig. 5). Overall, elevated  CO2 and 
N fertilization caused no significant effects on below-
ground plant C and N storage (P > 0.05). On the con-
trary, elevated  CO2 and N fertilization significantly 

Fig. 3  Effects of elevated 
 CO2 and N addition on 
above- (A) and below-
ground (B) plant biomass 
for 4 years, from 2015 to 
2018. Error bars indicate 
standard error. The inserted 
text is the results of the 
repeated measures ANOVA 
analysis. Control, control 
treatment;  CO2, elevated 
 CO2; N, nitrogen addition; 
AGB, aboveground bio-
mass; BGB, belowground 
biomass
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increased aboveground plant C storage by 100% and 
70%, respectively. Combined  CO2 and N fertilization 
significantly enhanced aboveground plant C storage 
by 180% (P < 0.05). Meanwhile, elevated  CO2 and N 
fertilization significantly increased aboveground plant 
N storage by 87% and 102% (P < 0.05), respectively. 
For plant C and N allocation, both elevated  CO2 and 
N fertilization, as well as their combined effects, sig-
nificantly lowered the ratio of BGB to AGB for C and 
N storage (P < 0.05).

Dynamics of C:N stoichiometry in the alpine 
ecosystem

The total soil C concentrations varied from 42.1 mg 
 g− 1 to 51.0  mg  g− 1, and the total soil N concentra-
tions varied from 3.8 mg  g− 1 to 4.2 mg  g− 1 (Table 1). 
Elevated  CO2 alone significantly increased soil C 
concentrations from 42.1  mg  g− 1 to 51.0  mg  g− 1 
(P < 0.05) and increased soil C:N ratio from 11.16 to 
12.07 (P < 0.05). However, nitrogen fertilization had 
no significant effects on soil total C and N, and the 
associated C:N ratio (P > 0.05; Table  1). For plants, 
elevated  CO2 significantly increased C concentration 
(P = 0.013) and the associated C:N ratio (P < 0.01) 
in the aboveground plant portions, and significantly 
decreased the N concentration in aboveground tis-
sues (P = 0.002; Table  2). Nitrogen fertilization 

alone significantly increased N concentrations and 
decreased C:N of aboveground tissues but had no sig-
nificant effects on C concentrations. Combined ele-
vated  CO2 and N fertilization significantly increased 
C concentrations in aboveground tissues from 
421.6 mg  g− 1 to 432.8 mg  g− 1 but had no significant 
effect on N concentration and C:N ratio (P > 0.05). 
Elevated  CO2 and N fertilization showed no signifi-
cant effects on C and N concentrations, and the C:N 
ratio of the belowground tissues (P > 0.05).

Response of plant C and N relationships to elevated 
 CO2 and N fertilization

Under natural conditions, C and N concentrations in 
both above- and belowground plant tissues were sig-
nificantly and positively correlated (P < 0.01) with R2 
values of 0.49 and 0.46, respectively (Fig.  6). How-
ever, elevated  CO2 decoupled this relationship in 
aboveground tissues (P = 0.20) and lowered the C and 
N correlation coefficients from 0.49 to 0.27. Under 
 CO2 enrichment environments, N fertilization further 
weakened the C and N correlation coefficients from 
0.27 to 0.24 and from 0.12 to 0.07 for above- and 
belowground tissues, respectively (Fig. 6).

Given that the biomass allocation is largely regu-
lated by signals involving plant C and N dynamics, 
the relationship between the C:N ratio and plant 

Fig. 4  Effects of elevated  CO2 and N addition on relationships 
between above- and belowground biomass, and biomass allo-
cation (right). For the right figure, solid line in the box marks 
the median of each dataset, with the upper and lower ends of 
boxes representing the 0.25 and 0.75 percentiles, respectively. 
The upper and lower whisker caps denote the maximum and 
minimum values, respectively. The inserted text is the results 

of the two-way ANOVA analysis. Different lowercase letters 
in the right figure indicate a significant difference of C, N and 
C:N among treatments according to Turkey’s b test at P < 0.05. 
Control, control treatment;  CO2, elevated  CO2; N, nitrogen 
addition; AGB, aboveground biomass; BGB, belowground bio-
mass
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biomass allocation were further analyzed. In gen-
eral, Ln (C/N) in belowground tissues showed no sig-
nificant relationship with Ln (BGB/AGB) (P > 0.05; 

Fig. 7). Under the control treatment, Ln (C/N) signifi-
cantly correlated with Ln (BGB/AGB), generating an 
R2 value of 0.335 (P < 0.05) for aboveground tissues. 

Fig. 5  Responses of plant carbon and nitrogen storage to ele-
vated  CO2 and nitrogen addition. Error bars indicate standard 
error. Solid line in the box marks the median of each data-
set, with the upper and lower ends of boxes representing the 
0.25 and 0.75 percentiles, respectively. The upper and lower 
whisker caps denote the maximum and minimum values, 

respectively. The inserted text is the results of the two-way 
ANOVA analysis. Different lowercase letters in the figure 
indicate a significant difference of C, N and C:N among treat-
ments according to Turkey’s b test at P < 0.05. Cont, control 
treatment;  CO2, elevated  CO2; N, nitrogen fertilization; AGB, 
aboveground biomass; BGB, belowground biomass
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The R2 of these relationships decreased under ele-
vated  CO2 and N fertilization from 0.335 to 0.216 and 
0.260, respectively. The combined effects of elevated 
 CO2 and N fertilization further decoupled the correla-
tion between the C:N ratio and BGB/AGB ratio, gen-
erating a nonsignificant R2 value of 0.029 (P = 0.54).

Discussion

Elevated  CO2 increases C allocation to plant 
aboveground parts

The aboveground plant biomass in this alpine ecosys-
tem showed a higher sensitivity to five years of  CO2 
enrichment (increased by 98%; Fig.  8) in compari-
son with other experiments worldwide (increased by 
20% on average; Sillen and Dieleman 2012). Mean-
while, elevated  CO2-induced high C concentrations 
in aboveground tissues suggest a reinforced capabil-
ity of C sequestration for plants besides the increased 

aboveground biomass. These support our first hypoth-
esis that high-elevation plants can exhibit particular 
response to elevated  CO2. Although  CO2 concentrations 
in the atmosphere remain constant with rising eleva-
tion,  CO2 partial pressure and density drop dramatically 
in alpine regions (Körner and Diemer 1987). Given 
that atmospheric pressure decreases by roughly 11% 
per km of elevation in the atmosphere, the  CO2 partial 
pressure at this alpine meadow (approximately 50% of 
the pressure at sea level) is considerably less than that 
at lowland grassland. Since the concentration of  CO2 
in the liquid phase is proportional to its partial pres-
sure in the surrounding gas phase, the concentration of 
 CO2 in chloroplasts of alpine plants would be consider-
ably lower than that in lowland plants (Terashima et al. 
1995). Alpine plants are observed to enhance  CO2 utili-
zation efficiencies (Körner 2003), to compensate for the 
negative influence of declined  CO2 partial pressures on 
photosynthesis. Therefore, alpine plants with increased 
photosynthetic  CO2 use efficiency may respond more 

Table 1  Effects of elevated  CO2 and N addition on soil C 
and N concentrations from 2015 to 2018. The values listed in 
the table were the four-year means with standard error. Bold 
numbers in the table indicate significance between control and 
treatments at level of P < 0.05 according to split-plot analysis 

of variance. Cont, control treatment;  CO2, elevated  CO2; N, 
nitrogen addition. Different lowercase letters indicate signifi-
cant differences among treatments at level of P < 0.05 accord-
ing to Tukey’s b test

Stoichiometry Treatment P value

Cont CO2 N CO2 + N CO2 N CO2×N

C (mg  g− 1) 42.1 ± 2.5a 51.0 ± 1.4c 45.7 ± 2.2bc 47.0 ± 1.5bc 0.010 0.925 0.049
 N (mg  g− 1) 3.82 ± 0.02 4.22 ± 0.01 4.05 ± 0.19 4.09 ± 0.01 0.108 0.692 0.188
 C:N 11.2 ± 0.2a 12.1 ± 0.2b 11.3 ± 0.3a 11.3 ± 0.1a 0.018 0.121 0.028

Table 2  Effects of elevated  CO2 and N addition on C and N 
concentrations of above- and belowground plant tissues from 
2015 to 2018. The values listed in the table are the means with 
standard error. Cont, control treatment;  CO2, elevated  CO2; 

N, nitrogen addition. Bold numbers indicate a significant dif-
ference between control and treatments at the level of P < 0.05 
according to according to split-plot analysis of variance

Tissue Stoichiometry Treatment P value

Cont CO2 N CO2 + N CO2 N CO2×N

Aboveground C (mg  g− 1) 421.6 ± 3.6b 424.3 ± 3.0ab 414.4 ± 2.57b 432.8 ± 2.7a 0.013 0.888 0.042
 N (mg  g− 1) 21.2 ± 1.5bc 19.4 ± 1.1c 24.2 ± 1.6a 22.3 ± 1.2b 0.002 < 0.001 0.908
 C:N 20.9 ± 1.2b 22.9 ± 1.2a 18.1 ± 1.1c 20.2 ± 1.1d 0.001 < 0.001 0.888

C (mg  g− 1) 353.3 ± 11.8 359.2 ± 37.7 371.6 ± 9.8 367.6 ± 1.1 0.674 0.094 0.997
Belowground  N (mg  g− 1) 8.11 ± 0.26 8.05 ± 0.22 8.42 ± 0.25 8.46 ± 0.79 0.766 0.108 0.900

 C:N 43.7 ± 1.1 43.3 ± 0.9 44.5 ± 1.6 43.9 ± 1.9 0.972 0.900 0.548
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Fig. 6  The relationships between carbon and nitrogen contents 
of different plant tissues under elevated  CO2 and N treatments. 
Error bars indicate standard error. The inserted text is the 
results of the two-way ANOVA analysis. Different lowercase 

letters in the figure indicate a significant difference of C, N and 
C:N among treatments according to Turkey’s b test at P < 0.05. 
 aCO2, ambient  CO2;  eCO2, elevated  CO2

Fig. 7  Relationships 
between C:N ratio and 
biomass allocation under 
elevated  CO2 and N addi-
tion for the entire plant 
from 2015 to 2018. Cont, 
control treatment;  CO2, 
elevated  CO2; N, nitrogen 
addition
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strongly to elevated  CO2 than comparable lowland 
plants.

According to optimal partitioning models, the plant 
would allocate more biomass to plant belowground 
components to optimize nitrogen acquisition, thereby 
alleviating  CO2-induced N limitation (Leuzinger and 
Hättenschwiler 2013; Avila et  al. 2020; Noyce et  al. 
2019; Frew et al. 2021). Inconsistent with the optimal 
partitioning predictions, elevated  CO2 causes more bio-
mass distribution to aboveground components but not 
to belowground parts in the current experiment. Two 
reasons may account for this phenomenon. First, plants 
under elevated  CO2 may increase C allocation to soils 
as root exudates instead of increasing belowground bio-
mass, and thus enhance N uptake through intensified 
soil organic matter decomposition rates (e.g., “priming 
effect”). Second, the unique changes in the C and bio-
mass allocation patterns of the alpine ecosystem may 
be related to the special high-altitude and cold environ-
ments. Plants in alpine ecosystems have evolved better-
developed root systems than shoots in adapting to the 
environmental conditions of the low fertility soils and 
cold temperatures (Yang et al. 2009). Under these harsh 
environments plants are prone to possessing vast bio-
mass in long-lived organs, such as roots (Hermans et al. 
2006), to strengthen nutrient uptake from the soil and 

improve resistance to cold stress. Therefore, a high root/
shoot ratio (from 31.2 to 73.6 in this study) for alpine 
plants may lead to the unresponsiveness of root systems 
to elevated  CO2.

Regulation of N availability on plant C dynamics 
under elevated  CO2

Our results demonstrate that N availability largely 
regulates the plant C dynamics and allocation 
under elevated  CO2. Elevated  CO2 alone increased 
plant C concentrations and C:N ratio but decreased 
plant N concentrations, consistent with previous 
reports (Knops et  al. 2007; Leakey et  al. 2009). 
This consistency indicates that  CO2 fertilization-
induced N-limitations are reflected in the changes 
in tissue quality. It is worth noting that no sig-
nificant effect of N addition on plant and soil C 
concentrations were observed, while the inter-
acted N addition and  CO2 enrichment significantly 
increased the C concentrations in aboveground 
plant tissues and soils. That is, the C concentra-
tion of plants grown in N-enriched soils would be 
more responsive to elevated  CO2 than those grown 
in N-poor soils.

Enriched  CO2 and N influence not only the amount 
of plant tissue quality but also the plant biomass pro-
duced. A combination of N fertilization with  CO2 
enrichment simulates the aboveground biomass, 
indicating an alleviated  CO2-induced N limitation 
on plant growth and boosted C fixation capacity for 
the alpine ecosystem with future nitrogen deposition 
scenarios. We also found that the  CO2 fertilization 
effect had weakened with increasing treatment dura-
tion independent of N treatment, although the above-
ground plant biomass under combined  CO2 and N 
fertilization could sustain at a high level in contrast 
to that under elevated  CO2 alone. This phenomenon 
suggests that besides the N availability (Reich et  al. 
2006a), the  CO2 fertilization effect on biomass may 
also be modulated by other factors, possibly water or 
phosphorus limitation (Reich et al. 2014; Farrior et al. 
2015; Terrer et al. 2019).

Elevated  CO2 and N fertilization decouple plant C 
and N cycles

In natural conditions, C and N cycles are biologi-
cally coupled from molecular to global scales due to 

Fig. 8  The tradeoff of biomass, C and N stoichiometry 
between the above- and belowground plant parts under ele-
vated  CO2 and N fertilization. Red and green arrows in the 
figure represent increasing and decreasing trend, respectively. 
 CO2, elevated  CO2; N, nitrogen addition; AGB, aboveground 
biomass; BGB, belowground biomass
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the required balance in basic elements proportion and 
conserved elemental stoichiometry in organisms (Finzi 
et al. 2011; Delgado-Baquerizo et al. 2013). Here, we 
observed a significant positive correlation between 
plant aboveground C and N concentration and a posi-
tive relationship between above- and belowground 
biomass without  CO2 and N treatments. In addition, a 
significant correlation between the C:N ratio in above-
ground tissues and the ratio of BGB/AGB exists, even 
under elevated  CO2 or N additions. That is, above-
ground tissue C and N concentrations are primarily 
related to the relative changes in biomass allocation. As 
the C and N status has been suggested as an important 
indicator of plant source and sink balance (Wang et al. 
2021), these  CO2-induced variations in chemomet-
rics are therefore tightly correlated with the biomass 
allocation (Hilbert 1990; Sugiura and Tateno 2011). 
This phenomenon agrees with a previous hypothesis 
(McCarthy and Enquist 2007) that the biomass alloca-
tion is largely modulated by signals involving plant C 
and N balance and the C:N ratio would be an appropri-
ate indicator to predict plant allocation strategies.

In this study, we found that elevated  CO2 decoupled 
C and N cycles in plant tissues and this uncoupled 
relationship further aggravated under an N-enriched 
environment. This may be the result of imbalanced N 
supply and plant demand under  CO2 and N fertiliza-
tion. Similarly, the tight linkage between plant above- 
and belowground biomass become uncoupled under 
 CO2 and N fertilization, with C shifting away from 
belowground components and towards aboveground 
biomass production, indicating that perturbations 
from human activities can alter the natural linkages 
between C and N cycles associated with C realloca-
tion. This imbalance observed in the C and N with 
elevated  CO2 and N fertilization may have impor-
tant consequences on the alpine ecosystem, as the 
decoupling may cause asynchronous nutrient supply 
and demand, which can aggravate the nutrient loss 
and create new biogeochemical feedbacks (Delgado-
Baquerizo et al. 2013).

Conclusions

This study provides novel insights into how alpine 
ecosystems respond to global changes (elevated  CO2 
and N deposition) in terms of plant C and N rela-
tionships, and the biomass allocation in an alpine 

meadow. Our results illustrate that aboveground plant 
tissues are more responsive to elevated  CO2 in con-
trast to belowground parts, with more biomass being 
allocated to the aboveground plant parts. We deduce 
that plants in high elevation alpine ecosystems may 
be more responsive to low  CO2 partial pressure there 
(approximately 50% of the pressure at sea level), and 
are inclined to shift the distribution of photosynthates 
to the aboveground compartment to strengthen the 
photosynthetic potentials. Nitrogen fertilization alle-
viates the N limitations on the plant growth induced 
by elevated  CO2 and further amplifies the capacity of 
plant C fixation simultaneously by increasing biomass 
and C concentrations in aboveground tissues. Overall, 
elevated  CO2 and N fertilization decouples plant C 
and N cycling and these effects may alter the impacts 
and feedbacks of plants on biogeochemical cycles, 
and either slow down or accelerate climate changes.
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