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effect of decomposition with N application and the 
variation in decomposition among N application 
rates, N forms, fertilization condition of root growth 
and decomposition (FF, from fertilized to fertilized 
conditions, and UFF, from unfertilized to fertilized 
conditions), tree functional types and soil depth. The 
dominant factors of decomposition were identified 
using regression.
Results Our results showed that N application 
decreased fine root decomposition. Specifically, 
decomposition decreased at the application rate of 
100–150 kg N  ha‒1  yr‒1, under  NH4NO3 application, 
in broadleaf trees and in deep layers, attributable to 
the inhibited microbial enzyme activity. Decompo-
sition decreased in FF, likely resulting from home-
field advantage (HFA) effects. Multiple regressions 
showed that initial lignin content was the most impor-
tant factor determining decomposition.
Conclusion Our results suggested that inhibited 
microbial enzymes were associated with decreased 
decomposition under N application in temperate for-
ests. Additionally, our results confirmed the impor-
tance of initial root traits, such as lignin, in regulating 
decomposition.

Keywords Root traits · Fine root decomposition · 
Nitrogen deposition · Nitrogen application rates · 
Nitrogen forms · Lignin content

Abstract 
Purpose Fine root decomposition plays an essential 
role in the nutrient cycle and energy transfer in ter-
restrial ecosystems, and changes in decomposition 
induced by nitrogen (N) deposition have become a 
global concern. However, patterns of fine root decom-
position with N application are still scattered, and the 
dominant factors regulating decomposition are still 
controversial. Here, we aimed to explore general pat-
terns and key drivers of decomposition in temperate 
forests with N application.
Methods From 20 studies, we synthesized 123 
records of fine root decomposition in temperate for-
ests where N was applied. We explored the overall 
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Introduction

Inputs of atmospheric nitrogen (N) into terrestrial 
ecosystems have sharply increased in the past thirty 
years (Reay et  al. 2008). For example, temperate 
forests received approximately 20  kg  N   ha‒1   yr‒1 
during 2000–2010 (Ackerman et  al. 2019; Yu 
et al. 2019). Studies indicate that N deposition can 
substantially affect carbon (C) flow, particularly 
decomposition in terrestrial ecosystems (Hou et al. 
2020; Song et al. 2015). While extant observations 
of decomposition under N deposition have mainly 
focused on aboveground tissues (e.g., leaf litter), 
little effort was directed to fine roots (Dong et  al. 
2019; Li et  al. 2019; Ye et  al. 2019). Fine roots, 
usually referring to roots ≤ 2 mm in diameter (Chen 
and Brassard 2012; Wang et al. 2020), and are key 
contributors to the terrestrial C cycle (Kou et  al. 
2018). Studies of fine root decomposition under N 
deposition are essential to predict the impact of N 
deposition on C dynamics in terrestrial ecosystems 
(Fan and Guo 2010; Sun et al. 2015).

Research has shown both inhibitory and promo-
tion effects of N application on fine root decomposi-
tion (Argiroff et al. 2019; Jiang et al. 2018; Li et al. 
2016). Study has attributed the inhibitory effect of 
N application on decomposition to the role that N 
plays in dampening the release of root exudates to 
the rhizosphere (Sun et  al. 2016). This appears to 
reduce the energy required by the decomposers to 
synthesize extracellular enzymes that degrade C 
components (Kuzyakov et  al. 2007). In addition, 
studies report that the inhibitory effect of N appli-
cation on decomposition may also relate to changes 
in substrate chemistry (Helmisaari et  al. 2008; Tu 
et  al. 2015). For example, increasing the P and 
decreasing the C:P ratio during decomposition that 
could not meet the needs of microbial populations 
may result in reduced decomposition (Jing et  al. 
2019). However, studies have also found that exog-
enous N can stimulate the decomposition rate of 
fine roots (Berg 2014; Dong et  al. 2020). The pro-
motional effect of N application on fine root decom-
position may be due to changes in the soil microbial 
community structure, pH, available N and other soil 
characteristics (Dong et al. 2020; Sun et al. 2016). 
This, in turn, can stimulate the production of hydro-
lytic enzymes, which increases the degradation of 

hemicellulose and cellulose (Berg 2014; Waldrop 
et  al. 2004). So far, we still do not have an over-
all understanding of the various factors driving 
N decomposition under N application, and that 
we need to better investigate how the driving fac-
tors interacts in a wide range of climatic and soil 
conditions.

Numerous studies have found that experimen-
tal factors can affect fine root decomposition under 
N deposition (Gholz et  al. 2000; Jing et  al. 2019; 
Silva et  al. 2019). For example, the rate of N appli-
cation can affect the decomposition of fine roots, 
with promotion and inhibition effects found at low 
(e.g., 30  kg  N   ha−1   yr−1) and high (e.g., 90 and 
120 kg N  ha−1  yr−1) N application rates, respectively 
(Jiang et al. 2018; Mao et al. 2011; Nadelhoffer 2000; 
Song et al. 2017). Additionally, the form of N could 
play an important role in study outcomes. Research 
has shown that inorganic N (e.g.,  NH4NO3) inhibits 
the decomposition of fine roots, which occurs as a 
result of its inhibitory effect on ligninolytic enzyme 
activity (Kou et al. 2018; Song et al. 2017; Tu et al. 
2015). However, research shows that organic N (e.g., 
urea) mildly stimulates fine root decomposition as 
a result of its positive effect on the production and 
activity of hydrolytic enzymes (Dong et  al. 2020; 
Hobbie et  al. 2012). In addition, studies have found 
that the decomposition rate of fine roots is greatest 
when mixtures of organic and inorganic N forms are 
added (Dong et  al. 2020). Compared to the applica-
tion of only organic or inorganic N, the application 
of mixed N forms can meet the needs of a diverse 
decomposer community with special preferences 
(Hobbie 2005; 2015).

In addition to experimental factors, root decom-
position under N application may also be affected by 
environmental factors, soil characteristics and root 
traits, such as the mean annual temperature (MAT), 
soil pH values, and root lignin content (Berg 2014; 
Castle et al. 2017; Peng et al. 2017). MAT positively 
affects root decomposition through its substantial 
impacts on microbial activities (Kirschbaum 2006; 
See et al. 2019). Moreover, MAT affects decomposi-
tion via its induced changes in TN and C:N in litter 
(Zhang et al. 2008). Soil pH positively correlates with 
decomposition, which may be linked to promoted 
soil enzyme activities with increasing pH (Castle 
et al. 2017; Sinsabaugh et al. 2008). Lignin, a group 
of complex aromatic polymers that exist in plant cell 
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walls, usually acts as a structural barrier preventing 
microorganisms from obtaining labile C compounds 
and thus resisting enzymatic degradation (Austin and 
Ballare 2010). Nevertheless, the dominant factors 
regulating fine root decomposition under N applica-
tion remain unclear.

With increasing N deposition, temperate for-
ests have been proven to be the strongest C sink in 
temperate terrestrial ecosystems (Galloway et  al. 
2008; Yu et  al. 2014). Despite the essential roles of 
fine roots in the C cycles, our understanding of the 
C budget of temperate forests based on fine root 
decomposition under N application remains unclear 
(Kou et  al. 2018). Here, we conducted a meta-anal-
ysis to study the effect of N application on fine root 
decomposition in temperate forests using data from 
20 peer-reviewed publications. Based on the fertiliza-
tion condition of root growth and decomposition, we 
partitioned decomposition into two groups: FF (from 
fertilized to fertilized conditions) and UFF (from 
unfertilized to fertilized conditions). Roots were har-
vested either under UF (unfertilized) or F (fertilized) 
conditions; then, for decomposition, UF roots were 
incubated under either UF (UF UF) or F conditions 
(UF F) (first: growing condition; second: decomposi-
tion condition), whereas F roots were incubated only 
under F conditions (F F). For FF, N was added under 
both growth and decomposition conditions, while for 
UFF, N was added only under decomposition condi-
tions. We aimed to (1) examine the general patterns 
of the responses of fine root decomposition to N 
application in temperate forests; (2) explore how dif-
ferent N application rates, N forms, FF vs. UFF, tree 
functional types and soil depth influence fine root 

decomposition in response to N application; and (3) 
identify the key drivers of fine root decomposition. 
We hypothesized that (1) N application reduces the 
decomposition of fine roots, resulting from inhibited 
activity of ligninolytic enzymes (Song et  al. 2017; 
Weand et  al. 2010) or decreased microbial biomass 
and fungi to bacteria ratio (Cheng et  al. 2019), and 
that (2) experimental factors have large impacts on 
fine root decomposition. For example, medium N 
application rates (100–150  kg  N   ha−1   yr−1) may 
have a significant effect on decomposition because 
of altered acid-unhydrolysable residue (AUR) (Kou 
et al. 2015); and (3) initial root traits, such as lignin 
content, which regulate decomposition. Lignin is 
related to structural protection from microbial degra-
dation, which generally slows the decomposition pro-
cess (Austin and Ballare 2010).

Methods

Data sources

We compiled 123 independent data points from 20 
studies that were published between 2004 and 2019 
using Web of Science, Google Scholar and China 
National Knowledge Infrastructure (CNKI) (supple-
mentary material). We used the search string: (fine 
root OR fine roots) AND (decomposition OR decay 
OR breakdown) AND (simulated N deposition OR N 
application OR N additions). Observations that met 
the following criteria were selected in our analysis 
(Fig. S1): (1) experiments were conducted in temper-
ate forest ecosystems with all kinds of roots having 

Fig. 1  Global distribution 
of experiments measuring 
fine root decomposition 
in temperate forests with 
N application (n = 123). 
Different sample sizes are 
represented by different col-
ours, and numbers represent 
sample sizes

79Plant Soil (2022) 472:77–89



1 3
Vol:. (1234567890)

diameters ≤ 2.0  mm (Figs.  1 and S2) (Ferreira et  al. 
2015); (2) both fertilized and unfertilized plots were 
established with consistent biotic and abiotic condi-
tions; (3) at least one of the variables was measured 
and did not include modelled values; (4) only unferti-
lized and N fertilized data were selected (other exper-
imental factors were excluded); (5) either the decom-
position rate or mass loss of fine roots over a known 
duration was reported; and (6) data were collected 
once if reported by multiple publications. Studies 
were considered independent based on the following 
criteria: (1) studies conducted at different sites and 
with different N application rates; (2) discrete stud-
ies at the same site (LeBauer and Treseder 2008; Liu 
and Greaver 2010); (3) different species in a study; or 
(4) a study including several experiments under vari-
ous abiotic conditions, such as different locations, N 
application rates and soil layers (Chen et  al. 2019). 
Our 123 records met at least one of the above criteria 
and thus were assumed to be independent. The 123 
records are from the upper midwestern part of the 
USA or in China. There may be some latitudinal and 
possibly phylogenetic bias, which needs further study 
with more data in temperate forests.

We collected four categories of factors: environ-
mental (including MAT, mean annual precipitation 
(MAP), latitude and longitude), experimental fac-
tors (including soil depth, decomposition duration, N 
application rate, fertilization frequency, mesh size and 
initial root mass), soil characteristics (including initial 
pH, N:P, TN and TP), and initial root traits (includ-
ing lignin, N, P, N:P, C:P, C:N and cellulose). When 
the data were reported graphically, we used GetData 
Graph Digitizer v.2.24 (http:// getda ta- graph- digit izer. 
com/) to extract data values.

We either directly collected MAT and MAP when 
they were reported or indirectly extracted them if not 
reported from the Global Climate database (http:// 
www. world clim) using the latitudes and longitudes of 
the study areas. MAT ranged from 2.0 to 17.9 °C, and 
MAP ranged from 66 to 1490 mm in these studies. N 
application rates varied from 5 to 300 kg N  ha‒1  yr‒1, 
and we grouped them into < 50, 50–100, 100–150 
and ≥ 150 kg N   ha‒1   yr‒1 (Tian and Niu 2015). Dif-
ferent forms of N were applied, including  NH4NO3, 
 NH4Cl, urea and  NaNO3. In the lnRR calculation, 
for UF F, lnRR = ln (X UF F/X UF UF) = ln (X UF F) − ln 
(X UF UF), and for F F, lnRR = ln (X F F/X UF UF) = ln 
(X F F) − ln (X UF UF). The same initial roots were 

incubated in the F and UF treatments. Tree func-
tional types were divided into broadleaf and conifer 
trees based on leaf morphological and phenological 
traits (Wu et  al. 2017). Soil depth was categorized 
into surface (0–10 cm) and deep layers (0–20, 0–30 
and > 30 cm).

Statistical analysis

We estimated decomposition coefficients based on the 
fine root mass remaining during the decomposition 
period if the data were not directly reported. Negative 
exponential models were used for coefficient estima-
tion (Berg 2014; Olson 1963): mt/m0 =  e−k t, where  mt 
is the residual mass of fine roots at time t (years),  m0 
is the fine root mass at the beginning of the experi-
ment, and k is the decomposition coefficient (per 
year). We used the natural log response ratio (lnRR) 
as the effect size to assess the response of fine root 
decomposition to N application (Zheng et  al. 2019): 
lnRR = ln  (Xt/Xc) = ln  (Xt) − ln  (Xc), where  Xt and  Xc 
are the mean of the fertilized and unfertilized groups, 
respectively. We estimated the linear relationship 
between lnRR and continuous predictors by compar-
ing linear and log-linear responses (Chen et al. 2019). 
However, in our database, sampling variances were 
not reported in 4 of the 20 studies. More importantly, 
weighting based on sampling variances would assign 
extreme importance to some individual observations 
(Ma and Chen 2016). Similar to previous research 
(Pittelkow et al. 2015), we used the number of repli-
cates for calculating weighting:  Wr =  Nt  Nc/(Nt +  Nc), 
where  Wr is the weight for each observation and  Nt 
and  Nc are the replicates of observations in fertilized 
and unfertilized groups, respectively. We compared 
linear and log-linear responses to assess the assump-
tion of linearity between continuous predictors and 
lnRR.

Our analyses used stepwise multiple regressions  
to identify the relationship between the fine root 
decomposition rate and the four factor categories. In 
cases where the number of common points in each 
category was insufficient, factors that significantly 
correlated with the log response ratio were used  
in a stepwise regression of each category except  
environmental factors (including MAT, MAP, latitude  
and longitude). The stepwise multiple regression 
analysis had two steps: (1) factors in each category  
were contained in the analysis (Models A1–4),  
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and (2) we ran analyses of all variables included in 
Model A (Model B). We used the Akaike information 
criterion (AIC), which provides information about the 
likelihood of a model being significant for the given 
data and its parameterization, to compare the likeli-
hood of competing models. When comparing two 
alternative models, a lower AIC is more likely (Bond-
Lamberty et al. 2018; Manning et al. 2008). All sta-
tistical analyses were performed in R 3.5.1.

Results

In general, our analyses showed that the exog-
enous N application decreased the decomposition 
of fine roots (p < 0.01; Fig.  2a). Decomposition 
decreased substantially at the application rate of 
100–150  kg  N   ha−1   yr−1 (p < 0.01; Fig.  2b), and it 
was not significantly affected by the other application 

rates (all p > 0.05; Fig.  2b).  NH4NO3 reduced the 
decomposition of fine roots (p < 0.05; Fig. 2c), but the 
effects of the other forms of N fertilizers on decom-
position were not significant (all p > 0.05; Fig. 2c).

Decomposition decreased in FF (p < 0.01; Fig. 3a) 
but did not significantly change in UFF (p > 0.05; 
Fig. 3a). Among the tree functional types, broadleaf 
trees experienced a decrease in fine root decomposi-
tion with N application (p < 0.05; Fig. 3b), but conifer 
trees did not experience a decrease (p > 0.05; Fig. 3b). 
While N application did not change fine root decom-
position in the surface soil layers (p > 0.05; Fig. 3c), 
it decreased decomposition in the deep soil layers 
(p < 0.01; Fig. 3c). The decomposition bag and mesh 
sizes did not significantly affect decomposition (all 
p > 0.05; Fig. 4).

Fine root decomposition in response to N appli-
cation was influenced by both environmental and 
experimental factors and initial soil characteristics 
and root traits (measured before N application in the 
decomposition experiments). The response ratios of 
fine root decomposition were positively correlated 
with MAT (p < 0.05; Fig.  5a) and initial soil pH 
(p < 0.001; Fig.  5d) and negatively correlated with 
soil depth (p < 0.001; Fig.  5b), decomposition dura-
tion (p < 0.05; Fig.  5c), initial soil N:P (p < 0.05; 
Fig.  5e), initial root lignin (p < 0.01; Fig.  5f), N 

Fig. 2  The overall effect of N application on the fine root 
decomposition rate (a) and the effects of N application on 
decomposition changes with N application rate (b) and N 
form (c). The N application rates were < 50, 50–100, 100–150 
and ≥ 150 kg N   ha−1   yr−1. N forms include  NH4NO3,  NH4Cl, 
urea and  NaNO3. The sample size is indicated next to each 
attribute, and error bars indicate 95% confidence intervals. *: 
p < 0.05, **: p < 0.01

Fig. 3  Effect of N application on fine root decomposition rate 
for FF vs. UFF (a), different tree functional types (b), and soil 
layers (c). FF: from fertilized conditions to fertilized conditions 
and UFF: from unfertilized conditions to fertilized conditions. 
The sample size is indicated next to each attribute, and error 
bars indicate 95% confidence intervals. *: p < 0.05, **: p < 0.01
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(p < 0.01; Fig. 5g) and P (p < 0.01; Fig. 5h). We found 
no significant correlations of the response ratios of 
fine root decomposition with MAP, N application 
rate, frequency, mesh size, initial root mass, initial 
soil total N (TN), soil total P (TP), initial root N:P, 
C:P, C:N, cellulose, the response ratios of root N, P 
or initial root mass per unit area of bags (all p > 0.05; 
Fig. S3).

Multiple regression analyses showed that the fine 
root decomposition response to N application was 
affected by MAT (p < 0.05; Table  1), initial soil pH 
(p < 0.01; Table  1), soil depth (p < 0.001; Table  1) 
and initial root lignin (p < 0.01; Table 1) within each 
category. Further analysis showed that initial root 
lignin was the most important factor regulating fine 
root decomposition responses to the N application 
(p < 0.01; Table 1).

Discussion

Effects of N application on fine root decomposition

Consistent with previous findings (Carreiro et  al. 
2000; Gholz et  al. 2000), our results showed that N 
application decreased fine root decomposition in tem-
perate forest ecosystems. Decreases mainly resulted 
from the suppression of lignin degradation — the 
activity of ligninolytic enzymes was inhibited (Song 
et al. 2017; Tu et al. 2015). Phenol oxidase, a critical 
lignin-degrading enzyme (Hobbie et al. 2012; Kellner 

et al. 2008), was found to significantly decrease under 
N application (Fig. 6). Moreover, we found that phe-
nol oxidase was positively correlated with the root 
decomposition rate (Fig.  6). Fine roots are usually 
composed of lignin-rich substances in temperate for-
ests (Rasse et  al. 2005; Xia et  al. 2015). Therefore, 
the inhibition of lignin degradation by N application 
leads to a negative effect of N application on fine root 
decomposition in temperate forests. These results 
indicated that fine root decomposition significantly 
changed under N application experiments, which 
likely affected ligninolytic enzymes, but further 
research is needed to fully understand the impact of N 
application on ligninolytic enzymes, especially phe-
nol oxidase. Additionally, under conditions that sup-
port nitrification, N input could significantly increase 
the loss of soil TN,  NO3

− and cations from the soil 
solution and increase  H+ in the soil through  NH4

+ 
nitrification (Conn and Day 1996), leading to a sig-
nificant decrease in the root decomposition rate (Kou 
et al. 2018; Manning et al. 2008).

Effects of the N application rate and N form on 
decomposition

Our results demonstrated the inhibition of 
decomposition when the N application rate was 
100–150  kg  N   ha−1   yr−1, but no significant inhibi-
tion or promotion effects occurred at other greater or 
lesser application rates. Kou et  al. (2018) suggested 
that the rate of N application is one of the factors 

Fig. 4  Effect of N appli-
cation on the fine root 
decomposition rate among 
different bags (a) and 
mesh sizes (b). Bag sizes 
include 10 × 10, 15 × 15 
and 20 × 20 cm. Mesh 
sizes include < 0.2 mm 
and ≥ 0.2 mm. The sample 
size is indicated next to 
each attribute, and error 
bars indicate 95% confi-
dence intervals
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Fig. 5  The relationships 
between the response ratios 
of fine root decomposition 
and environmental factors: 
(a) MAT, experimental 
factors: (b) soil depth, and 
(c) decomposition dura-
tion; soil characteristics: 
(d) initial soil pH and (e) 
initial soil N:P; and initial 
root traits: (f) lignin, (g) N 
and (h) P in N application 
experiments. In Fig. 5f-h, 
others indicate herbs. *: 
p < 0.05, **: p < 0.01, ***: 
p < 0.001
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affecting fine root decomposition. Inhibition effects 
at an application rate of 100–150  kg  N   ha−1   yr−1 
might result from inhibited microbial enzyme activ-
ity (Sun et al. 2016) and increased concentrations of 
AUR in fine roots that reduced decomposition (Kou 
et al. 2015). Our results showed that fine root decom-
position decreased when the N application rate was 
100–150  kg  N   ha‒1   yr‒1, considering that the glob-
ally relevant range of N deposition values is from 0 
to 50 kg N  ha‒1  yr‒1, which may not affect fine root 
decomposition in terrestrial ecosystems (for exam-
ple, temperate forests). However, with a continuous 

increase in N deposition, the decomposition of fine 
roots may decrease in future terrestrial ecosystems. 
On the other hand, our results showed that N appli-
cation decreased fine root decomposition when 
 NH4NO3 was applied, while other forms of N had no 
significant effect on decomposition. Previous stud-
ies have proposed that the application of  NH4NO3 
reduces fine root decomposition through (1) the sup-
pression of ligninolytic enzyme activity (Song et  al. 
2017; Tu et al. 2015) and (2) an increase in the com-
bination of inorganic N ions with AUR in decompos-
ing roots (Jiang et al. 2018). Other forms of N fertiliz-
ers had no significant effects on decomposition, but 
this was likely due to the limited number of observa-
tions leading to high variation (low statistical power).

Effects of N application on decomposition differed 
with fertilization condition of root growth and 
decomposition

The lnRR of fine root decomposition showed a 
decrease in FF but not in UFF. Evidence is growing  
that litter usually decomposes faster in its native  
habitat than in other habitats (Freschet et  al. 2012). 
The vast majority of these studies indicate that home- 
field advantage (HFA) effects exist in leaf litter 
decomposition (Gholz et  al. 2000; Lin et  al. 2020). 
However, some studies show that a HFA also exists in 
fine root decomposition (Freschet et al. 2012; Jacobs 
et  al. 2018), which may also be applicable to our 
results. With respect to FF, the decomposition in the 
fertilized groups decreased with N application, while 
decomposition in the unfertilized groups occurring  

Table 1  Regression analyses of the response ratios of the fine root decomposition rate to N application, including environmental and 
experimental factors, soil characteristics and initial root traits. *: p < 0.05, **: p < 0.01, ***: p < 0.001

Note: The data included four factor categories with the number of points for each specific factor in parentheses. The total number 
of data points was 123. The factors are environmental (MAT (°C, 123), MAP (mm, 123), latitude (°, 123), and longitude (°, 123)), 
experimental (depth (cm, 123), duration (year, 123), N application rate (kg N  ha−1  yr−1, 123), frequency (time  yr−1, 123), mesh size 
(mm, 102), and initial root mass (g, 123)), soil characteristics (initial pH (119), N:P (107), initial TN (mg/g, 110), and initial TP 
(mg/g, 107)), and initial root traits (lignin (mg/g, 60), N (mg/g, 106), P (mg/g, 86), N:P (86), C:P (62), C:N (101), and cellulose 
(mg/g, 51))

Factors Model Variables Regression n r2 Excluded variables

Environmental factors A1 MAT lnRR = 5.59E − 3 MAT − 0.15 123 0.03* MAP, latitude, longitude
Experimental factors A2 Depth lnRR =  − 5.38E − 3 depth − 0.04 123 0.13*** Duration
Soil characteristics A3 pH lnRR = 2.69E − 2 pH − 0.25 107 0.06** Soil N:P
Initial root traits A4 Lignin lnRR =  − 6.96E − 4 lignin + 0.15 60 0.14** N, P
All B Lignin lnRR =  − 6.96E − 4 lignin + 0.15 60 0.14** MAT, depth, pH

Fig. 6  The relationship between the response ratios of the fine 
root decomposition rate and the response ratios of phenol oxi-
dase
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under their original conditions changed little, lead-
ing to a general decrease in lnRR. For UFF, decom-
position decreased in not only the fertilized group but 
also the unfertilized group, resulting in nonsignificant 
effects of N application on fine root decomposition in 
UFF. Another possible reason for this outcome is that 
fertilized roots have a different initial chemical com-
position than that of unfertilized roots since N appli-
cation would increase the N content and decrease the 
C content (Li et al. 2015). N application can increase 
nitrate availability to roots, which causes the roots to 
absorb more N and store it in fine root tissue (Nadel-
hoffer 2000; Reay et  al. 2008). This, in turn, can 
inhibit decomposition (Li et  al. 2015). Additionally, 
cost–benefit theory indicates that less C is devoted to 
roots when soil resource availability is high, which 
may lead to a decrease in decomposition under N 
application (Gough et al. 2004; Wang et al. 2012).

Effects of N application on decomposition in relation 
to tree functional types and soil depth

We found that N application reduced decomposition 
in broadleaf trees but had no significant impacts on 
decomposition in conifer trees. Fine roots of broad-
leaf trees usually have a high N content compared 
with that of conifer trees (Silver and Miya 2001). 
Previous studies have shown that a high N content 
may inhibit the synthesis and activity of ligninolytic 
enzymes (e.g., phenol oxidase) or convert lignin into 
other compounds that are resistant to degradation, 
ultimately inhibiting decomposition (Kou et al. 2018; 
Tu et al. 2015). Additionally, our results showed that 
N application inhibited fine root decomposition in the 
deep soil layers but not in the surface soil layers. Phe-
nol oxidase in the deep soil layer is inhibited under N 
application (Jian et al. 2016). This slows lignin degra-
dation, ultimately leading to a decrease in the rate of 
decomposition in deep soil layers (Hobbie et al. 2012; 
Sinsabaugh et al. 2009).

Effects of N application on decomposition in relation 
to mesh and bag sizes

Neither bag size nor mesh size had significant impacts 
on the response ratios of decomposition. Mesh size 
affects decomposition by interfering with decompo-
sition processes (Heinemeyer et  al. 2007; Maillard 
et  al. 2021). For example, larger organisms (e.g., 

microarthropods) that carry microbes on their body 
and soil fauna (e.g., macro- and meso-invertebrates) 
are excluded by small mesh and thus cannot bring 
microbial decomposers inside (Beidler and Pritchard 
2017; Kampichler and Bruckner 2009). In our study, 
mesh size did not affect decomposition. This result 
may be attributable to the low quality (e.g., high in 
lignin) of the fine roots in temperate forests (Rasse 
et al. 2005; Xia et al. 2015), which diminished the dif-
ferences in decomposition rates associated with mesh 
sizes. Additionally, we found no significant correla-
tions between the response ratios of decomposition 
and initial root mass per unit area of bags (Fig. S3n), 
probably indicating nonsignificant bag-size effects on 
decomposition.

Factors regulating decomposition under N application

Substrate quality is one of the important factors con-
trolling the responses of litter decomposition to N 
application (Knorr et  al. 2005). Our results found 
that the highest decrease in root decomposition was 
as high as 42.99% when roots were rich in lignin, N 
and P (Fig.  5f-h). Because of its structural irregu-
larity, lignin has a strong resistance to decomposi-
tion and generally slows the decomposition process 
(David et  al. 1988; Fogel and Kermit 1977). High 
root N concentrations may enhance the reaction 
between N and intermediate products of lignin deg-
radation and slow decomposition processes (Tu et al. 
2015). Root P negatively affected root decomposition, 
which may have resulted from a high P content inhib-
iting microbial activity (Jing et al. 2019; Sinsabaugh 
et al. 1993). N application can change substrate qual-
ity, such as increasing lignin, N, and P concentrations 
in fine roots, thereby inhibiting decomposition (Tu 
et al. 2015). However, we found no significant corre-
lations between the lnRR of root decomposition and 
the lnRR of root traits (e.g., N, P). Possible reasons 
for this result may include (but not limited to): (1) the 
fine root decomposition that decreased under N appli-
cation may have been related to suppressed lignin 
degradation rather than to altered root traits (Berg and 
Laskowski 2006; Fang et al. 2007; Hobbie 2008), and 
(2) the number of studies was limited, leading to no 
significant correlations being found.

In addition to initial root traits, MAT, soil depth 
and pH also affected decomposition. High tem-
peratures increase decomposition by enhancing 
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microbial activity (Davidson and Janssens 2006; 
Petraglia et al. 2018). The impacts of the soil layer 
and pH on decomposition may be linked to soil 
enzyme activities (Hobbie et  al. 2012; Sinsabaugh 
et  al. 2008). Phenol oxidase in the deep layer is 
inhibited, leading to decreased decomposition (Jian 
et  al. 2016). A high pH can stimulate the produc-
tion of hydrolytic enzymes, thereby increasing the 
degradation of hemicellulose and cellulose, lead-
ing to increased decomposition (Berg 2014; Sun 
et al. 2015). N application affects decomposition by 
changing soil characteristics (Tu et  al. 2015). For 
example, in long-term N application experiments, 
with the decrease in soil N:P, microbial activity 
increased and decomposition accelerated (Ashraf 
et  al. 2020; Geisseler and Scow 2014). Neverthe-
less, because of the limited number of data points 
for the soil variables (e.g., soil TN = 6, TP = 1 and 
pH = 9), we did not test the relationships between 
the lnRR of root decomposition and the lnRR of 
soil variables.

Overall, our study contributed to understand-
ing and predicting the impacts of N application on 
fine root decomposition in temperate forest ecosys-
tems. However, the decomposition of fine roots in 
response to N application may differ among differ-
ent ecosystems (Fig. S2), and more attention should 
be given to belowground impacts. Moreover, func-
tional differences between absorptive and transport 
fine roots cause them to differ in structural devel-
opment and nutrient concentration (McCormack 
et al. 2015). The effects of N application on decom-
position should be related to the type of fine roots 
(Kou et al. 2015; Sun et al. 2015). Further study is 
needed to fully understand the impact of root types 
on decomposition under N application.
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