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Abstract
Aims Cover crop species selection for soybean (Glycine
max) production under no-tillage (NT) management
may affect soil organic C sequestration by altering the
quantity and quality of C inputs, thereby affecting
cropping system sustainability. If so, the underlying
mechanisms for such regulation are still unclear.
Methods We assessed changes in soil C and N fractions
at 0-0.1m depth and soil C stock at 0-0.6 m depth during
the last three years of dry-season cover cropping in a
soybean production system managed with NT for 9
years on a Rhodic Hapludox in Sao Paulo, Brazil.
Dry-season management treatments were repeated year-
ly in a split-plot scheme. Main plots during the fall-
winter were (1) ruzigrass (Urochloa ruziziensis), (2)
grain sorghum (Sorghum bicolor), and (3) the
intercropping of ruzigrass and sorghum. Subplots

during spring prior to planting soybean were (a)
pearl millet (Pennisetum glaucum), (b) sunn hemp
(Crotalaria juncea), and (c) forage sorghum (Sorghum
bicolor).
Results Soil C and N fractions were affected according
to crop residue characteristics of the rotations. Higher
soil C stocks in 2012 and 2015 (7% an average) were
observed at 0.2–0.4 m depth by ruzigrass compared to
sorghum. High crop residue input with ruzigrass in the
fall-winter sequestered 0.61 Mg C ha− 1 yr− 1 at 0-0.1 m
soil depth compared with lower C sequestration using
grain sorghum (0.29 Mg C ha− 1 yr− 1).
Conclusions The quantity and quality of crop residues
impact its retention on soil surface controlling the dy-
namics of soil C and N fractions and can be considered
relevant for soil C sequestration. These aspects could
contribute to the mitigation of atmospheric CO2 in crop
production systems.

Keywords Conservationmanagement . Cropping
systems . Soil carbon stock . Crop residue quality

Introduction

Soils hold the largest C pool in terrestrial ecosystems,
and therefore changes in soil organic carbon (SOC) can
impact atmospheric carbon dioxide (CO2) concentration
(Stockmann et al. 2013). Historically, converting forest-
ed areas into agricultural land reduced SOC content
(Deng et al. 2016). However, recent conservation man-
agement of agricultural soils has promoted SOC
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sequestration and mitigation of CO2 emissions to the
atmosphere (Tang et al. 2019). Importantly, soil man-
agement controls whether soil acts as a sink or source of
C to the atmosphere (Farina et al. 2017; Minasny et al.
2017).

Soil disturbance following a monoculture crop with
seasonal fallow periods, and lack of crop rotations with
insufficient soil cover violate the key features of conser-
vation agriculture (Derpsch et al. 2014), often resulting
in SOC depletion, and especially in the tropics (Lal
2002). Alternatively, the practices of no-till (NT) man-
agement to maintain soil cover and using cover crops
along with diverse crop rotations are strategies to in-
crease SOC sequestration in cropping systems
(Rodríguez Martín et al. 2019). Soil organic C seques-
tration in agricultural systems is regulated by the type of
cropping systems (Luo et al. 2010), which are important
to optimize for the sustainability of agricultural produc-
tion (Rigon and Calonego 2020). Additionally, changes
in SOC depend on soil type and climate (Hoyle et al.
2013), soil texture, and mineralogy (Bayer et al. 2006b),
and type and quantity of crop residues (Xu et al. 2017).
However, how SOC responds to different crop residues
under a variety of crop management systems remains
unclear (Zhao et al. 2018; Kong et al. 2019).

Most SOC sequestration studies have focused on
differing soil management (e.g. conventional tillage
and no-till). Fewer studies have been conducted on
differences between crop rotations with specific atten-
tion to crop residue quality. Crop residue quality may
play a significant role in controlling SOC accumulation
in NT cropping systems, particularly under tropical
conditions (Raphael et al. 2016; Rigon et al. 2020).
According to these authors cumulative crop residue
production and N content influence the accumulation
of SOC and its fractions. Faster SOC turnover in tropical
soils due to high temperature and precipitation leads to
rapid decomposition of crop residues and potentially
limited SOC accumulation (Bolliger et al. 2006;
Powlson et al. 2016).

Grasses have high biomass production potential and
their residues may provide recalcitrant compounds, such
as lignin, that slow decomposition leading to greater and
longer lasting surface residue cover of the soil surface
(Pimentel et al. 2015; Akhtar et al. 2018). Lignin is
chemically connected to cellulose and hemicellulose in
the cellulosic fiber walls, providing strength and rigidity
to plant structures (Thevenot et al. 2010). In addition,
lignin has been considered an important contributor to

stable SOC pools owing to innate biochemical recalci-
trance (Stevenson 1994; Kögel-Knabner 2002). With
legumes as cover crop, crop residues have enhanced N
concentration and this may alter the soil microbial com-
munity to increase SOC sequestration in tropical soils
(Bayer et al. 2016; Justes 2017). The beneficial effect of
cover crops in the whole cropping system will depend
on how they are managed (Büchi et al. 2018). Therefore,
a new challenge is to develop and improve crop rotation
schemes with high organic C inputs that maximize the
benefits of NT as a strategy to promote SOC sequestra-
tion and soil quality (Vieira et al. 2009).

Limited knowledge exists on the role of crop residue
type and quality as drivers for SOC sequestration, spe-
cifically in tropical cropping systems. The objective of
this study was to assess C inputs and characteristics of
crop rotations affecting soil C and N fractions and SOC
sequestration under NT. We hypothesized that (i) great-
er residue quality from legumes and lower residue qual-
ity from grasses in crop rotations will impact residue
retention and soil C and N fractions influencing SOC
sequestration; and (ii) greater C and N inputs of different
crop rotations will increase SOC sequestration and C
retention efficiency. This information is needed to un-
derstand how to design cropping systems for enhancing
long-term SOC dynamics and develop reasonable man-
agement strategies for SOC sequestration that work for
farmers and the environment.

Materials and methods

Study site

The study was established in 2006 on a Rhodic
Hapludox (Soil Survey Staff 2014) in Botucatu, Sao
Paulo, Brazil (22°49’S, 48°25’ W). The climate is
mesothermal with a well-defined dry season from May
to September and mean annual rainfall of 1450 mm.
Monthly temperature and rainfall between 2012 and
2015 and the average from 2006 to 2011 are shown in
Fig. 1.

Experimental design and crop rotation management

The experiment was laid out as a split-plot arrangement
in four randomized blocks. Main plots were crop species
in the fall-winter, planted around the first half of April.
Split plots were type of spring crops, sown around the
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second half of September. Soybean (Glycine max (L.)
Merrill) was sown across the entire experiment as the
cash crop in summer in Nov/Dec. The factorial arrange-
ment of three main plots and three sub plots resulted in
nine soybean cropping system treatments (Table 1),
maintained consistently from 2006 to 2015.

Main plots were grain sorghum (Sorghum bicolor),
ruzigrass (Urochloa ruziziensis), and intercropping of
sorghum and ruzigrass planted in 5 m x 30 m plots.
Sorghum was sown at 11 kg ha− 1 with row spacing of
0.34 m. Ruzigrass was sown at 22 kg ha− 1 with row
spacing of 0.17 m. For the intercropped treatment, the
same spacing and seed rates were used as for sole crops.
Ruzigrass seeds were placed in the fertilizer box of the
seeder and distributed in the same row as sorghum. In
Aug/Sep sorghum plots were harvested, and afterwards
crops were chemically desiccated with glyphosate. In
both cases, crop residues were left on the soil surface.

Sub plots in the spring were pearl millet (Pennisetum
glaucum), sunn hemp (Crotalaria juncea), and forage
sorghum (Sorghum bicolor) planted in 5m x 10m areas.
Pearl millet, sunn hemp, and forage sorghum were sown
at 25, 30, and 15 kg ha− 1, respectively, with row spacing
of 0.17 m in second half of September. In spring at pre-
flowering stage (Nov/Dec), cover crops were chemical-
ly desiccated with glyphosate, and residues were left on
the soil surface. Soybean was sown soon thereafter. No
fertilizers were used in winter and spring seasons.

Soybean was sown in the three years of this phase of
the project on 5 Dec 2012, 13 Nov 2013, and 2
Dec 2014 at 400,000 seeds ha− 1 with row spacing of
0.45 m. Since the beginning of the experiment, soybean
was the only fertilized crop, receiving 50 kg K2O ha− 1

and 50 kg P2O5 ha− 1 each year as potassium chloride
and triple superphosphate, respectively. Crop manage-
ment was the same in each year from 2006 to 2015.

Fig. 1 Mean monthly
temperature and rainfall in the
cropping seasons between 2012
and 2015, and since the beginning
of the experiment (2006 to 2011)
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Crop residue

Two crop residue samples (0.25 m2 each) were random-
ly collected from each plot at the end of each of the three
growing periods during each of the three years; totaling
9 crop seasons as follows: fall-winter 2012, 2013 and
2014, spring crops 2012, 2013 and 2014, and soybean
2012/2013, 2013/2014, and 2014/2015. Crop residue
samples were dried at 55°C for 48 h and weighed.
Samples were ground, homogenized, and analyzed for
C and N contents with an elemental analyzer (LECO-
TruSpec® CHNS). Sub-samples from all plots in fall-
winter 2014 and spring crops 2014 were analyzed for
cellulose, hemicellulose, and lignin (Silva and Queiroz
2002).

Soil

Soil was sampled with a push probe after winter crops in
2012 and after soybean harvest in 2015 by compositing
three soil cores (5 cm diameter) from each experimental
unit at soil depths of 0-0.1, 0.1–0.2, 0.2–0.4, and 0.4–0.6
m. Subsamples collected in 2012 were analyzed for
chemical (Raij et al. 2001) and physical and
granulometric properties (Danielson and Sutherland
1986) (Table 2). For SOC analysis, soil samples were
air-dried, ball-milled, and analyzed with an elemental

analyzer (LECO-TruSpec® CHNS). Subsamples col-
lected in 2015 at 0-0.1-m depth were analyzed for soil
C and N fractions (Franzluebbers and Stuedemann
2008). Briefly, soil microbial biomass Cwas determined
with chloroform fumigation-incubation without subtrac-
tion of a control. The flush of CO2 following rewetting
of dried soil (3 d) and cumulative C and N mineraliza-
tion during 24 d of incubation were determined with

Table 1 Crop rotations used in the experiment since 2006

#Crop rotation §Fall-winter crops (plots) † Spring crops (subplots) ‡Summer
(total area)

1 Ruzigrass Pearl millet Soybean

2 Ruzigrass Forage sorghum Soybean

3 Ruzigrass Sunn hemp Soybean

4 *Ruzigrass and Sorghum Pearl millet Soybean

5 Ruzigrass and Sorghum Forage sorghum Soybean

6 Ruzigrass and Sorghum Sunn hemp Soybean

7 Sorghum Pearl millet Soybean

8 Sorghum Forage sorghum Soybean

9 Sorghum Sunn hemp Soybean

# 1 Ruzigrass/Pearl millet; 2 Ruzigrass/Forage sorghum; 3 Ruzigrass/Sunn hemp; 4 Ruzigrass and Sorghum/Pearl millet; 5 Ruzigrass and
Sorghum/Forage sorghum; 6 Ruzigrass and Sorghum/Sunn hemp; 7 Sorghum/Pearl millet; 8 Sorghum/Forage sorghum; 9 Sorghum/Sunn
hemp

§ Fall-winter crops grown from second half of April and first half May to August/September.

† spring crops grown from September to second half of November.

‡ soybean grown from second half of November and first half December to April.

* Ruzigrass and Grain sorghum intercropped.

Table 2 Chemical, physical and granulometric analysis of soil in
2012

Soil depth (m)

0-0.1 0.1–0.2 0.2–0.4 0.4–0.6

pH (Cacl2) 5.7 5.1 4.5 4.3

Al (mmolc dm
−3) 0.1 0.3 0.8 0.9

Ca (mmolc dm
−3) 40.6 22.7 10.7 8.3

Mg (mmolc dm
−3) 21.8 14.9 9.3 7.6

K (mmolc dm
−3) 1.14 0.84 0.78 0.65

P (mg dm−3) 23.2 11.5 6.9 6.4

Sand (g kg−1) 500 475 413 375

Silt (g kg−1) 95 70 82 120

Clay (g kg−1) 405 455 505 505

Microporosity (m3 m−3) 0.30 0.30 0.33 0.33

Macroporosity (m3 m−3) 0.09 0.08 0.08 0.12

Bulk density (Mg m−3) 1.65 1.64 1.57 1.41
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aerobic incubation of soil at 50 % water-filled pore
space and 25°C. Duplicate 50-g soil samples in 60 mL
glass jars were wetted and placed in a 1-L canning jar
along with a vial containing 10 mL of 1 mol L− 1 NaOH
to trap CO2 and a vial of water to maintain humidity.
Alkali traps were replaced at 3 and 10 d of incubation
and CO2–C determined by titration with 1 mol L− 1 HCl
with vigorous stirring in the presence of BaCl2 (which
precipitated to form BaCO3) to a phenolphthalein end-
point. At 10 d, one of the subsamples was removed and
fumigated with CHCl3 under vacuum for 1 d, vapors
removed, placed into a separate canning jar along with
vials of alkali and water, and incubated at 25°C for 10 d.
Potential C mineralization was calculated from the cu-
mulative evolution of CO2 during 24 d of incubation.
Basal soil respiration was assumed from the linear rate
of C mineralization during the 10- to 24-d period. Min-
eralizable N was determined from the difference in
inorganic N concentration between 0 and 24 d of incu-
bation. Inorganic N (NH4–N+NO2–N+NO3–N) was
determined from the filtered extract of a 10-g subsample
of dried (55°C for 3 d) and sieved (≤ 2 mm) soil that was
shaken with 20 mL of 2 mol L− 1 KCl for 30 min using
salicylate-nitroprusside and hydrazine autoanalyzer.

Another sampling for undisturbed soil samples was
conducted in 2012 and 2015. Trenches approximately
0.4 m wide, 0.8 m long and 0.6 m deep were opened in
each plot and samples were taken at the center in each
soil depths (0-0.1, 0.1–0.2, 0.2–0.4, and 0.4–0.6 m)
using a volumetric single ring (5.0 cm high x 4.8 cm
wide) (Blake 1965) to calculate C stock of the soil
profile (Veldkamp 1994) according to Eq. 1:

Cstocks ¼ SOCxBdxslð Þ=10 ð1Þ
where SOC is soil organic carbon (g kg− 1), Bd is soil
bulk density (Mg m− 3), and sl is soil layer (cm). Calcu-
lations of C sequestration, C sequestration rate, and C
retained from crop residues (CRCR) were based on de
Moraes Sá et al. (2015) and Yadav et al. (2019) accord-
ing to Equations 2, 3, and 4, respectively.

Csequestration ¼ Cstocks2015 � Cstocks2012ð Þ ð2Þ

Csequestrationrate ¼ Csequestration
years

ð3Þ

CRCR %ð Þ ¼ Csequestration
cumulativeCstrawinput

x100 ð4Þ

where: years is (2015–2012) and cumulative C crop
residue input is the crop residue yield (Mg ha− 1) during
9 seasons starting from the winter crop in 2012 to
soybean in 2014/2015.

Data analysis

Homogeneity and normality of data were tested prior to
analysis of variance (p < 0.05). Differences among
means were compared by the t-test (LSD, p < 0.05).

Results

Crop residue

Across nine growing periods from the fall-winter season
of 2012 to the summer soybean season of 2014/2015,
cumulative crop residue inputs were 34.5 Mg ha− 1,
while C and N contents were, respectively, 15.2 Mg C
ha− 1 and 527 kg N ha− 1 when averaged across cropping
treatments (Table 3). The fall-winter and spring crop
treatments impacted (p < 0.05) cumulative crop residue
mass and C and N inputs, but there was no interaction
between fall-winter and spring crop treatments.

Crop residue and C inputs from ruzigrass were, on
average, 9–10% greater (p < 0.05) than from other fall-
winter crops (grain sorghum intercropped with ruzigrass
or grain sorghumonly). Difference in crop residueN input
from ruzigrass was even greater (30–50%) compared to
grain sorghum and sorghum intercropped with ruzigrass.

Among spring crops, sunn hemp had 30–40% great-
er (p < 0.05) N input than from pearl millet and forage
sorghum. In addition, crop residue mass and C input by
sunn hemp were 9% greater (p < 0.05) than from forage
sorghum, but not differing from those of pearl millet.

Crop residues from ruzigrass during fall-winter and
from sunn hemp during spring had unique fiber compo-
sitions (Table 3). Besides greater N inputs, both crop
residues had greater lignin content (p < 0.05) and lower
hemicellulose and cellulose contents (p < 0.05) relative
to other species in their respective cropping seasons.

Soil

Soil C and N fractions at 0-0.1 m in 2015

Soil C and N fractions were affected only by fall-winter
crop treatments and not by spring crop treatments nor
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the interaction between fall-winter and spring crop treat-
ments (Table 4). Soil-test biological activity (STBA),
net N mineralization (NMIN), particulate organic N
(PON), and the fraction of SOC that was mineralizable
during 24 days of incubation (CMIN) were ~ 20 %
greater (p < 0.05) when cropped with ruzigrass alone
than when intercropped with grain sorghum.

Soil C stock and C sequestration rate

Across crop rotation treatments, C stock increased ~ 6%
at 0-0.1-m soil depth between 2012 and 2015 [(p <
0.05), 22.7 and 24.1 Mg C ha− 1, respectively]. Howev-
er, in deeper soil layers, C stocks were more similar
during this time period (Table 5).

Among crop rotations, C stock was only different
between ruzigrass alone and intercropping at 0.2-0.4-m
soil depth in both years analyzed [(p < 0.05), Table 5].
This distinction of ruzigrass alone compared to
intercropping also occurred in the total C stock of the
soil profile in 2015 (0-0.6 m soil depth). However, it is
important to highlight that the increment from 2012 to
2015 tended to be greater (p = 0.24, data not shown) with
sorghum alone (2.1 Mg C ha− 1) than from ruzigrass
alone and intercropped (1.4 and 0.5 Mg C ha− 1).

Fall-winter crop treatments also impacted C seques-
tration rate, although this was limited to the 0-0.1-m soil
depth (Table 6). Soil C sequestration rate ranged from
0.29 to 0.61 t C ha− 1 yr− 1 in sorghum only and ruzigrass
only treatments, respectively. At deeper depths, soil C
sequestration was not statistically different from zero.

As a fraction of total C input from crop residue
production, ruzigrass in fall-winter retained 0.112 kg
kg− 1, and was greater (p < 0.05) than from grain sor-
ghum, which was only 0.060 kg kg− 1. As observed for
C stocks and C sequestration, there was no influence of
spring species on C retention from crop residues.

Discussion

Crop residue inputs

Average annual crop residue input was 11.5 Mg ha-1

(5 Mg C ha-1). Crop residue C input was considered
greater than the minimum of 4 Mg C ha-1 to maintain
soil C stocks in soybean cropping systems with NT in
tropical regions (Bayer et al. 2006a; Vieira et al. 2009).
In weathered soils with dry winter, soil cover is recog-
nized as an important part of soil conservation (Jantalia

Table 3 Cumulative crop residue, C and N inputs on soil surface from crop rotations since fall-winter 2012 until soybean 2014/2015, and
biochemical composition of winter crop residues (2014) and spring crops (2014) as affected by fall-winter and spring cover crops

Crop Cumulative crops residue inputs Winter crops residue (2014) Spring crops residue (2014)

amount C N Hemi¥ Cell Lig Hemi Cell Lig
(Mg ha−1) (kg ha−1) (%) (%)

Fall-winter crops

Sorghum 32.6 b 14.7 b 425 c 31.8 a 30.8 a 2.8 b 26.1 27.3 3.4

Ruzigrass 37.2 a 16.2 a 654 a 27.3 b 24.4 b 4.4 a 26.0 25.6 4.7

Intercropping§ 33.7 b 14.8 b 502 b 33.6 a 30.3 a 4.1 a 26.2 26.5 3.4

LSD 1.4 0.7 32.7 2.7 2.1 1 1.9 2.5 1.9

Spring crops

Forage S.‡ 34.7 ab 15.3 ab 488 b 30.6 29.0 3.7 28.9 a 28.3a 3.5 b

Pearl millet 32.8 b 14.5 b 455 b 31.8 28.0 3.4 27.5 a 25.8b 2.5 c

Sunn hemp 35.9 a 15.9 a 638 a 30.6 28.5 4.2 21.8 b 25.3b 5.5 a

LSD 2.00 0.85 41.3 1.5 1.7 0.9 2.2 2.1 0.8

Source p value

Fall-winter crops (FWc) <0.01* <0.01* <0.01* <0.01* <0.01* 0.02* 0.97 0.32 0.25

Spring crops (Sc) 0.01* 0.01* <0.01* 0.11 0.46 0.18 <0.01* 0.01* <0.01*

FWc X Sc 0.62 0.48 0.89 0.23 0.07 0.2 0.81 0.57 0.34

¥ Hemi:hemicellulose; Cell: cellulose and Lig: lignin
§ Ruzigrass and Sorghum intercropped
‡ Forage Sorghum

*Mean values followed by different letters in the same column are significantly different by t-test (LSD) at p < 0.05
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et al. 2007). Hence, crop residue inputs are needed to
compensate for SOC depletion from fast residue decom-
position with high temperature and abundant moisture
in the rainy season (Lal 2002). In general, grass species
are preferred to produce abundant biomass that persists
on the soil surface (Teixeira et al. 2014; Rigon et al.
2018), which ruzigrass can produce in fall-winter. Al-
though intercropping with ruzigrass has become more
widely used to increase biomass production (Crusciol
et al. 2015), the low crop residue production in the
intercropped treatment may have been due to the ab-
sence of N fertilization in our experiment, which would
intensify the competition with similar physiological
crop types (Vidal and Merotto Jr 2010). In addition,
under limited water supply in the winter, the competi-
tion between crops can be intensified (Zegada-Lizarazu
et al. 2006). Alternatively, the intermediate production
values from the intercropped treatment compared to
both sole crops suggest a simple dilution of the ruzigrass
impact with grain sorghum.

Greater accumulated N inputs from ruzigrass can be
explained by remarkably vigorous root growth with fast

turnover and rhizodeposition (Cavalcante et al. 2019)
that can capture cycled N from decomposition of organ-
ic matter. A recent study found that ruzigrass can in-
crease the nitrification potential of soil N and the abun-
dance of N-fixing microorganisms (Rocha et al. 2020).
In addition, N from biological nitrogen fixation (BNF)
may be as high as 20% in the tissues of ruzigrass (Reis
et al. 2001), since it was discovered that Urochloa spp
are able to obtain N contributions from BNF (Boddey
and Victoria 1986). Further studies are suggested to
assess the contribution from BNF of forages in cropping
systems. Urochloa species are also recognized as effi-
cient nutrient cyclers in integrated cropping systems
(Garcia et al. 2008). Sunn hemp stands out among
legumes for its high potential BNF (Chikowo et al.
2004). Input of N represented an average increase of
70 kg N ha-1 year-1, a large portion of which may have
been from BNF. This characteristic should be consid-
ered as an effective substitute for application of synthet-
ic fertilizers (Kaye and Quemada 2017), providing
greater sustainability for tropical cropping systems.
These results are even more relevant in our experiment

Table 4 Soil-test biological activity (STBA), cumulative C min-
eralization (CMIN), CMIN and soil organic carbon (SOC) ratio,
net N mineralization (NMIN), particulate organic C (POC),

and particulate organic N (PON) as affected by fall-winter and
spring cover crops at 0-0.1 m soil depth in 2015

Crop CMIN/
SOC

POC PON

STBA (mgCO2-C kg-1 3 d-1) CMIN (mgCO2-C kg-1 24 d-1) NMIN (mgN kg-1 24 d-1)
(g kg−1)

Fall-winter crops

Sorghum 89 ab 277 6.1 ab 32 ab 2.7 0.16 ab

Ruzigrass 100 a 292 6.6 a 37 a 2.8 0.17 a

Intercropping§ 80 *b 251 5.5 b 29 b 2.4 0.14 b

LSD 16 50 0.9 6.3 0.5 0.02

Spring crops

Forage S. ‡ 86 261 6.0 33 2.3 0.14

Pearl millet 92 278 6.2 32 2.8 0.16

Sunn hemp 92 280 6.2 34 2.8 0.17

LSD 16 43 0.9 5.3 0.5 0.03

Source

Fall-winter
(FWc)

0.04* 0.21 0.04* 0.03* 0.2 0.04*

Spring crops (Sc) 0.74 0.6 0.82 0.75 0.13 0.11

FWc X Sc 0.36 0.63 0.29 0.56 0.7 0.78

§ Ruzigrass and Sorghum intercropped
‡ Forage Sorghum

*Mean values followed by different letters in the same column are significantly different by t-test (LSD) at p < 0.05
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due to the absence of N fertilization since its establish-
ment in 2006.

In general, the quality of crop residues is related to its
composition, such as N content, C:N ratio, and lignin
content (Chen et al. 2014). Usually, grass species have
greater lignin levels than legumes (del Río et al. 2007).
High lignin content from sunn hemp (Table 2) was
similar to that observed by Palm et al. (2001). These
authors classified sunn hemp as a residue with high
quality based on N content, lignin, and polyphenolic
content. Talbot and Treseder (2012) suggested that lig-
nin decomposes during all stages of crop residue min-
eralization, not only after other structural compounds
decompose. Considering the relatively low C:N ratio of
ruzigrass (C:N = 24.7) and sunn hemp (C:N = 24.9), we
can infer high lability, despite the high lignin contents.
Cotrufo et al. (2013) proposed that labile residue com-
pounds could help stabilize SOC in soils with high C
stabilization capacity, such as in this soil with high Fe
and Al oxides. In addition, the effect of litter quality on
stable SOC is most easily observed at moderate satura-
tion deficits (Castellano et al. 2015). With these consid-
erations in mind, crop rotations that diversify residue

input characteristics, such as with high lignin and C:N
ratio, could better maintain soil cover during the dry
winter period when managed with NT. In contrast,
during the rainy season of spring it may be more impor-
tant to have crop species with low C:N ratio and rapid N
mineralization to provide nutrients for the developing
crops. Our results suggest that residue quality during
crop rotations with NT might need to be matched to
environmental conditions varying among seasons in
tropical environments.

Soil

Soil C and N fractions

Soil microorganisms produce enzymes that decompose
crop residues and soil organic matter according to sub-
strate quality to meet their demands for food (Wang
et al. 2015). For this reason, availability of high-
quality crop residues with easily decomposable C stim-
ulates soil mineralization rates (Shahbaz et al. 2017). In
addition to large crop residue C inputs, intrinsic charac-
teristics of ruzigrass residues can help explain greater

Table 5 Soil C stock in 2012 and 2015 at 0-0.1; 0.1–0.2; 0.2–0.4 and 0.4–0.6 m soil depth as affected by fall-winter and spring cover crops

Crop C stocks 2012 (Mg ha−1) C stocks 2015 (Mg ha−1)

Soil depths (m)

0-0.1 0.1–0.2 0.2–0.4 0.4–0.6 0-0.6 0-0.1 0.1–0.2 0.2–0.4 0.4–0.6 0-0.6

Fall-winter-crops

Sorghum 22.3 17.3 30.6 a 30.6 100.8 23.2 17.7 30.9 ab 31.2 102.9 ab

Ruzigrass 22.7 18.3 31.1 a 32.0 104.1 24.5 17.9 32.1 a 31.0 105.5 a

Intercropping§ 23.1 16.9 29.5 b 30.9 100.4 24.7 17.6 29.4 b 29.2 100.9 b

LSD 1.17 1.34 0.84 1.78 3.74 1.68 1.13 1.49 3.74 3.84

Spring crops

Forage S.‡ 23.1 18.0 30.5 29.4 101.1 24.4 18.2 31.6 29.1 103.3

Pearl millet 22.5 17.2 30.7 31.6 101.9 23.9 18.0 30.7 31.6 104.2

Sunn hemp 24.1 17.2 30.1 31.5 102.9 24.1 17.0 30.0 30.7 101.8

LSD 1.65 1.57 1.81 2.41 5.0 1.52 1.34 2.51 3.33 5.78

Source

Fall-winter (FWc) 0.30 0.10 0.01* 0.20 0.11 0.11 0.81 0.01* 0.40 0.03*

Spring crops (Sc) 0.68 0.43 0.82 0.06 0.73 0.84 0.15 0.41 0.31 0.49

FWc X Sc 0.45 0.49 0.21 0.14 0.26 0.29 0.77 0.90 0.73 0.70

§ Ruzigrass and Sorghum intercropped
‡ Forage Sorghum

‡ Mean values followed by different letters in the same column are significantly different by t-test (LSD) at p < 0.05
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soil-test biological activity and cumulative C
mineralization. According to Cotrufo et al. (2015,
2013) and Lehmann and Kleber (2015), easily decom-
posable residues contribute significantly to SOC forma-
tion. Ruzigrass cropping in fall-winter also resulted in
greater particulate organic N and net N mineralization
(Table 3). Although sunn hemp is recognized for its
high-quality residues and inputs from BNF, it did not
significantly impact particulate organic N [(p = 0.11)
Table 3]. It is important to highlight that particulate
organic N values were the same when cropped in the
spring with sunn hemp as in the fall-winter with
ruzigrass (0.17 mg kg-1). It may be possible that the
quantity of sunn hemp residues (Table 2) were not
sufficient to impact particulate organic N (Table 4). This
explanation may be the same as to why particulate
organic C was not affected by cropping treatments. Soil
organic C and total N were also not affected by cropping
treatments in earlier years of this experiment (Raphael
et al. 2016). More active fractions of C and N may have
been more sensitive to change than this passive fraction
of particulate organic C and N, which are generally
composed of surface residues and roots (Franzluebbers
et al. 1999) that provide a source of energy and nutrients

for the community of decomposing microorganisms
(Baldock and Skjemstad 2000). Our results suggest that
both quantity and quality of crop residues are important
for affecting soil C and N changes under NT.

Soil C stock and C sequestration rate

Crop residue retention on the soil surface across the
years of this experiment (2006–2015), helped to explain
the greatest soil C stocks nearest the soil surface (i.e. 0-
0.1-m depth) in 2015 (24.2 ± 1.01 Mg C ha− 1). Al-
though crop residue inputs appeared to have been suffi-
cient to maintain and increase soil C stocks at the soil
surface, there was no differentiation of effects by fall-
winter and spring cropping treatments.

The capacity of soil to sequester C over time may be
reduced (West and Six 2007), due possibly to C satura-
tion (Six et al. 2002). Soil organic C addition by roots
has been considered a strategy to increase SOC stock in
deeper soil profile (Lorenz and Lal 2005; Thorup-
Kristensen et al. 2020), and our results provided some
evidence of this with greater SOC stock at 0.2–0.4 m
depth with ruzigrass in both years. Urochloa has abun-
dant root mass that can easily reach 1 m soil depth

Table 6 Total C sequestered over a period of 3 years at 0-0.1-m soil depth, yearly soil C sequestration rate at 0-0.1-m soil depth, and fraction
of C retained in SOC as proportion of total crop residue C production as affected by fall-winter and spring cover crops

Crop Total C sequestered Soil C sequestration rate C retained from
crop residues

(Mg C ha−1) (Mg C ha−1 yr−1) (kg kg−1)

Fall-winter crops

Sorghum 0.87 b 0.29 b 0.060 b

Ruzigrass 1.82 a 0.61 a 0.112 a

Intercropping§ 1.64 *ab 0.55 ab 0.108 ab

LSD 0.88 0.29 0.050

Spring crops

Forage S.‡ 1.25 0.42 0.080

Pear millet 1.47 0.49 0.102

Sunn hemp 1.61 0.54 0.101

LSD 0.9 0.30 0.055

Source

Fall-winter crops (FWc) 0.04* 0.04* 0.04*

Spring crops (Sc) 0.65 0.65 0.65

FWc X Sc 0.24 0.24 0.34

§ Ruzigrass and Sorghum intercropped
‡ Forage Sorghum

*Mean values followed by different letters in the same column are significantly different by t-test (LSD) at p < 0.05
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(Quattrocchi 2006). In addition, rhizodeposition of or-
ganic C from exudates (Cavalcante et al. 2019) can
contribute to SOC stock change in the profile (Mancin
et al. 2013). Hence, we expected an influence of crop
rotations on C sequestration in deeper soil, but this did
not occur. There was a trend for C sequestration in soil
profile assessed (0-0.6 m depth, p = 0.24) by fall winter
crops, as well as in the spring by grasses, which may
have provided root biomass influence. Limited knowl-
edge exists on the role of cropping systems as drivers for
SOC accumulation in deeper soil, specifically in weath-
ered soils. Recent studies with crop rotations under NT
observed influence on soil C and N fractions only at the
soil surface (Neto et al. 2020; Rigon et al. 2020) Raphael
et al. (2016) found that soil under ruzigrass had the
greatest degree of soil organic matter humification in
previous years of this experiment in the topsoil. The
inputs of aboveground biomass regulated soil C seques-
tration at the soil surface. Soil C changes deeper in the
profile will likely be influenced by deep-penetrating
roots, but this possibility will need more time to assess
in this experiment in the tropics.

Carbon saturation in clayey soils may be less prevalent
than in sandy soils (Jagadamma and Lal 2010; Feng et al.
2013). Clay fractions of soil often have greater capacity to
sequester SOC, and this effect may have played a role in
why SOC stock was greater with depth, corresponding to
greater clay content in this soil depth (Table 2).

Cropping system intensification is expected to have
greater rates of soil C sequestration (Robertson
et al. 2018), due to greater production of crop residue
C that can either keep constant or increase C retention
rate (Li et al. 2016; Kumar and Nath 2019). If C input
from the three years of this phase of the experiment were
extrapolated across the nine years total, then average C
sequestration rate of 0.48 Mg C ha− 1 yr− 1 would repre-
sent average mitigation of 1.7 Mg CO2 ha− 1 yr− 1.
Similar soil C sequestration rates have been observed
in other tropical soils (Bayer et al. 2000, 2006a; de
Moraes Sá et al. 2001; Moraes Sá et al. 2015). Annual
soil C sequestration rate of 0.5 Mg C ha− 1 yr− 1 was
estimated for conversion of conventional tilled cropland
to NT in tropical environments (Cerri et al. 2004).
Annual SOC sequestration rate by cover crops has been
estimated at 0.3 Mg C ha− 1 yr− 1 across a variety of soil
types, climate, and management systems (Poeplau and
Don 2015). Besides C inputs from crop residue, soil C
stabilization is essential to guarantee an increase in soil
C sequestration rate.

In highly weathered soils, Fe and Al oxides provide
additional protection of SOC to decomposition through
organo-mineral interactions (physical-chemical
protection) (Six et al. 2002). Cropping intensification
can affect nutrient cycling (Hazra et al. 2019). Abundant
soil cover and minimal soil disturbance form the princi-
ples of conservation agriculture, making it possible to
restore SOC (Lal 2015). Cropping intensification chang-
es the quantity and quality of crop residues, thereby
impacting SOC turnover (Liu et al. 2014; Novelli et al.
2017), through soil aggregation and dynamics of soil C
and N fractions (Rigon et al. 2020).

It is widely accepted that litter quality can affect soil
organic matter stabilization (Castellano et al. 2015).
However, the role of crop residue quality in the forma-
tion of soil organic matter is not completely understood,
and labile C substrates appear to impact soil C seques-
tration (Cotrufo et al. 2013), thereby promoting more
stable and humidified soil organic matter fractions
(Samahadthaiy et al. 2010; Cyle et al. 2016; Kumar
and Nath 2019). A wide range of soil C sequestration
rates may be a result of differing quality of crop residues
that affect the amount of C sequestered in agricultural
soils (Christopher and Lal 2007). Crop residue quality
may have been why C sequestration rate was low with
sorghum (0.29 Mg C ha− 1 yr− 1) and high with ruzigrass
(0.61 Mg C ha− 1 yr− 1) and sunn hemp (0.54 Mg C ha− 1

yr− 1). Cellulose is considered more labile and is usually
decomposed faster than lignin (Chen et al. 2018). In the
long-term, soil C stability is highly dependent on the
chemical nature of the substrate, such as lignin contrib-
uting more to the pool of humic substances (Torres et al.
2014). Thus, some aspects of our original hypotheses
were confirmed based on quantity of crop residue inputs
and quality of their intrinsic characteristics. It was clear
that high C input to soil and use of NT were important
management characteristics to affect change in SOC, as
observed earlier (Rigon et al. 2020).
Carbon retention from crop residues The fraction of C
input from crop residues that is retained as SOC
represents an important index to indicate efficiency of
C conservation in soil (Bhattacharyya et al. 2012; Yadav
et al. 2016). Variation of this fraction from 6 to 11% in
our study was similar to that of Cotrufo et al. (2013).
Higher quality residues sequester a greater fraction of C
input, especially in soils with strong mineral stabiliza-
tion as in tropical soils (Cotrufo et al. 2015). Similar
values of efficiency for C retention have been observed
in other studies in temperate (Han et al. 2018) and

586 Plant Soil (2021) 462:577–590



tropical environments (Hok et al. 2015), and specific to
Brazilian soils (de Moraes Sá et al. 2015). According to
many of these reports, crop-specific characteristics have
a direct impact on soil C inputs and their retention as
SOC.

Differences in crop residue C retention can be ex-
plained by the contrasting decomposition characteristics
of residues during the dry winter season. Ruzigrass had
both greatest production and high lignin content,
confirming its efficiency in C retention. Substrate utili-
zation efficiency by microorganisms may also have an
impact on the decomposition process of crop residues
(Cotrufo et al. 2015). These results indicate that bio-
chemical recalcitrance may be an important mechanism
of soil organic matter stabilization. This would reinforce
the hypothesis that intrinsic characteristics of crop resi-
dues could be a strategy to enhance soil C sequestration
under NT. Thevenot et al. (2010), in a review, suggest
that the accumulation and stabilization of organic matter
can be derived from lignin in plant residues. Stabiliza-
tion could occur in the clay fraction, but the mechanisms
remain unclear, suggesting the necessity to pursue this
hypothesis further. Therefore, additional studies should
be undertaken to explore how crop residue quantity and
quality can be manipulated to change the soil C
dynamic.

Conclusions

In general, soil C and N fractions were impacted accord-
ing to crop residue quality and quantity in the crop
rotation. Ruzigrass in the dry season of fall-winter in-
creased SOC stock in the soil profile, and combined
with greater crop residue supply and N and lignin con-
tents, led to greater efficiency of SOC conversion and
greatest soil organic C sequestration rate at 0-0.1-m soil
depth. It is important to note that under an intensive
cropping rotation i.e. three crops annually, changing
SOC stock deeper in the profile will require further
investigation over time.

Maintaining protective soil residue cover during the
dry winter and providing biologically based C and N
inputs to the main crop through decomposition in the
wet spring may be a sustainable cropping strategy under
NT in tropical conditions. Hence, appropriate crop spe-
cies choice based on residue characteristics in the rotation
play an important role to achieve soil C retention and
sequestration. Our results suggest that the quantity and

quality of crop residue deposited at the soil surface in
intensive cropping systems under NT can be important
factors for SOC retention and sequestration, thereby mit-
igating against rising atmospheric CO2 concentration.
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