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Abstract
Aims Hyperspectral imaging (HSI) has high potential
for analysing peat cores, but methodologies are defi-
cient. We aimed for robust peat type classification and
humification estimation. We also explored other factors
affecting peat spectral properties.
Methods We used two laboratory setups: VNIR (visible
to near-infrared) and SWIR (shortwave infrared) for
high resolution imaging of intact peat profiles with
fen-bog transitions. Peat types were classified with sup-
port vector machines, indices were developed for von
Post estimation, and K-means clustering was used to
analyse stratigraphic patterns in peat quality. With sep-
arate experiments, we studied spectral effects of drying
and oxidation.
Results Despite major effects, oxidation and water con-
tent did not impede robust HSI classification. The accu-
racy between Carex peat and Sphagnum peat in valida-
tion was 80%with VNIR and 81%with SWIR data. The
spectral humification indices had accuracies of 82%
with VNIR and 56%. Stratigraphic HSI patterns re-
vealed that 36% of peat layer shifts were inclined by
over 20 degrees. Spectral indices were used to extrapo-
late visualisations of element concentrations.
Conclusions HSI provided reliable information of basic
peat quality and was useful in visual mapping, that can

guide sampling for other analyses. HSI can manage
large amounts of samples to widen the scope of detailed
analysis beyond single profiles and it has wide potential
in peat research beyond the exploratory scope of this
paper. We were able to confirm the capacity of HSI to
reveal shifts of peat quality, connected to ecosystem-
scale change.

Keywords Peat humification . Peatland . Peat
stratigraphy . Soil imaging . von Post scale

Introduction

Hyperspectral imaging (HSI) allows the measurement
of diffuse reflectance spectra in fine spatial resolution
and has high potential in analysis of soil profiles. So far,
HSI has rarely been used in analyses of peat profiles
(Voigt et al. 2017), but it has been applied tomineral soil
(Hobley et al. 2018; Sorenson et al. 2020) and rock core
analyses (Krupnik and Khan 2019). Traditionally, the
examination of peat profiles is based on subjective
visual inspection of plant material (peat type) and the
degree of humification, which requires considerable
expertise and experience (von Post 1922).More detailed
research on peat composition requires time-consuming
and labour-intensive analysis, such as microscopy,
chemical, and gravimetric analyses to achieve fine se-
quence stratigraphy.While both expert visual inspection
and many stratigraphic methods are well defined and
reliable, HSI has certain obvious benefits, as it can be
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applied to a large sample size with extremely fine spatial
resolution, and it is non-destructive.

In soil core applications, HSI been used for estimation
of organic carbon and nitrogen concentrations (Hobley
et al. 2018; Sorenson et al. 2020) and for mineralogical
classification (Krupnik and Khan 2019; Stenberg et al.
2010). Generally, the mid-wave infrared (MWIR,
2500 nm – 5500 nm) region provides better accuracies
in quantification and classification studies than shorter
wavelengths in soil studies, since absorbance peaks are
broad and superimposed in the visible to near infrared
(VNIR, 400 nm – 1000 nm) and short wave infrared
(SWIR, 1000 nm – 2500 nm) regions (Bellon-Maurel
and McBratney 2011). The overlapping spectral signa-
tures make connecting the absorbance peaks to individual
substances difficult. Yet, the MWIR has limited applica-
bility in field conditions due to the high absorbance of
water (Bellon-Maurel and McBratney 2011). Compared
to mineralogical studies, the classification of peat com-
position is complicated by the diversity of the organic
material and the potentially overlapping effects of oxida-
tion state, water content, and the degree of humification.
However, there are major benefits for peat profile analy-
sis, such as the ability to process a large number of
samples in a small amount of time to make high resolu-
tion maps of peat layers (Voigt et al. 2017). Even very
high spatial samplings of peat cores (<5 mm) assume that
the changes in core stratigraphy are horizontal, but all
stratified soil samples can have complicated three dimen-
sional structures that are effectively revealed by HSI
(Hobley et al. 2018; Steffens and Buddenbaum 2013;
Voigt et al. 2017). Therefore, HSI could be used in
determining the sampling resolution, and locations for
other analysis of peat cores could be guided by imaging,
as changes in peat composition can vary from finely
detailed structural features to large uniform areas.

Chemical compounds (pigments, humic substances
etc.) and structural features control the spectral properties
of peat. Pigments dominate absorbance in the visible
region (400–700 nm) and before decomposition plant
material has high reflection in the near infrared region
(700–1000 nm) (Jacquemoud and Baret 1990;
Jacquemoud et al. 2009). Spectra in the shortwave infra-
red (SWIR, 1000–2500 nm) region are more heavily
influenced by water and chemical compounds, such as
cellulose and humic acids (Stenberg et al. 2010). These
effects might mask changes in peat forming plant mate-
rial. Many compounds and cell structures in organic
matter break down during decomposition process and

humic acids are formed (Klavins et al. 2008; Maurer
et al. 2010) and the texture of the sample surface is altered
(Silamikele et al. 2010), changing its light scattering
properties. All of these signals can be affected by broad
absorption peaks of water (970 nm, 1200 nm, 1470 nm,
1940 nm, and 2900 nm) (Gerber et al. 2011; Stenberg
et al. 2010). Therefore, high water content of samples can
mask the reflectance of other compounds. Furthermore,
peat beneath the water table level is in anoxic conditions
and oxidation of humic substances can alter their spectra
after sampling (Maurer et al. 2010). Indeed, “browning”
of peat samples is a generally well-known phenomenon,
but the importance of oxidation to spectral properties has
not been studied in detail.

As fresh plant matter and litter are sequentially buried
deeper to form peat, the material undergoes different
phases of decomposition and physico-chemical alteration,
and becomes more humified. Changing conditions of
water-table level, hydrochemistry, nutrient availability,
climate, vegetation and many other factors affect this
transformation and can cause fluctuations of the degree
of humification in peat stratigraphy. Importantly, humifi-
cation is merely a conventional name for a complex of
phenomena that can hardly be quantified with single
instrumental measurements or concentrations. Hence, for
a hundred years, the subjective von Post classification
method (von Post 1922) has been in use as a robust, fast
and cheap way to classify peat humification, and it will
likely remain in wide use. The method is based on com-
bination of visible characters and a test of squeezing peat
samples with bare hand, and classifying them on a ten tier
ordinal scale. One obvious fault of the method is its
limitation to the coarse scale of resolution. More detailed
and objective proxies for humification include absorption
and fluorescence measures of peat extracts (Biester et al.
2014; Bu et al. 2019). Both the subjective visible charac-
ters and common use of spectrocsopy of peat extracts
indicate that HSI has potential for detecting the degree
of humification of peat. The capacity of HSI for detailed
mapping is a further advantage, as stratigraphic patterns of
humification can have fine grain changes, reflecting envi-
ronmental fluctuations and ecosystem state.

Peatlands are unique ecosystems, as they archive sed-
entary, chronological information of their history in their
peat strata. The remains of dominant plants comprise the
main component of peat. With a remarkable consistency,
mire succession follows the sequence from rich to poor
fen and, in a climax successional phase, bog vegetation
(Rydin and Jeglum 2013). Dominance of peat mosses
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(Sphagnum), dwarf shrubs, and tussock grass
(Eriophorum vaginatum) characterize bogs and poor fens,
while rich fens are characterized by ‘brown mosses’ (e.g.
Amblystegiaceae, Mniaceae), herbaceous plants, and
sedges. Along with plant remains, mineralogy of peat
reflects its origin, while being complicated by ongoing
slow decay and changing redox-conditions. Aapa mires
are patterned fens of the north-boreal zone that provide an
interesting test case for peat HSI profiling, since they are
potentially subject to ongoing and future ecosystem tran-
sitions due to changes of climate and hydrology
(Tahvanainen 2011; Väliranta et al. 2017). Hydrological
disturbances can be caused by drainage, and it has been
estimated that more than half of the Finnish peatland area
has been drained (Sallinen et al. 2019). Fen-bog transition,
and in particular, the increased growth of Sphagnum
mosses can greatly alter ecosystem structures by
launching the development of new bogs over aapa mires
(Tahvanainen 2011). Such changes can pose a threat to
biodiversity, characteristic communities, and endangered
species, while carbon accumulation could increase sub-
stantially. Specialized high precision sampling methods
have been developed to detect recent rapid sub-decadal
changes (Amesbury et al. 2011; Vorren et al. 2007), and
we expect HSI to provide yet more fine-detailed informa-
tion of peat stratigraphy applicable for large sample sets.

We collected peat cores from sites with evidence of
recent transitions from fen to bog vegetation and tested the
performance of HSI in detecting respective changes of
peat quality. We first explored the effects of oxidation and
water on the spectrum of peat in the VNIR and SWIR
regions, in order to take these factors into account in
sampling and interpretation, with small separate experi-
ments. Second, according to the established protocol we
tested the ability of HSI to classify Sphagnum and Carex
peat and their mixtures of varying degree of humification
using samples from an independent mire as a test set. We
further explored for HSImethods to reveal patterns of peat
humification. We used the von Post scale, determined by
experienced peat researcher, to guide the search for HSI -
based normalized difference index of humification.

Methods

Field sampling

The 16 peat core samples were collected from seven
separate aapa mires, all located in the middle-boreal

zone in Finland, representing southern part of the main
climatic distribution range of aapa mires (Table 1).
These mires typically occur in mixed systems with
patterned aapa mire parts and eccentric bog parts, both
contributing significant portions of total mire area
(Tolonen 1967). The bog parts are ombrotrophic (i.e.
rain nourished), while minerogenic hydrological input
from the catchment spreads in central fen parts. In bog
areas, peat surface is raised relative to the fen areas due
to accumulation of peat composed of Sphagnummosses
(Sphagnum balticum, S. majus and S. papillosum),
while aapa mire areas have shallower peat layers pre-
dominantly formed by remains of sedges (Carex limosa,
C. rostrata) (Laitinen et al. 2007). Our sampling loca-
tions were focused on recently transformed areas in aapa
mires, selected by comparison of aerial images from
2010s with old areal images from 1940s to 1960s
(Fig. 1). In many cases, bog zones had expanded over
aapa mire zones, while at some sites more uniform
change was observed over the aapa mires (e.g.
Valkeasuo mire studied by Tahvanainen 2011). In all
cases, we sampled surfaces with full cover of Sphagnum
mosses and presumable change to this state from previ-
ous fen vegetation. All sites are also studied in more
detail for their vegetation patterns and changes in con-
nected studies.

After transport, the collected samples were kept in
+4 °C for at least 24 h before imaging to avoid transient
effects of immediate oxidation of the peat surface before
the imaging. The surface of the core was cleaned and
carefully scraped to ensure a uniform surface layer with
minimal sampling induced contaminations from other
layers.

Analysis of peat properties

The plant material composition and humification degree
(von Post) of peat profiles was analysed with a visual
inspection by one of the authors (T. Tahvanainen). In all
cases of plant material identification, selected samples
(n = 5–20 per core) were inspected under a light micro-
scope to aid decision between main peat types, while no
quantitative microscopy of plant macrofossiles was per-
formed. In all cases, live vegetation and weakly humi-
fied peat plant material were identified to species level.
In most cases, recent surface peat layers were fairly
homogenous and dominated by single Sphagnum moss
species. The ground thruthing for spectral image classi-
fications was thus based on expert judgement to the
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level of most commonly used peat types and humifica-
tion degree scale. In a subsequent study, we will proceed
to spectral analyses of dated peat cores with quantita-
tively identified plant macrofossiles.

For analyses of peat bulk density (g cm−3 dry weight)
and mineral ash content (% of dry weight), the peat
cores were frozen overnight and marked with needles
in 5 cm intervals to facilitate the samping. The frozen
cores were cut with a fine-tooth saw into 1 cm thick
slices of known volume and weighed after drying at
50 °C for 72 h. For the ash content analysis, 500.0 mg
of the dried peat was heated in furnace for minimum of
3 h (510 °C), checked for complete burning of organic
material, and weighted to obtainmineral ash weight. In a
few cores, some of the samples were pooled to 2 cm
resolution, when there was not enough material for the
ash analysis.

For the Ilajansuo core used in the oxidation experi-
ment, elemental compositions were determined by in-
ductively coupled plasma-mass spectrometry (ICP-MS).
The ash samples were dissolved in Aqua regia (conc.
HCl + conc. HNO3) and analyzed with ICP-mass spec-
troscopy for concentrations (mg g-1 dry weight) of Al,
As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na,
Ni, P, Pb, Rb, Sr, V, and Zn. While it is not conceivable
that individual trace elements would actually affect peat
spectra, we expect many element concentration profiles
to indirectly reflect variation of peat quality,
hydrological-ecological conditions during peat forma-
tion, and prevailing redox state. Thus, any connection
between spectral features and element concentrations
may indicate potential for further hypotheses and devel-
opment of spectral methodology.

Metal concentrations were determined using
solution-based inductively coupled plasma mass-

spectrometry (ICP-MS) following pressurised acid di-
gestion. The digestion process was carried out in 55 ml,
closed, TMF vessels. To precisely weighed ash samples
(5.5–87.4 mg) 2.0 ml of concentrated (65–68% w/w)
nitric acid (TraceMetal™ grade, Fisher Chemical) and
6.0 ml of concentrated (36% w/w) hydrochloric acid
(Suprapur® grade, Sigma-Aldrich) were added. Sam-
ples were then heated to 200 °C for 15 min in a MARS6
microwave oven (CEM Corporation, USA). Digestion
vessels were cooled to room temperature and digested
samples were transferred quantitatively to 50 ml, certi-
fied metal-free centrifuge tubes (VWR, Germany) and
diluted up to 20 ml using de-ionized water (resistivity of
18.2 MΩ·cm, USF Elga Purelab Ultra). Two levels of
sample dilution were needed to measure both main and
trace elements accurately. Commercial certified stan-
dard reference material (NIST SRM 1573a Tomato
Leaves, Sigma-Aldrich) was used to confirm the valid-
ity of methods.

Metal concentrations were analysed by inductively
coupled plasma mass-spectrometry (ICP-MS) using a
NeXION 350D ICP-MS instrument (PerkinElmer Inc.,
Waltham, MA, USA) and ESI PrepFAST autosampler
(Elemental Scientific, Omaha, NE, USA). Element iso-
topes without known spectral interferences were prefer-
entially selected for analysis and a triple-quadrupole
reaction system was used to remove polyatomic inter-
ferences. The reaction system was operated in collision
mode with kinetic energy discrimination (KED), using
helium as the cell gas (3.7 ml min−1). Two internal
standards, scandium-45 and lutetium-175, were mixed
online with the samples to compensate for matrix effects
and instrument drift. Scandium-45 was used to correct
measurements of analytes which have an atomic weight
below 120 amu and lutetium-175 for those over

Table 1 The samples used for the classification (area of classes = cm2) and the locations of the sampled mires

Mire Cores SHL (cm
2) SHM (cm2) SC (cm2) CS (cm2) CM (cm2) CHH (cm2) Location

Härkösuo Train 4 92 22 60 0 147 50 64°12′42.0”N 30°26′01.0″E

Valkeasuo Train 3 102 158 31 30 19 123 62°23′58.0”N 30°16′33.9″E

Lahnasuo Train 2 115 20 0 40 90 272 63°06′02.7”N 30°36′29.9″E

Sumukka Train 2 40 142 40 27 36 40 63°06′23.9”N 30°45′32.2″E

Mahlaneva Train 2 160 205 0 217 0 0 62°36′48.7”N 22°43′39.4″E

Summary Train 13 75% 65% 77% 77% 80% 75%

Ilajansuo Test 3 168 294 72 93 74 159 62°55′18.1”N 31°12′37.2″E

Summary Test 3 25% 35% 23% 23% 20% 25%

S, Sphagnum; C, Carex; HL, low humification H1–2, HM, medium humification H3–5; HH, high humification H6–9
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120 amu. Mul t i e l emen t s t anda rd so lu t ion
(TraceCERT® Periodic table mix 1 for ICP, Sigma-
Aldrich) was used for the calibration of ICP-MS. Sepa-
rate calibration ranges were used for different analytes:
4–400 ppb was used for Al, Ca, Fe, K, Mg and Na and
1–100 ppb for other elements. The sample uptake rate
was 3.5 ml min−1 and dwell times were set 100 ms per
amu. Three replicates were obtained for each sample.

The data was processed using PerkinElmer Syngistix
Data Analysis Software™.

Hyperspectral imaging with the VNIR and SWIR
cameras

The peat cores were placed on an imaging table, where
the image acquisition took 20–30 s. The images were

Fig. 1 Aerial images from the mires selected for sampling from
the 1940’s (left column) and from 2010’s (right column). The
sampling locations are indicated with arrows. Samples for the
training set were collected from Lahnasuo (a), Sumukka (b),
Valkeasuo (c), Mahlaneva (d) and Härkösuo (e). Samples for the

test set were collected from two locations in Ilajasuo (F and G). In
the aerial images, wet fen hollows (‘flarks’) are dark, while bog
areas and hummock strings dominated by Sphagnum mosses
appear in pale tones and yellowish color
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acquired with a pushbroom hyperspectral imaging sys-
tem by Specim (Spectral Imaging Ltd., Oulu, Finland),
consisting of two hyperspectral cameras moving on top
of a stationary sample (Supplementary Fig. 1). The
VNIR (visible to near infrared) camera, (Zyla 5.5
sCMOS; Andor Technology, Belfast, UK) combined
with an imaging spectrograph (ImSpector V10E;
Specim) with a camera lens (V18.5 – f /2.4) covers the
spectral range of 400–1000 nm. This camera has a
spatial resolution of 1024 pixels and 240 spectral chan-
nels (FWHM = 3.5 nm). The SWIR (short-wave
infrared) camera (ImSpector N25E; Specim) with a
camera lens (OLES15 – f/2.0) covers the spectral range
of 1000–2500 nm. The camera has a spatial resolution
of 320 pixels and 256 spectral channels (FWHM=
12 nm). The samples were illuminated with ten 35 W
tungsten halogen lamps, in a 45°/0° geometry, moving
with the cameras. The exposure time was 8.1 ms for
VNIR and 2.8 ms for SWIR.

A white spectralon plate was included in each image
and it was used for the white reference in the image

standardization. A minimum of 100 dark current images
was acquired before every image, and the average of
these was subtracted from the sample and white refer-
ence images. After this, final reflectance was calculated
by dividing the raw sample images with the white
reference.

Separate experiments on effects of water and oxidation
of peat samples

The effects of water content, were examined in a
small separate experiment. Eight model samples of
pure Sphagnum and Carex peat with different hu-
mification levels and one mixed sample, were col-
lected from the Viitasuo mire. The Sphagnum
samples were between H 1–4 in the von Post
classification and the Carex samples were between
H 4–7. Samples were cut into two parts (ca. 1 cm
in thickness), one of which was dried at 50 °C for
72 h, and the other kept in a closed plastic con-
tainer at 4 °C. The moist and dry peat surfaces

Fig. 1 (continued)
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were imaged side by side and the median spectra
were calculated for both surfaces.

One of the most obvious potential problems with
spectral imaging of peat concerns the unknown effects
of oxidation after sampling. Anaerobic conditions pre-
vail in saturated peat under the water-table level, and
sudden exposure to oxygen changes redox conditions,
potentially affecting many spectral features. To assess
the effects of oxidation, one peat core with a clear shift
from Carex to Sphagnum peat was collected from the
Ilajansuo study site, and transported intact inside the
corer and held overnight at +4 °C. The core was cut
longitudinally into halves with a sharp knife and the
unoxidized surface of the core was imaged immediately
after the cutting. The imaging was then repeated several
times resulting in a timeseries of spectra at 0, 5, 10, 20,
35, 75, 300 and 1440 min after exposure to air. During
the intervals between the imaging time points, the core
was kept under a plastic cover (but not wrapped) and the
cover was sprayed with deionized water to prevent
drying.

Data analysis

All of the peat cores were collected from recent fen to
bog transition zones. In order to create a robust model
for separating Sphagnum and Carex with spectral data.
These peat cores were divided into eight classes of
composition and von Post degree. The composition
classes were Sphagnum (S), Carex (C) and mixtures of
Sphagnum and Carex (CS for Sphagnum dominated
mixture and SC for Carex dominated mixture). In addi-
tion, the Sphagnum samples were divided into low
humification (HL, H1–2 in the von Post Scale) and
medium humification (HM, H3–5 in the von Post scale)
classes. The Carex peat samples were divided into me-
dium humification (HM, H3–5 in the von Post scale) and
high humification (HH, H6–9 in the von Post scale)
classes. These classes were created to reveal if the
classification method would have difficulties in separat-
ing Sphagnum and Carex peat with a similar humifica-
tion degree. Following expert inspection, an image
mask with these classes was created with image pro-
cessing software Fiji (Schindelin et al. 2012). The pho-
tosynthetically active layer, defined by the presence
chlorophyll absorption at 680 nm and the red edge at
700 nm, was excluded from the data. For testing the
classification performance, three peat cores from a sep-
arate mire site (Ilajansuo) were used as an independent

test set (Matlab 2019b). For the VNIR training set, 1000
randomly selected spectra from each class and from
each image were used for training the quadratic SVM
model (support vector machine). For SWIR only 300
spectra per class from each image were used. These
spectra were normalized with standard normal variate
(SNV) before analysis (Barnes et al. 1989). Theoretical-
ly, data from both cameras could have been combined
(as in Rogass et al. 2017), since the spectral data is
continuous in nature. However, combining the data
would require specialised corrections for resolution, lens
distortions, pixel shapes etc. In addition, the cameras
had separate illuminations and this would have made
pixel-wise classification unreliable.

Most of the spectral data is redundant since all wave-
lengths are not significant in every study and nearby
spectral wavelengths tend to autocorrelate with each
other. Detecting the most important wavelengths can
be used in speeding up the data processing and deciding
between spectral cameras. To find the most important
wavelengths for separating the selected classes, a k-
nearest neighbour predictor weight analysis (Robnik-
Sikonja and Kononenko 2003) was applied on each
wavelength with 20 predictor variables.

For the oxidation experiment, a principal component
analysis (PCA) analysis was used after binning the data
spatially in 5 × 5 pixel bins for VNIR and in 2 × 2 pixel
bins for the SWIR data. The data was binned to reduce
the analysis size, since all of the spectral images (eight
timepoints) were included into the same analysis. The k-
means clustering analysis with 12 classes (for each time
point separately) was used to identify how much would
the oxidation impede the ability of spectral data to
separate classes. Thus the purpose of the PCA analysis
is to evaluate the effect of oxidation on peat cores and
the purpose of the k-means clustering analysis is to find
out whether the fully oxidised samples can be used for
classification.

In order to explore the potential for inferring degree
of humification from spectral data, we calculated all
possible NDI indices (by testing every possible wave-
length combination) and correlated them with the von
Post class using the training set, and best correlation was
selected. The final coefficient of determination (R2) and
normalised root mean squared error (nRMSE %) was
calculated against the separate test set. The samemethod
was applied to select the best possible NDIs for appli-
cations in the individual elements’ mapping (Supple-
mentary Table 1). Since only one core was analysed for
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the element concentrations the results were not tested
against a separate test set.

NDI ¼ Rλ1−Rλ2

Rλ1 þ Rλ2

where R is the reflectance at wavelength λ.

nRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
j¼1 von Postmeasured; j−von Postpredicted; j

� �

n

s

=

range von Postmeasuredð Þ

Results

Main features affecting peat spectra

All peat cores, except the samples fromMahlaneva, had
a transition from Sphagnum to Carex peat. The samples
from Mahlaneva did not contain layers of pure Carex
peat. In the entire dataset, Sphagnum peat was less
humidified (average von Post scale 2.7, min 1, max 6)
than Carex peat (average von Post scale 6.0, min 4, max
9). Sharp peaks of ash content located at, or adjacent to
the transitional zones were found in the following sam-
ples: Valkeasuo 1, Valkeasuo 2, Valkeasuo 3, Sumukka
1, Lahna 1 Mahlaneva 2, and Ilajansuo 3.

On average, Sphagnum peat had higher reflectance
between 450 nm and 1100 nm than Carex peat (Fig. 2).
Conversely, the reflectance of Carex peat was higher
beyond 1100 nm, in the SWIR region. In Sphagnum
peat, clear absorption features were found at 680, 803,
850, 966, 1181, 1446, and 1925 nm, and nearly all of
these features were absent fromCarex peat. The mineral
soil containing layers, differed greatly from organic peat
at longer wavelengths than 1100 nm.

Higher humification in the von Post scale reduced the
reflection of Sphagnum peat between 450 and 1200 nm,
but beyond 1200 nm these effects were minor and non-
linear (Fig. 2). In Carex peat, the most humidified
samples (H8–9) had the lowest reflectance between
450 and 1200 nm, while reflectance increased between
1300 nm and 2500 nm in high humification.

Experiments on effect of oxidation and water

In the oxidation experiment, the freshly exposed surface
of a peat core showed prominent changes in the region
that was located under the water-table level. This region
was under anoxic conditions before the experiment (ca.

below 12 cm). Exposure to air reduced spectral reflec-
tance in Sphagnum peat between 450 nm and 820 nm in
the anoxic regions (Fig. 3). The reflectance in Sphag-
num peat decreased also between 820 nm and 1000 nm
after 20 min until 300 min but started to decrease at the
last timepoint. During the 24 h, the changes were more
prominent in Sphagnum peat (maximal change 40% at
650 nm) than in Carex peat (maximal change less than
15% at 700 nm). In Carex peat, the reflectance de-
creased uniformly between 450 and 1000 nm, with only
the last timepoint starting to increase reflectance be-
tween 820 and 1000 nm. Oxidation also increased the
reflectance of Carex peat in the SWIR region (1050–
1350 nm and 1450–1800 nm).

The PCA analysis (Fig. 4, supplementary Fig. 19) of
the VNIR region spectral data indicated that the first
component was dominated by oxidation-susceptible
variation (the first PC explained 52% of the variance),
and the second axis was dominated by vertical changes
in peat composition (the second PC explained 28% of
the variance). The PCA analysis of the SWIR region
was not time dependent (the first and second PCs ex-
plained 93% and 5% of the variance, respectively).
According to K-means clustering, Sphagnum and Carex
peat were separated similarly before and after oxidation.
In the VNIR region, Sphagnum peat (20–40 cm) was
classified differently between the oxidation endpoints.
In the SWIR-region, the larger changes in clustering
were found only in the Carex peat (70–80 cm).

In the separate drying experiment, peat reflectance
increased remarkably above 1200 nm (SWIR) after
drying, but the changes were less prominent in the
VNIR region and below 1200 nm in the SWIR region.
After drying certain results in the raw spectra were
reversed, so that reflectance between 1200 nm –
2500 nm increased more with the lowest humification
degree (supplementary Fig. 2). New absorption peaks
also appeared in the dry samples and the location of
many absorption peaks found in the wet samples shifted.
Generally, drying also increased the spectral differences
of the different peat types.

Class i f icat ion of peat type and est imat ing
humification The k-nearest neighbour analysis of the
training data set (Table 1), revealed that in the VNIR
region the wavelengths with the best ability to separate
the eight classes in the visible region were located at
465 nm, 532 nm, and 593 nm, 769 nm, 816 nm, 845 nm,
924 nm, and 972 nm (Fig. 5). The predictor weights
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were higher in the NIR region than in the visible region.
In the SWIR region, the prediction weight peaks were
located at 1079 nm, 1162 nm, 1364 nm, 1446 nm,
1624 nm, 1881 nm, 2069 nm, and 2345 nm. These sets
of eight peak wavelengths (from both VNIR and SWIR

spectra) were selected for the subsequent classification
analysis explained below.

The classification analysis with the entire VNIR-
region achieved an overall accuracy of 50% for all eight
peat classes but was able to distinguish between

Fig. 2 The spectra (average from all 16 peat cores) of pure
Sphagnum (a) and Carex (b) peat samples at different von Post
humification levels. The data is measured with two different

cameras VNIR (400–1000 nm) and SWIR (1000–2500 nm). No-
tice different y-axis scales in the graphs

ba

c d

R – R0

R

R – R0

R

R – R0

R

R – R0

R

Fig. 3 Effect of oxidation on (a) the aerobic Sphagnum peat layer,
(b) anaerobic Sphagnum peat layer, (c) the transition peat layer and
the (d)Carex peat layer. The average spectra at each timepoint and
the change from the beginning displayed in the same image. Time

is expressed as minutes after exposure to the air. R = average
reflectance spectra during oxidation, R0 = average reflectance
spectra before oxidation
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simplified classes without the humification degree
(Sphagnum, transition, and Carex peat) with 80% accu-
racy (Table 2). When using only the eight channels
selected from the k-nearest neighbour analysis, the over-
all VNIR accuracies fell slightly to 43% and 76% for all
classes and the simplified classes, respectively. For the
entire SWIR region, the overall accuracy was 50% for
all eight peat classes and 81% accuracy for the simpli-
fied classes (Table 3). When only the selected eight
channels were used, the overall accuracies were 47%
and 82% for all peat classes and the simplified classes,
respectively. Most of the misclassified samples were
either the mixtures of Sphagnum and Carex peat, or
misclassified humification levels, while pure Sphagnum
peat and pure Carex peat were rarely misidentified. In
addition, the pixel-wise classifications show (Fig. 6) that
despite classification errors, the stratigraphic sequence
of the classifications were logically ordered.

Based on the training set, a new spectral reflectance
index was developed for estimation of peat humification
adjusted to the von Post scale (NDVPI, normalized

difference von Post index). With the VNIR set up,
wavelengths 463 nm and 725 nm were selected for the
index. From SWIR data, wavelengths 1573 nm and
1724 nm gave the best fitting index (Fig. 7). The mea-
sured von Post degree of humification explained 82% of
variation in NDVPIVNIR and 59% of NDVPISWIR. The
error estimates of the indexes (nRMSE) were 8.7% and
13.2% for VNIR and SWIR, respectively.

Image based analysis of peat stratigraphic patterns All
16 peat cores were also analysed together in one
analysis with K-means clustering in order to detect
peat layering and to compare samples from sepa-
rate mires (Fig. 8, Supplementary Figs. 2–17).
From the detected layers, 51% were at a low angle
(below 9 degrees) and 36% above 20 degrees
(Fig. 9). Peat layer angle was not related to depth
(R2 < 0.001).

One of the peat cores (Ilajansuo 3) was analysed
with ICP-MS for elemental concentrations. These
results were then correlated with spectral indices

Fig. 4 Imaging of PCA and K-means clustering analyses of the
oxidation experiment. The PCA score images (PC1 = first compo-
nent, PC2 = second component) represent the start and endpoints
of the oxidation experiment (the original analysis contained all of
the timepoints 0, 5, 10, 20, 35, 75, 300, and 1440 min). The K-
means clustering with 12 classes was performed independently for

the timepoints, in order to determine whether the oxidised “darker”
samples would separate similar regions. Therefore, the timepoints
were analysed separately, however, the randomly assigned classes
were assigned similar but arbitrary colours to facilitate comparison
between timepoints
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in the VNIR and SWIR regions (Fig. 10). The
selected wavelengths are indicated in the supple-
mentary Table 1. Elements such as K, Na and Mg
had high correlations in both spectral regions (R2 >
0.79). The analysis was also designed to explain
high peaks of ash content in some of the samples,
often close to peat type transition from Carex to
Sphagnum peat, but no spectral features emerged to
correlate with these peaks. The only elements fol-
lowing the ash content peak were barium and
gallium.

Discussion

Comparison of historical and present-day aerial images
of aapa mires can reveal a reduction of areas dominated
by fen vegetation and an increase of peat mosses. We
used these images to select sample locations, from
where HSI analysis of peat cores could be used to detect
these resent changes in peat forming vegetation. Based
on these samples we wanted test what would be the
main factors affecting peat spectra and to create a robust
model for separating Sphagnum and Carex peat.

Fig. 5 K nearest neighbour analysis of wavelength importance in peat type and von Post classification for the VNIR (a) and SWIR (b)
regions

Table 2 Quadratic SVM prediction of peat classes with the entire VNIR 400–1000 nm region (A) and with 8 wavelengths (465 nm,
532 nm, 593 nm, 769 nm, 816 nm, 845 nm, 924 nm, and 972 nm) (B)

A Reference B Reference

Predict S HL S HM CS SC C HM C HL Precis. Precis f S HL S HM CS SC C HM C HL Precis. Precis

S HL 76 108 6 0 0 0 0.4 0.86 100 183 27 2 2 0 0.32 0.82
S HM 60 150 38 16 15 6 0.53 35 77 20 16 12 10 0.45

CS 2 6 27 12 2 13 0.44 0.53 2 9 19 4 3 8 0.42 0.43
SC 0 24 15 6 3 9 0.11 0 16 9 3 5 4 0.08

C HM 1 3 7 15 6 33 0.09 0.83 1 5 16 22 9 23 0.12 0.76
C HH 0 0 1 10 25 131 0.78 1 2 3 13 21 147 0.79

Overall Overall

Recall 0.55 0.52 0.29 0.1 0.12 0.68 0.48 Overall 0.72 0.26 0.2 0.05 0.17 0.77 0.43 Overall

Recall 0.91 0.43 0.85 0.80 0.92 0.23 0.82 0.76

S, Sphagnum; C, Carex; HL, low humification H1–2; HM, medium humification H3–5; HH, high humification H6–9

Accuracies for combined classes of Sphagnum, transition, and Carex peat are highlighted. The data is converted to cm2 from the pixelwise
classification
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Do effects of water content and oxidation impair
interpretation of peat hyperspectral images?

The average Sphagnum peat reflectance greatly differed
from Carex peat between 400 and 1200 nm, and in
general, Carex peat is considerably less reflective with

no distinct spectral features. However, highly humidi-
fied Sphagnum peat begins to resemble Carex peat
spectrally. This is not surprising, since humification of
organic matter in general reduces reflectance (Ben-Dor
et al. 1997). Changes of the original compounds into
humic substances, that contain complex aromatic

Table 3 Quadratic SVM prediction of peat classes with SWIR 930–2400 nm (A) and with 8 wavelenghts (1079 nm, 1162 nm, 1364 nm,
1446 nm 1624 nm, 1881 nm, 2069 nm, and 2345 nm) (B)

A Reference B Reference

Predict S HL S HM CS SC C HM C HL Precis. Precisb f S HL S HM CS SC C HM C HL Precis. Precisb

S HL 104 88 0 0 0 0 0.54 0.93 105 134 3 0 0 0 0.43 0.87
S HM 23 122 16 5 3 0 0.72 25 117 42 10 2 1 0.59

CS 4 46 53 14 0 1 0.45 0.50 1 12 28 10 1 3 0.51 0.54
SC 2 19 18 16 11 20 0.19 2 11 15 15 10 18 0.21

C HM 0 0 1 11 11 74 0.11 0.89 0 0 1 14 12 67 0.13 0.89
C HH 0 0 1 10 21 86 0.73 0 0 0 8 21 93 0.76

Overall Overall

Recall 0.78 0.44 0.6 0.29 0.24 0.48 0.5 Overall 0.79 0.43 0.31 0.26 0.26 0.51 0.47 Overall

Recallb 0.83 0.70 0.85 0.81 0.94 0.47 0.85 0.82

S, Sphagnum; C, Carex; HL, low humification H1–2; HM, medium humification H3–5; HH, high humification H6–9

Accuracies for combined classes of Sphagnum, transition, and Carex peat are highlighted. The data is converted to cm2 from the pixelwise
classification

Fig. 6 Pixel-wise classification for the unknown test set (three
peat cores from a separate mire Ilajansuo). Truth = ground truth
used for accuracy calculations, All = prediction with the entire
VNIR- and SWIR-regions, 8 ch = prediction with wavelengths
465 nm, 532 nm, 593 nm, 769 nm, 816 nm, 845 nm, 924 nm,

and 972 nm for VNIR and 1079 nm, 1162 nm, 1364 nm, 1446 nm
1624 nm, 1881 nm, 2069 nm, and 2345 nm for SWIR.
S = Sphagnum, C = Carex, HL = low humification H1–2, HM =
medium humification H3–5, HH = high humification H6–9
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hydrocarbon structures, increase light absorption in this
wavelength region (Del Vecchio and Blough 2004). At
the same time, the decomposition processes alter the
surface structure of peat, and the breakdown of intact

cells reduces reflectance caused by light scattering from
cell walls between 700 and 1000 nm (Jacquemoud et al.
1996). Despite the large differences in spectral reflec-
tance, the raw spectra are unreliable in any classification

Fig. 7 Prediction of decomposition degree in the Ilajansuo test set with NDI indices NDVPIVNIR (a) and NDVPISWIR (b)

Fig. 8 RGB and false-colour images of the Ilajansuo 3 core were
calculated from the VNIR and SWIR data. K-means cluster anal-
ysis was done for the entire data set of 16 peat cores for the VNIR

and SWIR. Similar images of all of the peat cores are provided in
supplementary material
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analysis, since they are affected largely by the surface
structure, particle size effects, and other artefacts (Vidal
and Amigo 2012). These effects can be reduced by
normalisation techniques such as standard normal vari-
ate (SNV) pre-processing (Barnes et al. 1989), that was
used in this study.

Another factor that can reduce the accuracy of clas-
sification is water, since water dominates large portions
of peat spectrum beyond the visible region. After drying
new absorbance peaks masked by water emerged at
2088 nm, 2301 nm, and 2338 nm. These peaks have
previously been attributed to cellulose, humic acid, and
pectin, respectively (Ben-Dor et al. 1997), although they
might be influenced by other overlapping constituents.
Drying of peat samples could improve laboratory-based
measurements, since water dominates a large part of the
spectra, and since water tends to have nonlinear effects
on reflectance, indeed, small amounts of water may
cause large differences in spectra (Mcmorrow et al.
2003). Quantitative analysis of soil organic carbon im-
proves with drying of samples in the VNIR and SWIR
regions, and drying is almost compulsory in the MWIR
region (Nayak et al. 2019; Stenberg et al. 2010). Vari-
ation of moisture content also inevitably influences
some of our results since water retention capacity can
differ considerably between the different peat types.
Yet, imaging samples wet increases the speed of analy-
sis and greatly facilitates further sampling.

Oxidation of peat samples lowered the reflectance,
especially in the VNIR region between 450 and 820 nm.
In Sphagnum peat, we also found lowering of reflec-
tance between 820 nm and 1000 nm, but it took longer

time to appear and dissipated after 24 h. The general
decrease of reflectance could be attributed to the
oxidaton of humic substances, since chemically reduc-
ing humic acid decreases its absorbance between 400
and 700 nm, and this effect can be reversed by re-
oxidation (Maurer et al. 2010). Humic substances are a
chemically complex and heterogenous group, with very
broad featureless absorption beginning in the UV-range
and gradually decreasing until the end of the visible
spectrum (Del Vecchio and Blough 2004). This feature-
less and wide absorption is caused by complex charge-
transfer bands between molecules (Del Vecchio and
Blough 2004). Oxygen may change these charge-
transfer contacts and cause reduced albedo (Maurer
et al. 2010). Since these changes make samples darker,
they will also most likely make the classification more
difficult in fully oxidized samples. Lowered reflectance
reduces the measured signal and lowers the signal to
noise ratio. The PCA analysis of cores undergoing ox-
idation revealed that in the VNIR region oxidation
caused major changes (PC1 52%), but in the SWIR
region these changes were much less prominent. This
means that for the VNIR region, the timing of imaging
after exposing samples to oxidative conditions should
be standardized. In the laboratory, large enough peat

Fig. 9 Angle orientations of the k-means cluster borders in the entire dataset (a) and relationship of angle with depth (b)

�Fig. 10 Elemental analysis of the Ilajansuo 3 core. The NDI
indices with the highest correlation (R

2
) were calculated separately

for the VNIR and SWIR regions. The spectral data cannot detect
the elements directly and the NDIs have no predictive value for
unknown samples. Therefore, the calculated images can only be
used as spectral correlation-guided spatial extrapolations of ele-
mental concentration
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cores can be cut half to expose best preserved core part
of samples right before imaging. Oxidative changes will
start immediately, however, and in practise allowing the
imaged surface to oxidize completely is the easiest way
to standardize the changes.

Despite the practicality, allowing oxidization of the
imaged surfaces might hamper the classification. We
used K-means clustering to test whether oxidation af-
fects the ability of HSI to detect spatial layers within
peat cores. As an unsupervised method, K-means clus-
tering gives a class for each pixel revealing areas of
similarity that can be separated by HSI. According to
our results, oxidation caused some changes in the clas-
sification of Sphagnum between 20 and 40 cm in the
VNIR images. This depth corresponds to the zone of
varying oxidation in the field; i.e. the zone of water table
fluctuations and abundance of roots of vascular plants.
In the SWIR region, the changes were smaller and in the
Carex peat, near the end of the core (70–78 cm). Both
changes did not seem to affect the ability to separate
Sphagnum and Carex peat. These differences could be
due to lower albedo of the oxidized samples that reduces
differences between the peat types. Using unoxidized
samples might thus be useful, but since there are large
differences in the spectra within minutes of exposure to
the air, the standardization of imaging is difficult for
unoxidized samples. Yet, HSI in the field conditions
would require standardization of time after sampling.

Identification of main peat types from cores
by hyperspectral imaging

In the pixel-wise SVM classification, we tried to separate
pure Sphagnum peat with low andmedium humification,
mixtures of Sphagnum and Carex peat, and pure Carex
peat with medium and high humification. For the entire
data set, the overall accuracies were ca. 50% for both the
VNIR and SWIR regions. However, most misclassifica-
tions only concerned the humification levels. The accu-
racies were considerably higher for simplified classes
(Sphagnum, Carex, and transition), and misclassifica-
tions were mainly limited to identification of the transi-
tion class (a mixture of Sphagnum and Carex peat).
Misclassifying the humification level has little signifi-
cance, since the classification was designed only to
distinguish basic peat types and we created a separate
model for von Post estimation. However, the results
reveal that, regardless of the humification level, pure
Sphagnum and pure Carex were rarely misclassified as

each other. This was especially notable in the SWIR
region. Despite the similar overall accuracies, the SWIR
region performed better in distinguishing Sphagnum and
Carex peat even for the more humidified samples. Both
spectral regions had more difficulties in classifying the
transition zones, yet these are the most difficult samples
to separate, since the transitions zones contain heteroge-
nous mixtures of Sphagnum and Carex peat. The classi-
fication image indicates that despite the poor classifica-
tion result for the humification classes, the results are still
logically ordered and only partly offset from the ground
truth achieved by expert inspection. Part of the mismatch
could be due to misaligning the ground truth from the
measurements.

Our results are partly explained by the tendency of
spectral measurements of soil samples to lose applicabil-
ity between locations, due to high heterogeneity of sam-
ples (Stenberg et al. 2010). Using internal cross-validation
always gives the best results, but this can overestimate the
applicability of themodel (Bellon-Maurel andMcBratney
2011; Brown et al. 2005, 2006). We used cores collected
from a separate mire as test set, and it must be noted that
our dataset was small considering model validation.
Brown et al. (2006) estimated that a global soil character-
ization with VNIR reflectance spectra would require
5.6 × 109 independent samples for calibration, due to the
heterogeneity of the samples.

The K-nearest neighbour analysis revealed that the
most important wavelengths to reveal peat layers were
beyond the visible range. It also revealed that the chang-
es in spectra between our classes were similar to those
caused by degree of humification. This can be caused by
the skewness of our data set, as the Carex samples were
generally more humidified than the Sphagnum samples.
This is partly inevitable since Carex peat is formed
differently to Sphagnum peat. While Sphagnum peat is
formed chiefly by addition of fresh moss on top of older
strata in chronological order, Carex peat is mainly com-
prised of mix of root material and more humified mate-
rial formed from surficial accumulated litter that readily
undergoes decomposition and humification. In effect,
Carex peat generally tends to be more humified, espe-
cially when lying under younger Sphagnum peat, and
any assessment between Carex and Sphagnum peat
cannot be fully independent from degree of humifica-
tion. Using only these wavelengths selected by the K-
nearest neighbour analysis substantially reduced the
overall accuracy of SVM classification in the VNIR
region but had less effects in the SWIR region. This
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implies that the pixel-wise classification of peat type in
the SWIR region is more robust and can be achieved
with a smaller dataset.

Despite the many potential error sources, our results
showed a clear correlation between the von Post degree
and the developed spectral humification indices in the
VNIR and SWIR regions. In the VNIR region
NDVPIVNIR predicted the von Post humification degree
in the separate test set with accuracy of 82%. Further-
more, in all individual cores, the NDI profiles had at
least a gross scale fit with the main pattern of von Post
humification, and in many cores the profiles were very
closely matched. Indeed, many fine-scale patterns of
varying humification, as indicated by spectral NDIs,
are obviously beyond resolution the von Post method
and the ability to make spatial maps from these indices
indicates finer detail in variation of peat humification.
The common peat type classification and von Post hu-
mification index give only coarse classes and are always
biased to some extent by subjective expert judgement.
Even if performed perfectly the criteria of the different
humification classes are ambiguous in certain aspects.
For example, how peat material behaves in the von Post
“squeezing” is definitely affected by many properties
like water content, bulk density and how “fibrous” the
plant material is. In addition, the degree of humification
itself can hardly be exactly quantified, since in a mixed
peat matrix, different materials undergo decomposition
in different pace, and as fresh root material may be
variably added in otherwise humified peat.

The wavelengths selected for the NDVPIVNIR in the
VNIR region are associated with the blue region
(463 nm) and NIR plateau (725 nm) of plant cell wall
structures. Decomposition clearly lowered the reflec-
tance in the NIR region, most likely due to the breaking
down of intact cells and the increase of humic sub-
stances with absorbance at longer wavelengths. In the
SWIR region, the selected wavelengths were 1724 nm
and 1573 nm. The 1730 nm absorbance feature is prom-
inent in dry plant matter and usually attributed to C-H
bonds or to unspecific “plant dry matter” (Kokaly et al.
2009). The feature is however nearly non-existent in wet
material. 1573 nm is located in a region with no char-
acteristic absorption bands of generally diagnostic sig-
nificance. Both ratios worked better in moderately hu-
midified samples but had difficulties in distinguishing
highly humidified samples. This makes sense since the
spectral changes between the most humidified samples
are very low. The poor performance of the NDVPISWIR

index could be due to the effect of varying water con-
tent. The NDVPIVNIR was more accurate in von Post
class prediction and the selected wavelengths seemed to
be less specific. However, the final robustness of the
selected index should be tested against a more variable
dataset.

Spatial detail obtained with hyperspectral imaging aids
peat sampling

One potential benefit of HSI is the ability to make finely
detailed maps of peat stratigraphy that could enable
more accurate recognition of peat strata, aid their inter-
pretation, and direct other sampling methods. Continu-
ous sampling of peat cores with high resolution allows
the detection of sub-decadal changes caused by recent
events and climate change (Amesbury et al. 2011;
Hendon and Charman 2004). This will however quickly
result in very large sample sets and requires specialized
sampling equipment. HSI could be used to guide sam-
pling for other methods that could benefit from resource
allocation. The significance of the added level of detail
was exemplified, as HSI analyses revealed peat layers
that were not horizontally aligned. Over 25% of the
detected layers were clearly inclined (in angles above
20o) irrespective of sample depth. HSI has potential in
guiding sampling by other methods, as it can reveal
which sections of peat cores have transitions and if
any layers were not horizontal. Since light penetrates
only the very surface layer of the imaged peat sample,
HSI is limited to sensing two-dimensional surfaces with
the methodology of this study.

Elemental analysis of the Ilajansuo 3 core revealed
high correlations between spectral indices and elemental
concentrations. It is obvious that absorbances of indi-
vidual elements are not visible in the spectral data, but
the spectral correlations are due to the elements corre-
lating with features of the peat core such as the original
vegetation, hydrology and humification. For instance,
the spectral data correlates strongly with K, Na and Rb
that all are mobile cations found in high concentrations
near the surface layers, while they have leaked away
from older peat (Shotyk 1988). These layers also contain
pigments such as chlorophyll that have clear absorptions
in the spectra and corresponding to this pattern, the
correlations with spectra were strong for these elements
(R2 = 0.79–0.95). Strong correlations were also found
for many elements with concentrations more or less
steadily decreasing (Mg, Mn, Zn) or increasing (e.g.
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Al, As, Co, Sr) with depth. Very similar profiles of Al
and Sr were found by Weiss et al. (1999) from a peat
core that also had Carex to Sphagnum transition. On the
other hand, certain elements with more complex profiles
were poorly correlated. For example, profiles of trace
metals like Pb, Cd and V likely indicate the history of
anthropogenic deposition (Weiss et al. 1999; Shotyk
et al. 2017) and the peaks of these elements were clearly
underestimated by spectral indices. Furthermore, certain
clear stratigraphic patterns appeared to be completely
missed by HSI, while some connected element correla-
tions were fairly strong. The profiles of Ba and Ga had
moderately strong spectral correlations (R2 = 0.58–
0.65) and their general patterns of increasing concentra-
tions with depth were recognized, but both elements had
conspicuous concentration peaks together with residual
ash content that did not emerge in HSI result. The
unexplained ash content is chiefly comprised of acid-
insoluble silica (mineral dust particles, biogenic silica)
that typically comprise some 30–65% of peat ash
(Shotyk 1988). Similar sharp peaks of ash content were
found in several other samples too, and regularly located
near the Carex to Sphagnum peat (fen to bog) transition
zones (Valkeasuo 1, Valkeasuo 2, Valkeasuo 3,
Sumukka 1, Lahna 1 Mahlaneva 2, and Ilajansuo 3).
Peaks of ash content have been attributed to atmospheric
mineral deposition of dust particles or to changing peat
decomposition rates (Ferrat et al. 2012). However,
Kokfelt et al. (2009) attributed a similar peak to the
accumulation of biogenic silica caused by the increase
of diatoms in transitional ecosystems. We could not
determine a single spectral feature that would corre-
spond with these changes. Even though most elements
or individual substances cannot be detected directly
from the spectra, our data showed deep absorptions at
803 nm and 850 nm, that we could not link to peat type.
These wavelengths were also selected for the best NDI
index for iron. Iron compounds have clear absorbances
both in the visible region and between 800 and 1000 nm
(Grove et al. 1992). Jackisch et al. (2018) used the ratio
between 720 nm and 850 nm to detect iron effluent from
mines. Yet, the correlation of the iron NDI index was
poor with both cameras in our data. The poor correlation
could be explained by the varied spectral absorption of
iron compounds, modified by the complex iron chemis-
try in peat (Barrón and Torrent 2013). Iron can exist in
different oxidation states even in anoxic peat
(Bhattacharyya et al. 2017).

The limited dataset used here has no external valida-
tion and it does not have predictive value outside of this
data set for mapping of element concentrations. Instead,
the spectral indices can well be used to create visual
representations of the analysed samples, and in further
steps, to guide sampling for other connected analyses. In
this approach, HSI is used simply to strengthen spatial
extrapolation and similar methodology has been used in
elemental analysis of soil cores (Steffens and
Buddenbaum 2013). Achieving real predictive value
on an external dataset would require a substantially
larger and more varied training set, however. In sum-
mary, HSI correlated with many elements of trace con-
centrations and no logical causality except correlations
with peat stratigraphy, while clear pattern of up to ca.
10% total mineral content were missed. Clearly, HSI
does not see everything and caution is warranted to
avoid overinterpretation of HSI-derived information.

Conclusions

We present a novel application of hyperspectral imaging
for peat core analysis. Peat samples bear certain unique
features and challenges for imaging. Peat occurs natu-
rally under inundated and hypoxic conditions and is
variably decomposed, hence, the oxidation of samples
may result in artefacts, and high water content and
humification may mask variation of interest in plant
material composition. Despite these overlapping effects
we were able to reliably classify the main peat types of
Sphagnum and Carex peat from unknown samples.
Also, a simple index in the VNIR region worked well
to estimate the degree of humification assessed with the
von Post classification. One benefit of HSI modelling of
humification was the ability to reflect the model in
detailed spatial mapping to visualize patterns of humi-
fication. Despite these successes, due to overlapping
absorption features and complicated peat chemistry,
HSI can hardly replace any traditional sampling
methods. Instead, it can provide uniquely detailed spa-
tial maps of peat composition changes and thus support
other analysis. Since the spectral imaging does not alter
the samples, these maps can be then used for designing
the sampling for other analysis. While peat stratigraph-
ical studies have assumed horizontal layering of the
peat, our results showed that peat layers tend to have
complex alignments.
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