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Abstract
Background and aims Land cover change (LCC) from
natural forest (NF) to plantations (PF) has occurred
worldwide over the past several decades. However, the
different LCC effects on soil aggregate C and N turn-
over in various climatic zones remain uncertain.
Methods Soil samples were taken from both NF and PF
at five sites along an approximately 4200 km north-
south transect in eastern China. We measured soil ag-
gregate C and N concentrations, and δ13C and δ15N.
Results The soil aggregate distribution is similar be-
tween NF and PF, except that the mass proportion of
microaggregate is lower in NF. The impacts of LCC on
soil C and N concentrations, and δ13C and δ15N vary
among five climate zones. The changes in soil aggregate
C and N concentrations and δ15N induced by LCC show
nonlinear relationships with climatic factors (i.e., MAT
andMAP), and there is a linear relationship between soil
aggregate Δδ13C (calculated by subtracting PF from

NF) and MAT and MAP. The soil aggregate C and N
concentrations, and δ13C and δ15N show clear trends
along the climatic transect. In addition, the impacts of
LCC are more obvious in topsoil than in subsoil.
Conclusion Our findings highlight that the impacts of
LCC on soil C and N concentrations are related to
climatic factors. Specifically, that the increased decom-
position of soil C in PF than NF can be compensated by
higher C inputs with increasing MAT and MAP.

Keywords Land cover change . Soil aggregate . Soil C
andN . Stable isotopes . Climatic factors

Introduction

Forest soils store a large portion of terrestrial carbon (C)
(Dixon et al. 1994) but simultaneously may release large
sums of C when they undergo land use or environmental
changes (Guillaume et al. 2015; Houghton and Nassikas
2017). To fulfill societal needs for valuable timber and
other economic forest products, natural forests (NFs) have
beenwidely converted to intensivelymanaged plantations
(PFs) during the past several decades (Lin et al. 2018;
Llorente et al. 2010; Straaten et al. 2015; Yang et al.
2019). There is substantial evidence showing significant
differences in the quantity and quality of C input through
litterfall or root exudation between NF and PF (Hertel
et al. 2009; Lewis et al. 2016) and on management
practices including tillage, fertilization, thinning, drain-
age, and harvesting (Jandl et al. 2007; Li et al. 2014). It
is very important to know how land cover change (LCC)
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from NF to PF alters soil C and N cycles (Chen et al.
2016; Straaten et al. 2015). Thus, the influences of LCC
on soil C and N have been widely investigated during the
past two decades (Chen et al. 2004; Li et al. 2005; Lin
et al. 2018; Straaten et al. 2015). Currently, however,
there is still uncertainty regarding positive, negative or
negligible effects on soil C and N at a large scale under
various climatic conditions (Lewis et al. 2016).

Soil aggregates are the basic units of soil structure,
and have an important role in controlling soil C and N
stocks and stabilization (Tisdall and Oades 1982; Six
and Paustian 2014; Zhu et al. 2017). Moreover, soil
organic matter fractions can serve as early indicators
for the change in soil C and N stocks induced by LCC
(He et al. 2008; Leifeld and Kögel-Knabner 2005). A
hierarchy model was proposed by Tisdall and Oades
(1982), who stated that mineral particles are bound
together to form microaggregates by various cements,
including persistent organic materials, crystalline oxides
and highly disordered aluminosilicates. These
microaggregates, in turn, build macroaggregates due to
transient and temporal agents such as polysaccharides,
roots, and fungal hyphae (Spohn and Giani 2011). Due
to the various aggregate binding agents, the stability of
soil aggregates and the allocated C and N in different-
size aggregates have different sensitivities to land use
and cover change (Tisdall and Oades 1982; Chen et al.
2017). Land cover change from natural forests to inten-
sively managed plantations has been well known to
strongly affect soil aggregation and C and N pools
(Ashagrie et al. 2005; Chen et al. 2017; Goma-
Tchimbakala 2009; He et al. 2008). However, fewer
studies have focused on the efficiency and mechanism
of aggregate C and N turnover associated with the input
of plant residues and output of microbial mineralization.

Isotopic abundances of 13C and 15N in soils can
change as a result of fractionation processes occurring
during soil C and N cycles (Bol et al. 1999; Gerschlauer
et al. 2019; Guillaume et al. 2015), thereby providing
new information on soil C and N turnover controlled by
biotic and abiotic factors (Garten et al. 2000; Ma et al.
2012; Ngaba et al. 2019; Wang et al. 2018). Generally,
high litter inputs can lead to low values of δ13C and δ15N
in soils, whereas enhanced soil organic matter (SOM)
mineralization can enrich soil δ13C and δ15N (Garten
et al. 2000; Natelhoffer and Fry 1988). Land use and
cover change can alter C and N source inputs, SOM
decomposition rates, soil erosion, and N cycle processes
e.g., mineralization, nitrification and gas N loss (Chen

et al. 2016; Guillaume et al. 2015; Hertel et al. 2009; Ross
et al. 1999). Therefore, it has been suggested that the
conversion of natural forests to plantations can lead to the
changes in 13C and 15N in plant and soils at the stand
scale (Deng et al. 2016; Llorente et al. 2010; Guillaume
et al. 2015; Ngaba et al. 2019; Zeller et al. 2007). To our
knowledge, however, no studies have systematically ex-
amined the isotopic signatures of 13C and 15N in soil
aggregates following the conversion of natural forests to
managed plantations along a national-scale climate zone.

China is currently the country most affected by LCC
from natural forests to intensively managed plantations
in the world (Lin et al. 2018; Yang et al. 2009). The
destruction of primary forests is regarded as a main
factor causing significant loss of soil C and N pools
(Lewis et al. 2016; Wang et al. 2016). Thus, this study
focuses on soil aggregate C and N concentrations, and
13C and 15N abundances at the surface (0–10 cm) and
subsurface (10–20 cm) layers in the NF and adjacent PF
across five climate zones along an approximately
4200 km transect from northern to southern China. We
aim to evaluate whether the impacts of LCC on soil
aggregate C and N differ among climate zones and
between topsoil and subsoil, and to determine the rela-
tionship between the changes in soil aggregate C and N
concentrations, and δ13C and δ15N with climatic factors,
i.e., mean annual temperature (MAT) and mean annual
precipitation (MAP). This study can provide new infor-
mation on the effects of LCC under the background of
global climate change. Based on the aforementioned
studies, we hypothesized that (1) soil aggregate stability
and C and N allocated in aggregates would decline in
plantations because of intensive management distur-
bances, but (2) soil aggregate δ13C and δ15N would be
enriched in plantations due to increasing SOM mineral-
ization relative to adjacent natural forests. We also hy-
pothesized that (3) the impacts of LCC on soil aggregate
C and N would vary among climate zones, and the
declines of soil aggregate C and N concentrations and
the enrichments of aggregate δ13C and δ15N would
increase with increasing MAT and MAP.

Materials and methods

Study site and sampling

The study sites are located in the eastern forest of China
(18.44–52.92°N, 108.01–122.79°E) and have
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elevations of 275 to 800 m. In August 2017, soil sam-
ples were collected at five sites along a north-south
transect in eastern China, including Mohe (MH),
Qingyuan (QY), Huitong (HT), Dinghushan (DH), and
Jianfengling (JF) (Fig. S1). At each site, natural forests
(NFs) and paired adjacent plantations (PFs) converted
from native vegetation were selected to ensure compa-
rable stand conditions. The characteristics of climatic
conditions, soil types and vegetation compositions in
each stand are shown in Table 1. Three plots of 20 m ×
20 m were set up in each stand and soils were taken at
surface (0–10 cm) and subsurface (10–20 cm) layers,
packed in zip locked polythene bags and taken back to
the laboratory immediately for analysis of soil aggregate
distribution, soil C and N concentrations, and isotopic
abundances of 13C and 15N.

Soil aggregate fractionation

The aggregate size distribution and stability are deter-
mined using a wet sieving protocol (Kemper and
Rosenau 1986). In summary, soils are air-dried for
2 weeks, and a sieve of 8 mm is used to remove roots,
coarse plant residues and any stones >8 mm. Then, 40 g
air-dried soil is used for aggregate size fractionation by
wet sieving and is placed on a set of six nested sieves of
5, 2, 1, 0.5, 0.25 and 0.053 mm. The sieves are shaken
vertically for 30 min at a rate of 35 strokes min−1 in a
water bucket. The soil aggregate fractions retained in
each sieve were carefully washed off the sieve into a
preweighed aluminous container, oven-dried at 105 °C
and weighed. A portion of soil aggregate <0.053 mm
retained in water was also collected and oven dried at
105 °C for determination of soil C, N and isotopic
abundances of 13C and 15N, but the mass was calculated
from the total soil mass minus the dry mass of the other
six aggregates. Each fraction was agitated for 18 h with
5% sodium hexametaphosphate (1:3 soil: liquid ratio) to
correct the presence of coarse fragments and sands.

Soil C and N concentrations and natural abundance
of 13C and 15N analysis

Soil C and N concentrations and stable isotopic abun-
dances of 13C and 15N were measured using an isotope
ratio mass spectrometer (IRMS) (IsoPrime 100,
Isoprime Ltd., UK) connected to a CN elemental ana-
lyzer (Vario MICRO cube, Elementar, Germany).
Carbon and nitrogen stable isotope abundances are

calculated as δ13C and δ15N (‰) using the following
formula:

δ13C or δ15N ‰ð Þ ¼ Rsample=Rstandard−1
� �

*1000

where Rsample is the13C:12C or 15N:14N ratio in the
samples and Rstandard is the

13C:12C or 15N:14N ratio in
the standard. The Pee Dee Belemnite (PDB) and atmo-
spheric N2 (δ

15N = 0.0‰) are used as the standards for
carbon and nitrogen, respectively. Internal standards (L-
histidine, glycine, D-glutamic and acetanilide) are used
to check the precision of isotopic compositions. In gen-
eral, the analytical precisions for δ13C and δ15N are
better than 0.2‰.

Statistical analysis

All statistical analyses were conducted using R software
(version 3.5.1). Analysis of variance (ANOVA) was
performed to test the effects of climate zone, land use,
soil depth and soil aggregate size on the mass proportion
of soil aggregate size fractions, C and N concentrations,
and δ13C and δ15N values. Comparisons among differ-
ent climate zones were tested using Tukey’s honest
significant difference at p < 0.05. All data were subject-
ed to the assumptions of normality and homogeneity of
variance before conducting the ANOVA procedure.
Regression analysis is performed to fit the relationships
between climatic factors (i.e., MAT and MAP) and the
changes in soil aggregate C and N and δ13C and δ15N
calculated fromNFminus PF, and among soil aggregate
C and N and δ13C and δ15N values in natural forests and
plantations.

Results

Soil aggregate mass proportion and mean weight
diameter

Climate zones have significant influences on the mass
proportion of each aggregate fraction (Table 2; Fig. 1).
However, forest type and soil depth do not differ in the
mass proportion of each fraction (Table 2), except that
the averaged mass proportion of 0.053–0.25 mm
microaggregate across five sampling sites and two
depths is significantly higher in PF (21.4%) than in NF
(17.4%). There is a forest type × climate zone interac-
tion on the mass proportion of 0.5–1 mm aggregate size
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(Table 2, p = 0.03). Mean weight diameters (MWD) are
not different between NF and PF but vary among cli-
mate zones with a significantly lowerMWD in the south
subtropical (SST) zone (Table 2, Fig. S2).

Soil aggregate C and N concentration

In general, soil C and N concentrations (g kg−1 aggre-
gate) are almost uniformly distributed across all 7 ag-
gregate fractions (Fig. 2a, b), except for a lower C
concentration in the <0.053 mm fraction than in the 1–
2 mm fraction (p = 0.03). The impacts of LCC on soil
aggregate C and N concentrations vary among climate
zones (Table 3). The averaged C concentration over
aggregate sizes and depth is higher in PF than NF in
the cold temperate (CT) zone (p < 0.001), but there are
lower aggregate C concentrations in PF in both mid-
temperate (MT) (p = 0.02) and tropical (TRO) zones
(p = 0.03) compared to NF (Fig. 3a). The soil aggregate
N concentration decreases from NF to PF in the MT
(p = 0.02), SST (p < 0.001) and TRO (p = 0.03) zones,
but PF has a higher aggregate N concentration than NF
in the CT zone (Fig. 3b).

Climate has a strong influence on soil aggregate C
and N concentrations (Table 3) but differs between NF
and PF. In plantations, soil aggregate C decreases from
the CT zone to the mid-subtropical (MST) zone but then
slightly increases in the SST and TRO zones. However,
NF has the highest aggregate C in theMT zone (Fig. 3a).
The soil aggregate N concentrations in both NF and PF
all increase from the CT toMT zones but then decline in
the MST, SST and TRO zones (Fig. 3b). Furthermore,
the changes in soil aggregate C concentration (ΔC) and
N concentration (ΔN) calculated by subtracting PF from
NF show nonlinear relationships with mean annual tem-
perature (MAT) and precipitation (MAP) (Fig. 4a-d). In
addition, although soil aggregate C and N all decrease
with increasing soil depth in both NF and PF (Table 3;
Fig. 2a, b), the declines of aggregate C and N concen-
trations are larger in NF (14.38 C g kg−1 and
0.85 N g kg−1) than PF (9.67 C g kg−1 and
0.48 N g kg−1).

Soil aggregate δ13C and δ15N content

Soil δ13C does not differ across all aggregate fractions
(Table 3; Fig. 2c), but soil δ15N is significantly higher in
the <0.053 mm aggregate size than in the other fractions
(Fig. 2d). Soil aggregate δ13C and δ15N are significantlyT
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affected by forest type, soil depth and climate zone, and
there are significant interactions between forest type and
site location, and between forest type and soil depth
(Table 3). The mean values of δ13C over aggregate sizes
and soil depth are enriched after natural forests are
converted to plantations, except in the CT zone (Fig.
3c). Similarly, PF has higher values of soil aggregate
δ15N than NF in the CT, MT and TRO zones, but there
are no differences in soil aggregate δ15N between NF
and PF in either the MST or SST zones (Fig. 3d).

Mean values of soil δ13C over seven aggregate frac-
tions in NF and PF show similar trends along climate
zones and increase from the CT zone to MST zones but
then decline to the TRO zone (Fig. 3c). Furthermore, soil
aggregateΔδ13C has negative relationships with increas-
ing MAT and MAP (Fig. 4e, f). However, the trend of
soil aggregate δ15N along climate zones differs between
NF and PF. The soil aggregate δ15N in the NF increases
from the CT to MST zones and then declines to the TRO
zone (Fig. 3d). For PF, however, the soil aggregate δ15N
values in the CT, MT, MST and TRO zones are not
different but are significantly higher than those in the
SST zone. The soil aggregate Δδ15N at both soil depths
shows nonlinear relationships with MAP (Fig. 4h), but
there is no clear relationship between MAT and the
different soil aggregate δ15N at 10–20 cm (Fig. 4g).
Moreover, there are forest type × soil depth interactions
on both δ13C and δ15N in soil aggregates (Table 3). Soil
δ13C are significantly enriched along the soil depth in NF
(p < 0.001), but there is no difference in soil δ13C be-
tween the two soil layers in PF (p = 0.08, Fig. 2c).
Compared to the surface layer (0–10 cm), soil aggregate
δ15N is enriched by 28% and 14% in NF and PF, respec-
tively, at the 10–20 cm depths (Fig. 2d).

Relationships among soil C and N concentrations
and δ13C and δ15N

The statistical analyses show a positive correlation be-
tween soil C and N concentration in both NF (r = 0.91,
p < 0.001) and PF (r = 0.78, p < 0.001) (Fig. 5a).
Moreover, there is a significantly positive correlation
between soil aggregate δ13C and δ15N in NF (r = 0.71,
p < 0.001) but not in PF (r = 0.19, p = 0.12) (Fig. 5b). In
NF, soil δ13C and δ15N are negatively correlated with
aggregate C and N concentrations, respectively (Fig.
5c, d). However, soil δ15N is not correlated with soil N
concentration (Fig. 4d), and there is a weak negative
correlation between soil aggregate δ13C and C concen-
tration in PF (Fig. 5c).

Discussion

Soil aggregate size distribution, and aggregate C and N
concentrations as affected by LCC

In this study, we found an increase in microaggregates
(0.053–0.25 mm) and silt + clay (<0.053 mm) but a
decreasing mass proportion of macroaggregates (>
0.25 mm) in the intensively managed plantations rela-
tive to adjacent natural forests. These findings supported
our first hypothesis that LCC from natural forests to
plantations could decrease the stability of soil
aggregates, and agreed with a previous study by Yang
et al. (2009) who also found that converting old-growth
native forests to Castanopsis Kawakamii and
Cunninghamia lanceolata Lamb. plantations decreased
the mass proportion of macroaggregates in southern

Table 2 TheANOVA results of forest type, climate zone and soil depth on the mass proportion of each soil aggregate fraction and themean
weight diameter

>5 mm 2–5 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm 0.053–0.25 mm <0.053 mm MWD

Forest type 0.89 0.73 0.15 0.07 0.83 * 0.08 0.57

Climate zone *** *** *** *** *** *** * ***

Soil depth 0.64 0.64 0.55 0.05 0.79 0.08 0.10 0.35

Type × Climate 0.55 0.17 0.33 * 0.59 0.55 0.09 0.58

Type × Depth 0.11 0.86 0.48 0.95 0.33 0.80 0.63 0.23

Climate × Depth 0.37 0.42 0.17 0.98 0.09 0.06 0.10 0.92

Type × Climate × Depth 0.18 0.72 0.44 0.30 0.23 0.52 0.04 0.33

*** indicates a significant difference at the p < 0.001 level (2-tailed); * indicates a significant difference at the p < 0.05level (2-tailed).
MWD, mean weight diameter
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China. Compared to natural forests, intensively man-
aged plantations and croplands are usually exposed to
various anthropogenic disturbances, e.g., site prepara-
tion, tree planting and furrow fertilization, which can
disintegrate large aggregates into smaller aggregates and
resulting in an increase in the proportion of small aggre-
gates in soils (Abrishamkesh et al. 2011; Richards et al.
2009). Consequently, the excluded disturbances related

to land use and cover change have been widely sug-
gested to be prone to physical restoration of aggregate
stability (Blanco-Canqui and Lal 2004; Pohl et al. 2012;
Six et al. 1999). In addition, soil aggregation is mediated
by complex factors, such as abiotic (clay minerals, car-
bonates, exchangeable cations), biotic (plant roots, soil
fauna and microorganisms), and environmental (soil
temperature and moisture) factors (Bronick and Lal
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Fig. 2 Distribution of soil (a) C and (b) N concentrations (g kg−1

aggregate) and (c) δ13C and (d) δ15N among aggregate size
fractions under natural forests and plantations. The different

lowercase letters indicate significant differences among aggregate
size fractions. NF, natural forest; PF, plantation forest

Table 3 The ANOVA results of forest type, climate zone, soil depth and aggregate size on soil aggregate C and N concentration (g kg−1

aggregate), and δ13C and δ15N

Variance Df C concentration N concentration δ 13C δ 15N

F value Pr (>F) F value Pr (>F) F value Pr (>F) F value Pr (>F)

Forest type 1 0.27 0.60 2.40 0.12 27.16 *** 43.55 ***

Climate zone 4 42.94 *** 48.99 *** 63.52 *** 14.15 ***

Soil depth 1 112.64 *** 98.94 *** 26.17 *** 88.26 ***

Aggregate size 6 3.26 ** 1.22 0.30 1.63 0.14 10.99 ***

Type × Climate 4 11.35 *** 12.28 *** 15.67 *** 10.29 ***

Type × Depth 1 5.76 * 5.16 * 4.33 * 4.65 *

Climate × Depth 4 1.69 0.15 2.59 * 0.99 0.41 3.67 **

Type × Size 6 0.52 0.80 0.87 0.52 0.20 0.98 0.27 0.95

Climate × Size 24 1.29 0.17 1.75 * 0.40 0.99 0.93 0.56

Depth × Size 6 1.09 0.37 1.04 0.40 0.58 0.74 1.03 0.41

*** indicates a significant difference at the p < 0.001 level (2-tailed); ** indicates a significant difference at the p < 0.01 level (2-tailed);
*indicates a significant difference at the p < 0.05level (2-tailed)
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2005; Pohl et al. 2012; Tisdall and Oades 1982). In the
present study, the changes in soil aggregate size distri-
bution might be related to the reduction in SOC in
plantations (Chen et al. 2004; Lin et al. 2018), and
furthermore, the higher plant diversity, vegetation cover
and root density in natural forests were likely beneficial
for forming and stabilizing macroaggregates in soils (Le
Bissonnais et al. 2018; Pohl et al. 2012).

The changes in C and N in soil aggregates can
usually be used as early indicators of soil C and N
changes (Leifeld and Kögel-Knabner 2005) and provide
us with the mechanisms of soil C and N pool stabiliza-
tion induced by LCC (Gelaw et al. 2015; Six et al. 2000;
Zhu et al. 2017). We observed that the averaged soil C
concentration across aggregate fractions declined signif-
icantly in the plantations in the MT and TRO zones

compared with the natural forests. Similarly, several
previous studies also observed a net loss of soil C and
N after land conversion from natural forest to planta-
tions (He et al. 2008; Lyu et al. 2017; Richards et al.
2009). This result is suggested to be related to the
reduction of C inputs into soils and the increasing or-
ganic matter decomposition caused by the disturbances
of site preparation and burning before plantation estab-
lishment (Chen et al. 2016; Deng et al. 2016; Goma-
Tchimbakala 2009). Moreover, soil aggregation is an
important mechanism for the stabilization of soil organic
matter, and in less disturbed systems, the formation of
macroaggregates can stabilize and protect soil organic C
(Gelaw et al. 2015; Li et al. 2005; Six et al. 2000; Zhu
et al. 2017). However, the soil aggregate C concentra-
tion was higher in PF than in NF in the cold temperate

Fig. 3 Impacts of land cover change from natural forests to
plantations on soil aggregate (a) C and (b) N concentrations and
(c) δ13C and (d) δ15N among the five climate zones. The different
lowercase letters on bars indicate significant differences among
climate zones under natural forests and the different capital letters
on bars indicate significant differences among climate zones under
plantations. ***, ** and * indicate significant differences between

natural forest and plantation in each climate zone at the level of p
< 0.001, p < 0.01 and p < 0.05, and ns indicates a non-significant
difference, respectively. NF, natural forest; PF, plantation forest.
CT, cold temperate zone; MT, mid-temperate zone; MST, mid-
subtropical zone; SST, south subtropical zone; TRO, marginal
tropical zone
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zone, and no differences in the soil aggregate C concen-
tration were observed in the MST and SST zones after
LCC. Our results indicated that land conversion from
NF to PF had a strong influence on soil C and N
dynamics, but the impacts varied among climate zones
with positive, negative, or even no influence. Such large
spatial-scale site-to-site variations in SOC were also
observed by Lewis et al. (2016), who found that SOC
was significantly higher in the pine plantation at two of
the eight sites, was higher in the native vegetation at two
sites and did not differ at four sites. They explained that
the variance among sites was due to the different plan-
tation species, the different environmental drivers (e.g.,
rainfall) and the higher degree of variability between
sites (e.g., different plantation age, site preparation and

management methods, soil types, and native vegetation
types).

It is not surprising to us that soil aggregate C and N
concentrations decreased with soil depth in both NF and
PF. However, there were forest type × soil depth inter-
actions on soil aggregate C and N concentrations, and
the vertical differences in soil aggregate C and N be-
tween the two layers decreased in plantations compared
with natural forests. This result indicated that land con-
version altered the vertical distribution of soil aggregate
C and N. Compared to subsoil, topsoil C and N are
usually more sensitive to land cover and land use change
(Gaudinski et al. 2000; Ngaba et al. 2019) because of
enhanced topsoil erosion after natural forest conversion
to plantations (Guillaume et al. 2015). In addition, the

Fig. 4 The regression of the
changes in soil aggregate C and N
concentrations and δ13C and δ15N
calculated from natural forest
subtracting plantation with mean
annual temperature (MAT) and
mean annual precipitation (MAP)
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smaller differences in aggregate C and N concen-
trations along soil depth in plantations could be
related to intensive management practices, such as
digging, scarification, or stump lifting, resulting in
mixing topsoil into the subsurface layer (Mobley
et al. 2015).

Soil aggregate δ13C and δ15N as affected by LCC

Stable isotopes of 13C and 15N in soil aggregate fractions
are an excellent integrative and potentially powerful tool
for understanding the mechanisms of soil C and N
changes after land cover change (John et al. 2005;
Llorente et al. 2010). According to the concept of ag-
gregate hierarchy, microaggregates are bound together
into macroaggregates by transient binding agents and
temporary binding agents (Tisdall and Oades 1982; Six

et al. 2000). The consequences of this aggregate hierar-
chy are an increase in C concentration but a depletion of
δ13C with increasing aggregate-size fraction (John et al.
2005). However, our data did not support the aggregate
hierarchy model. Although a lower C in the <0.053 mm
fraction was observed in the present study, we did not
observe significant differences in soil δ13C with increas-
ing aggregate-size fraction. Similar to the results in our
study, John et al. (2005) also found that soil δ13C was
uniformly distributed across soil aggregate fractions in
forest soil. Some recent studies suggested that the for-
mation of fine mineral-stabilized organic matter derived
recently from litter plays an important role in SOM
formation and stability (Cotrufo et al. 2015), which
might explain the lower values of δ13C and δ15N be-
cause of the new plant C inputs in microaggregate
fractions.

Fig. 5 Relationships of (a) soil aggregate C and N concentrations,
(b) soil aggregate δ13C and δ15N, (c) soil aggregate C concentra-
tion and δ13C, and (d) soil aggregate N concentration and δ15N.
Each point presents the mean value of three replication

plots (n = 3). NF, natural forests; PF, plantations. The solid
line indicates the regression of natural forests, and the
dotted line indicates the regression of plantations
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The mean values of δ13C and δ15N across soil aggre-
gates were generally higher in the plantations than in
natural forests. This result is consistent with our second
hypothesis and with another previous study by Zeller
et al. (2007) that found that soil under Norway spruce
displayed a lower δ13C value than soil under a natural
stand. In our study, there were significantly negative
relationships of soil δ13C and C concentrations, and
δ15N and N concentrations in NF, which was supported
by other previous studies (Evans and Belnap 1999;
Garten et al. 2000). This suggests that the enriched soil
δ13C values in the plantations might be related to in-
creased SOM decomposition due to site disturbances
(Chen et al. 2016; Deng et al. 2016; Natelhoffer and
Fry 1988). Moreover, the rate of litter input and the
litter’s isotope abundance can also influence the isotopic
abundances of soil C and N (Natelhoffer and Fry 1988).
Usually, the litter decomposition rate is slower in plan-
tations due to the lower litter quality compared with
natural forests (Li et al. 2005), which results in fewer
inputs of depleted litter C in plantations. One of our
previous studies observed that the isotopic abundances
of 13C and 15N in forest floor litter in NF were generally
lower than those in PF (Ngaba et al. 2019) and which
furthermore led to the higher values of soil δ13C and
δ15N in plantations.

In addition, our results showed that there are increas-
ing trends of δ13C and δ15N with soil depth in natural
forests. The explanations of soil δ13C along soil depth
are generally grouped into three categories: mixing,
selective decomposition and preservation of compounds
enriched in δ13C, and kinetic fractionation during humi-
fication (Bird et al. 2002a; Diochon and Kellman 2008;
Garten et al. 2000). However, these depth trends of soil
δ13C were not observed in plantations, and the magni-
tude of the 15N shift from the surface to depth was less in
PF than in NF. The declined gradients of soil aggregate
δ13C and δ15N in plantations might be related to the
mechanisms of topsoil erosion, mechanical mixing be-
tween soil layers, and increasing C mineralization in
topsoil with disturbances compared to intact natural
forests (Diochon and Kellman 2008; Eshetu and
Högberg 2000; Guillaume et al. 2015).

Changes in soil aggregate distribution, C and N
concentrations, and δ13C and δ15N among climate zones

For our third and last hypothesis, we found that climate
zone had significant impacts on the mass proportion of

each soil aggregate fraction, the averaged C and N
concentrations, and isotopic abundances of 13C and
15N across aggregates. Though the trends of soil aggre-
gate C and N concentrations, and aggregate δ13C and
δ15N along the climate zones were slightly different
between NF and PF, we found that the soil C and N
concentrations generally increased from the cold tem-
perate zone to the mid-temperate zone, declined to the
subtropical zone, and then again exhibited a slight in-
crease in the tropical zone. In the present study, the
lower C and N concentrations in NF in the cold temper-
ate zone compared to the mid-temperate zone might be
related to the short-term restoration of the natural forests
at the site where one serious fire disaster occurred in
1987. Usually, climate factors can influence soil C and
N dynamics through biotic processes of forest produc-
tivity and decomposition of SOM (Post et al. 1985). In
our study, however, the pattern of forest biomass pro-
ductivity cannot explain the trends of soil C and N along
the north-south transect in eastern China, considering
that net ecosystem productivity decreased with increas-
ing latitude (Yu et al. 2013; Wen and He 2016). Many
previous studies have reported that the decomposition of
SOC increases with increasing MAT, thereby causing
soil C and N loss and enrichment of soil isotopic abun-
dances of 13C and 15N (Bird et al. 2002b; Garten et al.
2000; Homann et al. 2007; Högberg 1997). However,
the relationships of soil C and N turnover with MAP are
more complex and usually show an inflection point
(Jobbágy and Jackson 2000; Wang et al. 2018). The
decomposition rate of soil organic matter can decline
when MAP is very high and anaerobic conditions dom-
inate (Wang et al. 2018). In addition, a decline in water
use efficiency at wetter sites can promote the depletion
of heavy C and N isotopes in soils (Austin and Vitousek
1998; Peri et al. 2012).

It is interesting that our data show the changes in soil
C and N concentrations, and δ13C and δ15N induced by
LCC are related to MAT and MAP. In the plantations
soil C becomes more enriched in 13C with increased
MAT and MAP, suggesting greater decomposition in
the plantations compared to the natural forests with
increased MAT and MAP (Fig. 4e, f). And yet, soil C
pools converged to the same value between the natural
forests and plantations at the highest MAT and MAP
(Fig. 4a, b), suggesting that C inputs in plantations kept
up with higher decomposition rates at these sites.
Although there are many previous studies reporting
positive, negative or no impacts of land cover change
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from natural forests to plantations on soil C and N pools
in various climate zones (Chen et al. 2004; Guillaume
et al. 2015; Li et al. 2014; Lin et al. 2018; Lewis et al.
2016; Yang et al. 2019), there is still little research
comparing the different effects of LCC along climatic
factors. Liao et al. (2012) reported larger declines in soil
C in the temperate zone than in the tropical zone after
land cover change from natural forests to plantations. In
their review on the changes in SOC induced by LCC
worldwide, Guo and Gifford (2002) found that the re-
lease of soil C was different among areas with precipi-
tation <1000 mm, 1000–1500 mm and > 1500 mm.
Several mechanisms might explain the varied impacts
of LCC on soil C and N. First, the soil temperature
sensitivity (Q10) of soil C and N was different between
natural forests and plantations (Yang et al. 2017), there-
by resulting in the varied response of soil C and N
between natural forests and plantations with increasing
MAT. Second, soil C accumulation and 13C abundance
are affected by the quantity and quality of plant C
sources (Natelhoffer and Fry 1988; Hatton et al. 2015).
The differential rates of productivity and vegetation
composition between natural forests and plantations
varied among climate zones (Brown et al. 2020; Cai
et al. 2019), which might also contribute to the differ-
ences in soil C and N changes induced by LCC among
climate zones with increasing MAT and MAP.

Conclusion

Our results indicated that the impacts of LCC on soil
aggregate C and N, and δ13C and δ15N varied among
climate zones with increasing, decreasing or no influ-
ence on soil aggregate C and N because of the site-to-
site variances of the linked differences in climatic con-
ditions, soil texture and dominant vegetation. Moreover,
our results implied that the changes in soil C and N
concentrations, and isotopic abundances of 13C and 15N
are related to climatic factors and that at large spatial
scales, natural environmental factors (e.g., MAT and
MAP) had a greater influence on soil C and N dynamics
compared to the anthropogenic disturbance of natural
forests converting to managed plantations. Considering
the limits of our study, in the future, more studies are
needed to rule out the relative contribution of climatic
factors on soil C and N dynamics compared to other
factors, such as vegetation production and composition,
soil texture, and plantation age.
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