
Plant Soil (2020) 456:43–59

REGULAR ARTICLE

Plant species and season influence soil physicochemical
properties and microbial function in a semi-arid
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Abstract
Aims This research investigated the effects of woody
plant identity and season on soil physicochemical prop-
erties and microbiological function in the semi-arid
Zagros forest, one of the old-growth semi-arid oak for-
ests in the world.
Methods Soil sampling was conducted beneath the can-
opy of six woody (tree and shrub) species in spring and
winter. Microbial variables analysed included soil basal
respiration (BR), microbial biomass C and N (MBC and
MBN), microbial entropy index (MIE), substrate in-
duced respiration (SIR) and enzymatic activities (i.e.,

urease and alkaline phosphatase). Soil physicochemical
properties were also analysed and included pH, electri-
cal conductivity (EC), available calcium and magne-
sium (Ca2+ and Mg2+), organic carbon (OC), total nitro-
gen (Ntot), lime, water content (WC), bulk density
(BD), clay, silt and sand.
Results Results demonstrated significant differences
among the woody species (Pseudo-F = 56.31;
p = 0.001), season (Pseudo-F = 97.37; p = 0.001) and
their interaction (Pseudo-F = 2.96; p = 0.005) for the
matrix of microbiological soil parameters. Differences
were species-specific for shrubs and trees with a marked
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effect for tree species such asQuercus brantii. Microbial
parameters were consistently higher in spring when
higher temperature and lower moisture were recorded.
Soil OC, Ntot, BD, and WC were important drivers of
the soil microbial function.
Conclusions Our results evidenced a strong effect of
season and plant species on soil physicochemical and
microbiological soil properties in a semi-arid forest eco-
system. Higher values of microbiological soil parame-
ters, including urease and phosphatase activities, were
recorded for tree species during spring season.

Keywords Soil enzymes . Soil biomass carbon . Plant
diversity . Organic matter: Zagros forest

Introduction

Plant diversity and vegetation type can largely influence
the soil microbial community structure and function
because of the differences in litter quality, root exudates
and nutrient uptake (Dai et al. 2018; Xia et al. 2019; Wu
et al. 2019; Estruch et al. 2020). Soil microorganisms
play a key role in the functioning of plant communities,
e.g. promoting plant-microbe associations and releasing
soil nutrients for plant development. In turn, plant re-
mains provide the main carbon and energy source for
sustaining microbial activity (Rezende et al. 2017; Di
Sabatino et al. 2020). Microbial communities in the soil
are directly related to the turnover of carbon, nitrogen,
and phosphorus in terrestrial ecosystems (Sandoval-
Pérez et al. 2009; Zhang et al. 2018). These organisms
are responsible for both organic matter degradation by
mineralization and organic matter stabilization by hu-
mification, through a wide range of enzymatic activities
(Shahbaz et al. 2017; Li et al. 2020).

Soil enzymes such as urease and phosphatase are
involved in the decomposition of litter components
(Adetunji et al. 2017). These enzymes play important
roles in the soil system, e.g. catalysing biological and
chemical reactions and promoting the mineralization of
soil organic phosphorus and the decomposition of soil
organic matter and nitrogen (Zaman et al. 2009; Jarosch
et al. 2019). On the other hand, soil microorganism can
access the energy and nutrients in complex substrates
through the activity of these enzymes (Allison and
Vitousek 2005; Avazpoor et al. 2019). Enzymatic activ-
ities related to cycles of carbon, nitrogen or phosphorus
and microbial indicators such as microbial biomass and

respiration, have been proposed as reliable indicators for
assessment or soil quality and function (Yang et al.
2012; Hedo et al. 2015; Muñoz-Rojas 2018). Soil res-
piration reflects the microbial activity level (Rey et al.
2011; Oyonarte et al. 2012), which is sensitive to soil
environmental or physicochemical soil variables, such
as temperature and humidity, texture, pH, electrical
conductivity and soil nutrients (Hursh et al. 2017;
Heydari et al. 2019). Furthermore, these soil microbial
parameters can be useful for characterizing the extent of
aboveground plant influence in soil biological proper-
ties (Lucas-Borja et al. 2012a).

Overall, the microbial community is a critical com-
ponent of sustainable soil-plant systems in forests, in-
cluding those located in semi-arid areas (Bastida et al.
2008; Ushio et al. 2008; Merilä et al. 2010). Semi-arid
regions cover ~15% of terrestrial earth lands and play an
important role as potential carbon sinks under elevated
CO2 (Safriel and Adeel 2005; Ahlström et al. 2015). The
area occupied by arid and semi-arid ecosystems is in-
creasing due to global warming and advanced desertifi-
cation (Teimouri et al. 2018). In these ecosystems, cli-
matic conditions, forms of vegetation and low levels of
organic matter may promote erosion processes, reducing
soil fertility (Khalyani and Mayer 2013; Bracken et al.
2019). Thus, plants and soil feedbacks in these semi-arid
regions need to be thoroughly understood in order to
preserve and promote higher soil and ecosystem func-
tionality in current and future global change scenarios
(Ostle et al. 2009; Sardans and Peñuelas 2013). Differ-
ent woody species can create diverse microclimate con-
ditions (Ayres et al. 2009; Lucas-Borja et al. 2012b;
Scheibe et al. 2015; Heydari et al. 2017b), and generate
a varied quantity and quality of litter inputs and root
exudates which are major carbon source for microor-
ganisms (Grayston et al. 1997; Cheng et al. 2013; Wan
et al. 2015). These differences can affect the spatially
dependent soil enzymatic activities together with the
soil physicochemical and biological characteristics
(Mungai et al. 2005). Despite the importance of these
processes, the ability of soil enzymes to reflect nutrient
and microbial hotspots under different tree and shrub
species and climatic conditions has not been thoroughly
studied (Lucas-Borja et al. 2012a; Yao et al. 2019;
Zuccarini et al. 2020).

The effects of season on the soil and ecosystem
functioning can be critical, particularly in arid and
semi-arid ecosystems (Jia et al. 2020). Contrasting ef-
fects in the degradation of soil organic compounds
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through soil moisture and temperature regulation, can
simultaneously affect the soil microbial community re-
sponse and enzymatic activities (Kang et al. 2009;
Huang et al. 2016). Previous studies have shown that
seasonality significantly affects soil enzymatic activity.
For example, Zuccarini et al. (2020) showed a signifi-
cant decrease in soil enzyme activities during summer
due to warming and limited soil moisture whereas
Wallenstein et al. (2009) reported a decrease of soil
enzyme activity due to winter cold temperatures in
semi-arid climate areas. Overall, seasonal variation
may generates different patterns of microbial pro-
cesses depending on the availability of different
substrates, variation in soil temperature and moisture
(Kaiser et al. 2011). In semi-arid ecosystems, the
availability of water, plant biomass, litter and soil
nutrients is modulated by the occurrence of precip-
itation, which mainly occurs in autumn and winter
(Snyder and Tartowski 2006). Despite an increase of
studies focused on the impacts on climate on semi-
arid forests, our understanding regarding the effects
of season on soil microbial and physicochemical
characteristics for specific woody plant species is
still limited in semi-arid ecosystems.

In this study, we aimed to investigate these pro-
cesses in the Zagros forest in western Iran, which is
one of the oldest semi-arid oak forests in the world
influenced by the Mediterranean climate. Zagros has
lost abundant forest area over the last 30 years due to
economic expansion but these forests are critical
because they supports several ecosystem services
such as food, timber, water, carbon storage, air puri-
fication, wildlife habitat and social and cultural ben-
efits (Heidarlou et al. 2019). Our main objective was
to evaluate the effects of plant species and season on
soil physicochemical properties and microbial func-
tion, e.g. soil respiration, microbial biomass and
enzymatic activities. For this study, six woody spe-
cies representative of the semi-arid Zagros forest
were selected. We hypothesized that tree and shrub
growth forms will have different effects on soil pat-
terns, which can be attributed to mass action effect
(e.g. differences in quantity and quality of plant
remains and organic matter) and the availability of
water, plant biomass, litter and soil nutrients during
winter. In addition, trees and shrubs may generate
patchy microclimate conditions which may modulate
the microbial functional response in semi-arid forest.
These heterogeneous conditions would have a

relevant response in the activity and function of soil
microbial communities.

Material and methods

Study area

This study was conducted in a 60-ha area in the central
part of the Zagros Mountain (Sirvan city, western Iran,
33° 44′ 55“N; 46° 25’ 19” E, Fig. 1) with homogeneous
physiographic conditions (slope < 10% and altitude
1900–2000 m.a.s.l.). Forests in this area are typically
formed by relatively spare woody overstorey (basal area
11 ± 5.2 m2 ha−1) with patchy distribution. Tree and
shrub species in the area includeQuercus brantii Lindl.,
Pistacia atlantica Desf., Acer monspessulanum L.
subsp. cinerascens (Boiss.) Yaltirik., Crataegus puntica
C. Koch., L., Amygdalus scoparia Spach., and Lonicera
nummularifolia Jaub & spach. In the study area, the age
of shrub and tree species is approximately 30–70 and
more than 150 years old, respectively. The understory
vegetation is relatively dense and comprised of annual
and perennial grasses and forbs such as Alyssum
marginatum Steud. ex Boiss., Astragalus adscendens
Boiss., Geranium lucidum L., Medicago radiata L.,
Valerianella vesicariaMoench, Neslia apiculata Fisch.,
Hordeum bulbosum L., Gundelia turneffortii L. and
Bromus tectorum L. Mean annual rainfall and tempera-
ture are 428.8 mm and 18.55 °C respectively (Sarableh
climate station, 2009–2018). Precipitation usually oc-
curs during October–May with a maximum during De-
cember to April. During June to September, effective
precipitation is very sparse and rarely recorded (Fig. 2).
Soil in the Zagros Mountains is generally calcareous
shallow (Jazirehi and Ebrahimi 2003). Soil across our
study area was classified as a sandy clay loam. The soil
type in the study area is Calcisols based on FAO
classification.

Experimental design and soil sampling

This study focused on three tree species, i.e. Quercus
branti i (hereinafter indicated as QU), Acer
monspessulanum L. (AC) and Pistacia atlantica Desf.
(PI), and three shrub species, i.e. Crataegus puntica C.
Koch. (CR), Amygdalus scoparia Spach. (AM) and
Lonicera nummularifolia Ja ub & spach. (LO). Five
patches were sampled for each species (total of 30
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patches), which consisted in small groups of individuals
of the same species and same size (Bayranvand et al.
2017). The minimum distance between two adjacent
patches was 40 m. Vegetation patches (≈ 55–240 m2

canopy cover) included 4–5 individuals of the same
woody species, and the size between patches was kept
as less variable as possible. One composite soil sample
(n = 30 × 2 seasons) was randomly collected beneath the
canopy of the central woody species for each patch from

the uppermost 25 cm layer using a cylindrical extractor
with an area of 314 cm2 in spring (May) and winter
(December) in 2018 (Bayranvand et al. 2017; Heydari
et al. 2017b). We focus on this soil depth as soil chem-
ical and biological conditions in the semi-arid environ-
ments is restricted to this uppermost soil layer (Yao et al.
2019). Soils were placed in hermetic boxes and imme-
diately taken to the laboratory. Soil samples were then
divided into two subsamples; one was kept in the

Fig. 1 The study area is located in the Southern Zagros forests in
western Iran (a) and Ilam province, Sirvan County (b). For each
woody species [QU:Quercus brantii), AC: Acer monspessulanum
L. and PI: Pistacia atlantica Desf. and three shrub species, CR:
Crataegus puntica C. Koch., AM: Amygdalus scoparia Spach.

And LO: Lonicera nummularifolia Ja ub & spach.] five patches
(colored squares) were selected in the study site (c). Soil sampling
was done in spring andwinter 2018 in each patch under the canopy
of a central woody species (d) at 0–25 cm depth
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refrigerator (+4 °C) for one 30 days before measuring
microbial and biochemical properties, and the other was
air-dried and passed through a 2 mm sieve to measure
the physical and chemical properties. Additional undis-
turbed soil cores were taken for the determination of
bulk density (BD) in the 0–25 cm mineral layer (Blake
and Hartge 1986).

Laboratory measurements

Soil texture was measured using a hydrometer
(Bouyoucos 1962) and soil water content (WC) was
determined using the gravimetric method (Famiglietti
et al. 1998). Soil pH was measured electrometrically (in
soil: water suspension), while electrical conductivity
(EC) was determined with a conductivity probe in fil-
tered extracts (Kalra and Maynard 1991). Dichromate
oxidation followed by rapid titration was used for soil
organic carbon (OC) determination (Walkley and Black
1934). Lime content as the total neutralizing value
(TNV) were determined by titration with NaOH
(Black 1986). Available calcium and magnesium were
de t e rm in ed u s i ng a t om i c ab so r p t i on and
complexometric titration (Botha and Webb 1952). Soil
microbial biomass carbon (MBC) and microbial

biomass nitrogen (MBN) were analysed by dichromate
digestion in both chloroform-sprayed and non-
fumigated samples (Vance et al. 1987). Soil MBC was
estimated from the carbon concentration (μgC g−1 of
dried soil) of 0.5 M of K2SO4 soil extracts using the
equation (Vance et al. 1987): MBC = 2.64 (A); where A
is the difference in carbon from fumigated and non-
fumigated soils. To obtain the MBN, fumigated and
non-fumigated soil samples were extracted with
K2SO4 and the filtered extract was measured for total
Nitrogen using the Kjeldahl digestion method (Brookes
et al. 1985). Soil basal respiration (BR) was determined
by trapping and measuring emitted CO2 over a 5-day
period (Alef and Nannipieri 1995). Substrate-induced
respiration (SIR) was measured using glucose (1%) as
substrate and evolved CO2 was measured after eight
hours of incubation. Evolved CO2 was adsorbed by
1 M NaOH and measured by titration of 0.1 M HCl
(Anderson and Domsch 1978). The total N discharge (N
extracted by the K2SO4 from the non-fumigated soil
subtracted from the fumigated soil) was divided by the
KN value (N fraction of the biomass extracted after
chloroform fumigation) of 0.54 (Brookes et al. 1985).
Urease activity was measured according to Tabatabai
and Bremner (1972) using a water-urea solution as a

Fig. 2 Average annual
temperature and precipitation
regime in the study area for
comparison between conditions
during the experiment (light black
line, January 2018 to December
2018) and historic records from
the local meteorological station
(thick black line, from 2009 to
2017). The difference is
represented as a grey shadow
(deviation)
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substrate. This activity was determined by the NH4
+

released after a 2-h incubation at 37 °C. The soil alkaline
phosphatase was measured based on the detection of p-
nitrophenol (PNP) released after incubation (37 °C, 1 h)
(Tabatabai and Bremner 1969).

Statistical analyses

Resemblance-based methods were used to analyse mul-
tivariate data in the context of more complex sampling
structures and experimental designs (Clarke and Gorley
2015). Since microbiological soil parameters used in
this study, i.e. (soil enzymes, soil respiration, SIR,
MIE, MBC and MBN) did not meet the assumption of
normality, we analysed the data using a resemblance
matrix for environmental variables (physicochemical
soil properties) and biological data (microbiological soil
parameters). Factor studied were woody species (QU,
AC, PI, CR, AM, LO) and season (spring and winter).
The routines used were first PERMANOVA (Permuta-
tional MANOVA) in which biological data (urease and
phosphatase activities, BR, MBC, MBN, MIE and SIR)
were square root transformed and the resemblance ma-
trix was built using the Bray-Curtis distance. The sums
of squares type were type III (partial) and woody species
and season were considered as fixed effects. The per-
mutation method used was unrestricted permutation of
raw data and the number of permutations was 999.
Secondly, physicochemical soil data was analysed using
non-metric Multi-Dimensional Scaling (MDS) and the
Kruskal stress formula (minimum stress: 0.01) for visu-
alizing the level of similarity of individual cases of a
dataset. Previously to MDS, an analysis of similarities
(ANOSIM), described by Clarke (1993), was developed
for soil physicochemical properties, and multivariate
resemblances were analysed according to the factors
woody species and season. Thirdly, we made a Similar-
ity Percentages (SIMPER) routine for identifying the
physicochemical soil variables primarily discriminating
between woody species. Fourthly, a comparative
(Mantel-type) test on both physicochemical soil proper-
ties and soil microbiological parameters similarity ma-
trices (RELATE) was developed to identify statistical
relationships between environmental and biological da-
ta. Finally, Distance-based linear models (DISTLM)
and distance-based redundancy analysis (dbRDA) were
applied to the biological data being the criterion AICc
used for selection of best model flowing the step-wise
procedure. Statistical analyses were made using

PRIMER V6 software (Clarke and Gorley 2015;
Anderson et al. 2008).

Results

Permanova analyses showed significant statistical differ-
ences among the different woody species (Pseudo-F =
56.31; p = 0.001), season (Pseudo-F = 97.37; p = 0.001)
and their interaction (Pseudo-F = 2.96; p = 0.005) for the
matrix of microbiological soil parameters (urease and
alkaline phosphatase activities, BR, MBC, MBN, MIE
and SIR) (Table 1). Most microbial soil parameters var-
ied among woody species and seasons and higher values
of microbiological soil parameters were generally ob-
served for tree species, i.e. QU, AC and PI, and during
the spring season (Figs. 3 and 4). Similarly, soil microbial
factors were higher during the spring season under shrub
species (AM, CR and LO) although differences between
seasons were lower compared to tree species (Figs. 3 and
4). Specifically, BR was significantly different between
seasons across all species with significant larger values in
spring (P < 0.05, Fig. 3). Similarly, SIR was higher in
spring, but differences were only significant for tree
species (P < 0.05, Fig. 4). Overall, the effect of season
on the microbial parameters was stronger compared to
the plant identity (Table 1).

The ANOSIM analyses showed statistically signifi-
cant differences in soil physicochemical properties
among woody species levels (Global R: 0.86, signifi-
cance level of sample statistic: 0.1%) and between sea-
sons for each woody specie (Global R: 0.43, Signifi-
cance level of sample statistic: 0.1%) (Table S1). The
NMDS analyses clearly separated all woody species
(Fig. 5a) and season levels within species (Fig. 5b). Tree
species QU and AC clustered and were largely ex-
plained by variation in total N, OC and nutrients. Shrub
species such as CR were driven mostly by soil texture
parameters, e.g. clay, silt and sand, C:N, lime and BD
(Fig. 5).

The Similarity Percentages analyses showed the most
important soil properties contributing to the average
square distance for each woody species level
(Table 2). The average square distance for QU plots
was 3.74 and the soil physicochemical properties that
most contributed to similarity of QU plots were BD,
Mg2+, pH, sand and clay properties. In the case of AC
plots, the average square distance was 3.44 and the soil
properties that most contributed to similarity of AC plots
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were BD, silt, Mg2+, pH and clay properties. In the case
of PI plots, average squared distance was 13.44 and the
soil properties that most contributed to similarity of PI
plots were pH, clay, sand, silt and EC. Average square
distance was 3.25 in case of CR plots, being BD, lime,
WC, Mg2+ and Ca2+ the most important variables; and
3.42 for the LO plots, being sand, pH, clay, Mg2+ and
Ca2+ the most important variables. Finally, average
square distance was 2.21 in case of AM plots, being
BD, lime, WC, Mg2+ and Ca2+ the most important
variables (Table 2).

The matched resemblance matrices test (RELATE
test) indicated that soil physico-chemical properties sig-
nificantly correlated with microbiological soil parame-
ters (Rho: 0.43; significance level of sample statistic:
0.1%). According to the distance based linear models
(DistLM), marginal test and sequential test for physico-
chemical soil variables indicated that almost all

physicochemical soil variables influenced soil microbi-
ology when considered isolated (Table 3).

The best model for predicting microbiological
soil parameters was composed by BD, OC, WC,
lime, Mg2+, pH, Ca2+ and Clay % (R2 = 0.75,
AICs = 173.56; Table 4). The RDA analysis for the
microbiological soil parameters showed that the per-
centage of variation explained by axis1 was 72.0%
out of the fitted model and 54.2% out of total
variation whereas the percentage of variation ex-
plained by the axis 2 was 16.8% out of the fitted
model and 12.6% out of total (Fig. 6). The dbRDA1
axis clearly discriminated trees from shrub species.
There was a positive correlation between microbial
parameters, e.g. BR, SIR, MBC and MBN which
accounted for a large variation in the distribution
of samples along axis 1 (Fig. 6a). Samples did not
show a clear clustering for season (Fig. 6b).

Table 1 Permanova and pair-wise test for woody species and season factors in relation to microbiological soil parameters matrix (urease
and phosphatase activities, BR, MBC, MBN, MIE and SIR)

Source df SS MS Pseudo-F P(perm) Unique perms

Species 5 1945.80 389.15 56.31 0.001 999

Season 1 672.95 672.95 97.37 0.001 998

Interaction 5 102.37 20.47 2.96 0.005 998

Residual 48 331.72 6.910

Total 59 3052.8

Pair-wise test among woody species depending of the season

Spring Winter

Groups t P(perm) Groups t P(perm)

QU, AC 4.532 0.012 QU, AC 2.5069 0.009

QU, PI 3.7143 0.011 QU, PI 3.7865 0.012

QU, CR 10.561 0.006 QU, CR 11.138 0.008

QU, AM 15.598 0.013 QU, AM 7.977 0.005

QU, LO 9.2527 0.014 QU, LO 8.0263 0.010

AC, PI 2.9008 0.008 AC, PI 2.7299 0.007

AC, CR 3.0216 0.011 AC, CR 7.8803 0.006

AC, AM 4.7651 0.009 AC, AM 6.1261 0.008

AC, LO 4.4887 0.006 AC, LO 5.8542 0.007

PI, CR 4.3405 0.012 PI, CR 6.6326 0.009

PI, AM 5.7974 0.011 PI, AM 5.7532 0.007

PI, LO 3.9124 0.009 PI, LO 4.3076 0.007

CR, AM 5.6785 0.008 CR, AM 2.2077 0.01

CR, LO 4.8657 0.008 CR, LO 4.9066 0.007

AM, LO 2.8324 0.011 AM, LO 3.5351 0.013

QU, Quercus brantii; AC, Acer monspessulanum; PI, Pistacia atlantica; CR, Crataegus pontica; AM, Amygdalus scoparia; LO, Lonicera
nummularifolia
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Discussion

Overall, our results showed that woody species had a
strong influence on the soil microbial and physicochem-
ical properties, which confirmed our first hypothesis.
Specifically, we found a clear contrast in the enzymatic

activities (i.e. urease and phosphatase), BR and SIR
between trees and shrubs. Woody plants have an unde-
niable role in soil processes and generates different
microclimates conditions that facilitate processes such
as surface runoff reduction and seed trapping efficiency
(Aerts et al. 2006). All these processes promote the

Fig. 3 Boxplots for each microbiological soil parameters accord-
ing to factors (woody species and season). Urease activity
(μgNH4

+ –N g−1 2 h−1), phosphatase activity (μg PNP g−1 h−1)
and basal soil respiration (mg CO2-C kg−1 soil day−1) among
woody species (QU:Quercus brantii, AC: Acer monspessulanum,

PI: Pistacia atlantica, CR: Crataegus pontica, AM: Amygdalus
scoparia, LO: Lonicera nummularifolia) and season (S: spring,
W: winter). Asterisk indicating significant statistical differences
between seasons among species (P(perm) <0.05). A blue and a
green boxplot with the meaning of spring and winter, respectively
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formation of ‘fertile islands’, assisting the establishment
and survival of seedlings in degraded sites (Heydari
et al. 2017b; Avendaño-Yáñez et al. 2018; Urza et al.
2019). Although the effects of particular plant species
on soil properties have been broadly reported (Ayres

et al. 2009; Waring et al. 2015) few studies have exam-
ined the factors that control these aspects. (Bayranvand
et al. 2017; Heydari et al. 2017a).

Our results highlight the effect that woody species
identity can exert on important soil physicochemical and
microbiological parameters and point to the factors driv-
ing these differences. Firstly, the distribution of soil
nutrient is influenced by plant structure, as shown by
the progressive increase in litter content with tree age or
forest management (Lucas-Borja et al. 2016). The
higher organic matter accumulation in unmanaged and
older forests in comparison with younger plant ecosys-
tems may allow higher soil microbiological activity
(Lucas-Borja et al. 2019a). Secondly, a stronger effect
of plant identity can be expected as a consequence of the
irregular distribution of soil nutrients nearby plants in
arid and semi-arid ecosystems (Koch et al. 2007; Allison

Fig. 5 Non-metric
multidimensional scaling
(NMDS) plot according to physi-
cochemical soil variables for
woody species (a) and seasonality
(b)

�Fig. 4 Boxplots for microbiological soil parameters according to
factors (woody species and season). SIR: substrate-induced respi-
ration (mg CO2-C kg−1 soil day−1), MIE: microbial entropy,MBC:
microbial biomass carbon (mg kg soil−1), MBN: microbial bio-
mass nitrogen (mg kg soil−1); QU: Quercus brantii, AC: Acer
monspessulanum, PI: Pistacia atlantica, CR: Crataegus pontica,
AM: Amygdalus scoparia, LO: Lonicera nummularifolia and
season (S: spring, W: winter). Asterisk indicating significant sta-
tistical differences between seasons among species (P(perm) <
0.05). A blue and a green boxplot with the meaning of spring
and winter, respectively
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et al. 2008; Li et al. 2014). This effect has been attrib-
uted to the diverging carbon and nitrogen enrichments
beneath shrub and tree canopies (via litter and
rhizodeposition) driven by the diverse species
(Perroni-Ventura et al. 2006; Chen et al. 2020). In this
study, tree species, i.e. Quercus brantii, and Acer
monspessulanum and Pistacia atlantica showed higher
rates of enzymatic activity, SIR and MBC compared to
shrubs. These microbial parameters were strongly cor-
related to nutrient levels, and particularly related to total
nitrogen, organic carbon and the C:N, in agreement with
other studies (Thompson et al. 2006). Soil water content
and bulk density were among the most significant phys-
icochemical variables driving the activity of microbes
and enzymes in the Zagros forests. Specifically, we
found a negative correlation between bulk density and
carbon and nitrogen, and higher bulk density was found
in shrubs compared to trees. Our findings agree with
recent studies that also found a significant connection
between bulk density and microbial diversity and activ-
ity (Muñoz-Rojas et al. 2016; Liu et al. 2018; Ramírez
et al. 2020). Moreover, the higher BD under the shrubs
is certainly caused primarily by the lower SOC (Lucas-
Borja et al. 2019b). These relationships reflect the

Table 2 Results of the similarity percentages and soil properties contributions to similarity percentages for each tree diversity level

Group QU Average squared distance = 3.47 Group LO Average squared distance = 3.42

Species Contrib% Cum.% Species Contrib% Cum.%

BD (g cm−3) 8.56 BD (g cm−3) 7.64

Mg2+ (meq Lit−1) 13.03 21.59 Lime (%) 8.42 16.06

pH 14.3 35.89 WC (%) 16.28 32.34

Sand (%) 15.77 51.66 Mg2+ (meq Lit−1) 17.25 49.59

Clay (%) 28.13 79.79 Ca2+ (meq Lit−1) 17.82 67.41

Group AC Average squared distance = 3.44 Group CR Average squared distance = 3.25

Species Contrib% Cum.% Species Contrib% Cum.%

BD (g cm−3) 6.34 Sand (%) 9.55

Silt (%) 11.19 17.53 pH 11.16 20.71

Mg2+ (meq Lit−1) 11.75 29.28 Clay (%) 12.53 33.24

pH 14.91 44.19 Mg2+ (meq Lit−1) 13.52 46.76

Clay (%) 28.11 72.3 Ca2+ (meq Lit−1) 15.05 61.81

Group PI Average squared distance = 13.44 Group AM Average squared distance = 2.71

Species Contrib% Cum.% Species Contrib% Cum.%

pH 4.25 Silt 10.17

Clay (%) 5.9 10.15 Ca2+ (meq Lit−1) 10.43 20.6

Sand (%) 13.99 24.14 Lime (%) 11.37 31.97

Silt (%) 20.81 44.95 C:N 12.25 44.22

EC (dS/m) 42.83 87.78 pH 22.93 67.15

Table 3 Marginal test for microbiological soil parameters matrix
according to physicochemical soil matrix. Significant variables in
bold

Variable SS (trace) Pseudo-F P Prop.

pH 174.67 3.52 0.050 0.06

EC 18.90 0.36 0.790 0.01

Mg2+ 121.00 2.39 0.090 0.04

Lime 419.89 9.25 0.001 0.14

OC 532.07 12.24 0.001 0.17

Ntot 960.46 26.62 0.001 0.31

C:N 971.29 27.06 0.001 0.32

Ca2+ 548.22 12.70 0.001 0.18

Sand 78.82 1.54 0.210 0.03

Clay 181.14 3.66 0.040 0.06

Silt 23.20 0.44 0.680 0.01

BD 1287.90 42.32 0.001 0.42

WC 992.01 27.92 0.001 0.32

CS 386.51 8.41 0.001 0.13

OC, Organic carbon; Ntot, Total nitrogen; EC, electrical conduc-
tivity; Ca2+ , available calcium;Mg2+ , available magnesium; BD,
Bulk density; WC, Water content; CS, Carbon sequestration
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positive effect of an improved soil structure and associ-
ated lower rates of surface runoff and soil erosion, on the
soil microbial communities (Xiao et al. 2017). Although
several studies have pointed to pH as a regulator of
microbial activity and composition (Rousk et al.
2010), we did not find a strong relationship between
pH and the soil microbial parameters in tree species.
This can be explained by the calcareous nature of the
substrate found at the study site, so that soils are very
well buffered and any acidification by organic activity is
not detectable (Certini 2005).

Our results also evidenced the critical role of season
as a factor modulating soil microbial properties and
enzymatic activities, which corroborated our second
hypothesis. Both urease and phosphatase activities were
significantly different between spring and winter. Spe-
cifically, we found higher values in spring where higher
temperatures and lower precipitations were recorded.
Nevertheless, differences among shrubs and trees were
species-specific with a marked effect for tree species.
Several studies have documented seasonal variations in
soil enzymatic activity, attributed mostly to patterns in
temperature and/or moisture (Bloem et al. 2005;
Brockett et al. 2012). Temperatures in different seasons
can largely affect organic matter, decomposition of litter
and soil acidity and thus enzymatic activity (Fekete et al.
2011; Baldrian et al. 2013). However, variation reported
in the overall enzymatic activities across seasons has
been largely inconsistent among enzyme types, soil
properties and ecosystems (Salazar et al. 2011;
Veeraragavan et al. 2018). Specific woody species pro-
ducing different amounts of plant residues and tree
canopy cover (Geisseler et al. 2011; Maillard et al.
2019) can in fact change the microclimate conditions
such as understory temperature and humidity (Koch

et al. 2007). Moreover, these differences in litter can
result in different microbial carbon biomass that in turn
will affect the soil enzymatic activity (Singh et al. 2017).

Basal respiration was consistently higher in spring
(with higher temperature and lower moisture compared
to winter) across all the studied species. In semi-arid
ecosystems, water availability is a crucial factor regulat-
ing soil respiration and moderating the influence of
other factors on soil respiration such as temperature
and substrate availability (Yan et al. 2014; Muñoz-
Rojas et al. 2016). The intra- and inter-annual variation
of this water availability is directly connected to the
intensity and frequency of precipitations (Fang et al.
2017). Projected climate scenarios in dryland regions
such as the Zagros forests in Iran, predict extended dry
periods and more irregular rainfall events (Vaghefi et al.
2019). From our results we can then assume that this
increased warming would have large impacts on the
enzymatic activity and soil respiration in these semi-
arid ecosystems. In fact, an increase in soil temperature
and a decrease in soil moisture would negatively impact
soil microbial activity (Muñoz-Rojas et al. 2016).

Overall, our results highlighted the importance of soil
microbial and enzyme activities to assess the variation of
soil characteristics and functions and soil-plant associa-
tions across woody plant species. Soil microbial parame-
ters and enzyme activities have been proposed as relevant
indicators to assess ecosystem recovery following resto-
ration (Muñoz-Rojas 2018). In our study region, the use of
criteria evaluation and relevant indicators has been identi-
fied as a priority for a sustainable forest management
(Nazariani et al. 2017). Thus, the outcomes of this study
may have practical significance for restoration and con-
servation management for the Zagros forest. Our study
evidence that enzyme activities and soil microbial

Table 4 Sequential test for microbiological soil parameters matrix according to physicochemical soil matrix

Variable AICc SS(trace) Pseudo-F P Prop. Cumul. res.df

BD 207.10 1287.90 42.32 0.001 0.42 0.42 58

OC 195.38 365.95 14.91 0.001 0.12 0.54 57

WC 186.05 246.40 11.97 0.001 0.08 0.62 56

Lime 182.53 108.01 5.69 0.001 0.04 0.66 55

Mg2+ 180.12 81.67 4.58 0.010 0.03 0.68 54

pH 178.64 62.78 3.70 0.040 0.02 0.71 53

Ca2+ 175.66 80.92 5.14 0.010 0.03 0.73 52

Clay 173.56 63.97 4.32 0.030 0.02 0.75 51

OC, Organic carbon; BD, Bulk density; WC, Water content; Ca2+ , available calcium; Mg2+ , available magnesium
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parameters can serve as effective indicators of soil func-
tion at landscape or ecosystem scale, but they are also

sensitive to intra-annual changes and plant-specific rhizo-
spheres. We found that both urease and phosphatase

Fig. 6 Redundancy analysis (RDA) analysis graph for microbio-
logical soil parameters matrix according to microbiological soil
matrix (a) and different seasons (b); MIE: microbial entropy, BR:
basal respiration, MBC: microbial biomass carbon, MBN:

microbial biomass nitrogen, SIR: substrate-induced respiration;
QU: Quercus brantii, AC: Acer monspessulanum, PI: Pistacia
atlantica, CR: Crataegus pontica, AM: Amygdalus scoparia,
LO: Lonicera nummularifolia
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activities could be useful to identify hotspots of biological
activity and soil nutrient in semi-arid ecosystems, which
can assist ecosystem recovery (Hu et al. 2016). This is
particularly relevant in areas like the Zagros forest (Arekhi
et al. 2010; Komprdová et al. 2016), where high depen-
dence of human population on forest resources has caused
severe land degradation through deforestation processes
(Heydari et al. 2014; Amiraslani and Dragovich 2011).

Adequate forest management strategies need to be
implemented in arid and semi-arid forests, including our
study area in western Iran. These forests present a high
ecological heterogeneity in terms of woody species
composition and canopy structure, which guarantees
diverse ecosystem services and a high biodiversity level
(Assal et al. 2016; Heydari et al. 2019). However, the
high level of human pressure due to the strong liveli-
hood dependence of people on forest resources gener-
ates different anthropogenic disturbances (i.e. alteration
on vegetation composition or excessive grazing pres-
sure), which are accentuated by climatic and land-use
changes (Plieninger et al. 2011; Heydari et al. 2019).
Having solid information about plant-soil interactions
can help to effectively manage these arid and semi-arid
environments.

Conclusion

Our results evidenced a strong effect of season and
plant species on soil physicochemical and microbi-
ological soil properties in semi-arid forest ecosys-
tems. Soil nitrogen, carbon and bulk density were
the most significant variables driving the activity of
microbes and enzymes in the Zagros forests. Higher
values of microbiological soil parameters, e.g. mi-
crobial biomass and enzymatic activities were gen-
erally observed for tree species, particularly Quercus
brantii, and Acer monspessulanum. Soil microbial
function parameters, including urease and phospha-
tase activities were higher during the spring season
under shrub species although differences between
seasons were lower compared to tree species. This
study highlights the importance of soil microbial
parameters and enzyme activities to assess soil func-
tion and soil-plant interactions. Furthermore, it pro-
vides essential information for maintaining ecosys-
tems’ health and quality through appropriate resto-
ration and conservation management of semi-arid
ecosystems such as the Zagros forests.
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