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Abstract

Aims Metacaspases are cysteine-dependent proteases,
which play essential roles in programmed cell death
(PCD), and caspase-3-like protease is the crucial execu-
tioner. However, its response mechanism to aluminum
(Al)-induced PCD is still elusive.

Methods Here, the type I metacaspase gene in peanut
(Arachis hypoganea L.), AhMCI, was cloned from the
Al-sensitive cultivar ZH2. Physiological and biochemi-
cal methods, as well as gene expression analyses, were
employed to explore its function in Al-induced PCD in
peanut root tips.

Results AhMCI had a 1068-bp open reading frame,
encoding a peptide of 355 amino acids, and the purified
protein exhibited a high caspase-3-like protease activity.
Its expression levels in different tissues of peanut vari-
eties ZH2 and 99-1507 (Al-tolerant) varied under Al-
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stress conditions. The subcellular localization indicated
that AhMCI1 was transferred from mitochondria into the
cytoplasm. Furthermore, overexpressing AZMCI re-
duced the resistance to Al stress. Sense transgenic plants
showed a low relative root growth rate, and reduced
superoxide dismutase, peroxidase, and catalase activi-
ties, compared with wild-type and antisense transgenic
plants under Al-stress conditions, but had a high root-
cell death rate, and increased Al and maleic dialdehyde
contents.

Conclusions The data suggest that metacaspase AhMC1
is a positive factor in Al-induced PCD in peanut root
tips.
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Abbreviations
Al Aluminum
AT Antisense transgenic

CAT Catalase

MC Metacaspase

MDA  Maleic dialdehyde

PCD Programmed cell death

POD Peroxidase

RACE Rapid amplification of cDNA ends
ROS Reactive oxygen species

SOD Superoxide dismutase

ST Sense transgenic

WT Wild-type

Introduction

Aluminum (Al) is an abundant metal on the earth’s surface,
constituting approximately 7% metal content, and its tox-
icity is a major restrictive factor for crop growth in acidic
soils, especially in southern China. Once the soil pH < 5.0,
AP is easily dissolved, resulting in the inhibition of plant
root elongation and induced appearance of programmed
cell death (PCD) (Huang et al. 2014a; Zhan et al. 2013).
PCD is genetically controlled cell death that is activated in
response to environmental stresses in plants. The important
role of caspases in regulating apoptosis in animals strongly
influenced research on PCD in plants, resulting in many
caspase-like activities being detected in plants (Acosta-
Maspons et al. 2014; Coll et al. 2010; Lam and Zhang
2012). However, instead of caspases, metacaspases
(caspase-like proteins, MCs) are involved in PCD events
in plants (Fagundes et al. 2015; Minina et al. 2014).
Plant MCs are divided into two types, I and II, on the
basis of their structure, with the former having an N-
terminal prodomain that is not present in the latter (Choi
and Berges 2013; Fagundes et al. 2015; Lam and Zhang
2012; Tsiatsiani et al. 2011). Evidence suggests that
MCs are involved in signaling, developmental regula-
tion and stress-induced PCD of plants (Fagundes et al.
2015; Huang et al. 2015; Lam and Zhang 2012). Several
MC genes have been identified and play crucial roles in
plant PCD. For example, in Arabidopsis thaliana, three
type I (AtMC1-3) and six type I (AtMC4—-9) genes have
been identified (Tsiatsiani et al. 2011). AtMCI and
AtMC2 antagonistically control hypersensitive
response-triggered PCD (Coll et al. 2010). AtMC1 is a
positive regulator of cell death and depends on the
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conserved catalytic residues, whereas AtMC2 negatively
regulates cell death and is independent of the catalytic
residues (Coll et al. 2010). AtSERPIN]1 is an inhibitor of
AtMC1-mediated cell death and autocatalytic processing
in planta (Lema Asqui et al. 2017).

Among the type Il MCs, AtMC4 is a positive regula-
tor of the biotic and abiotic stress-induced PCD in
Arabidopsis (Watanabe and Lam 2011). AtMC5 medi-
ates apoptosis triggered by oxidative stress or aging in
yeast (Watanabe and Lam 2005). AtMC8’s expression is
strongly upregulated by the oxidative stresses of UVC
and H,O, (He et al. 2008). AtMC9 is required for the
efficient progression of autolysis in xylem cell death
(Bollhoner et al. 2013; Escamez et al. 2016) and PCD
in leaves (Wrzaczek et al. 2015). Additionally, the mcil
gene in Norway spruce (Bozhkov et al. 2005), MC4 in
wheat (Wang et al. 2012), MC9 in pepper (Kim et al.
2013), NbMCA1 in tobacco (Hao et al. 2007) and MCII-
1 in litchi (Wang et al. 2017a) also appear to function in
PCD and defense responses.

Recently, MC genes have been systematically pre-
dicted and identified through genome-wide screening,
including in rubber tree (Liu et al. 2016a), grape (Zhang
et al. 2013), rice (Wang and Zhang 2014), maize
(Ahmad et al. 2012), and tomato (Hoeberichts et al.
2003; Liu et al. 2016b). Thus, MCs are vital regulators
of plant PCD. However, to date, no MC genes have been
reported in peanut.

Peanut, as an important oil crop worldwide, is mostly
planted in acidic soils in China, especially in southern
China. A negative correlation between Al-triggered
PCD and tolerance to Al exists in peanut (Zhan et al.
2013). Different types of caspase-like proteases are ac-
tivated in root tips of peanut during Al-induced PCD,
and caspase-3-like protease is a crucial executioner
(Huang et al. 2014b; Yao et al. 2016). MC proteases
having caspase-3-like abilities have also been identified
in Papaver rhoeas, Arabidopsis and poppy (Chai et al.
2017; Tan et al. 2016; Wilkins et al. 2015). In this study,
we report that AAMCI, a type I MC, enhances Al-
induced PCD in peanut root tips.

Materials and methods

Plant material and treatment

Plant preparation and treatment were performed as
described by Yao et al. (2016) with slight modifications.
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Seeds of peanut cultivars Zhonghua 2 (ZH2, Al-
sensitive) and 99-1507 (Al-tolerant) were incubated in
wet perlite under dark conditions at 26 +2 °C for ap-
proximately 3 d to germinate. Seedlings were cultured in
Hoagland’s nutrient solution (pH 4.2) under a 12- h light
period with a photon flux density of 30—
50 umol m? s~ from daylight fluorescent tubes
(Philips Chinese Ltd., Shanghai, China) at 26+2 °C
when the seedlings had 2- cm long roots (1 d after
germination). When the third leaves emerged, the seed-
lings were pretreated in Hoagland’s nutrient solution
supplemented with 0.1 mM CacCl, (pH 4.2) for 24 h.

For gene cloning, ZH2 seedlings were transferred to
fresh Hoagland’s nutrient solution supplemented with
100 uM AICl; for 12 h, and approximately 1 cm root tips
were removed and placed on filter paper. For real-time
quantitative (RT-q) PCR and western blot analyses, leaves,
stems, and root tips of the two cultivars were sampled at 0,
4,8, 12, and 24 h during the 100- uM AICl; treatment, and
plants not receiving the Al treatment were used as the
controls. Samples from all the experiments were immedi-
ately frozen in liquid nitrogen and stored at —80 °C until
used for RNA and protein extractions. Leaves of tobacco
(Nicotiana tabacum cv. K326) were decontaminated in
0.1% HgCl, (w/v) for 8 min, followed by 5% (v/v) deter-
gent for 15-20 min, and running water for 30 min. Subse-
quently, a sample of 10 cm % 20 cm was taken after four or
five washes in sterile distilled water and cultured on
Murashige and Skoog (MS) medium supplemented with
3% (w/v) sucrose, 0.5% (w/v) agar powder (gel strength:
>1400 g cm 2), and 1.0 mg L' 6-Benzylaminopurine (6-
BA) to induce cluster-buds. To obtain the seedlings, the
cluster-buds were cultured in MS solid medium supple-
mented with 2.5 mg L' 6-BA and 0.5 mg L' 1-
naphthylacetic acid (NAA), and subcultured for 20 d.
The cultures were incubated at 26 +£2 °C with a 16- h/8-
h light/dark photocycle. Leaves were used as explants for
genetic transformations.

Cloning and structural analysis of AhMC1

Total RNA from ZH2 root tips was extracted using the
TRIzol method (Catalog No. 15596-018; Invitrogen Life
Technologies, Carlsbad, California, USA) as described in
the manufacturer’s instructions. A first-strand cDNA tem-
plate for RACE-PCR amplification was synthesized ac-
cording to the manufacturer’s instructions (Catalog No.
1621, TaKaRa Bio, Dalian, China). All the primers for
PCR amplification were designed using Primer Premier

5.0 software (Table S1) and amplified full-length cDNAs.
Each PCR reaction was carried out in a 25- uL final
volume, containing 12.5 pL Taq polymerase Master Mix,
1 puL first-strand cDNA (approximately 10 ng), 1 uL. PCR
primers and 9.5 pl ddH,O. The reaction procedure is
shown in Table S1. The 3'- and 5-RACE reactions were
performed using SMARTer® RACE 5'/3' Kit. The RACE-
PCR products were purified using a Gel Extraction Kit
(Catalog No. DP209, Tiangen Biotech, Beijing, China),
and the amplified products were cloned into vector
pMD19-T (Catalog No. D102A, TaKaRa Bio, Dalian,
China). The resultant recombinant plasmid was trans-
formed into Escherichia coli strain DHS5o and then sent
to BGI Genomics Co., Itd. (Shenzhen, China) for sequenc-
ing. The 3'- and 5'- termination fragments were spliced
together using DNAman (Lynnon Biosoft, San Ramon,
USA) to obtain the full-length AAMCI gene. All the
sequences were analyzed based on non-redundant data-
bases at NCBI (http://www.ncbi.nlm.nih.gov/) using
BLAST. The theoretical molecular weight and isoelectric
point of AhAMCI1 protein were predicted by ExPASy (http:
//web.expasy.org/compute_pi/). Conserved domains were
analyzed using the conserved domain search service at the
NCBI web (http://www.ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi). The subcellular localization
was predicted using PSORT prediction software
(http://psort.hgc.jp/form.html). Transmembrane structures
were analyzed using the TMHMM Server v.2.0
(http://www.cbs.dtu.dk/servicess TMHMMY/). Protein
signal peptides were analyzed using the SignalP 4.1
server (http://www.cbs.dtu.dk/services/SignalP). The
sequence of AAMCI was uploaded to the NCBI
GenBank database under accession number MN400565.
The genomic DNA sequences of AZMC1 were obtained
through a BLASTN search of the genomic databases
(https://www.peanutbase.org/blast/) of Arachis
duranensis and Arachis ipaensis, which are the diploid
ancestors of cultivated peanut (Bertioli et al. 2016), and
verified by PCR. The exon—intron structure of AAMCI
was identified using coding sequence alignments to corre-
sponding genomic sequences.

Multiple sequence alignments and phylogenetic
analysis

MEGA 6.0 (http://www.megasoftware.net) was used to
conduct the phylogenetic analyses of the MCs and
AhMCI1. MC members used for the phylogenetic
analysis were obtained from the GenBank (https://www.
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ncbi.nlm. nih.gov/genbank/) and TAIR (http://www.
arabidopsis.org/) databases. The amino acid sequences of
21 members were aligned using ClustalX 1.83 software,
and the phylogenetic trees were constructed with the
neighbor-joining approach. The bootstrap values, and gaps
and missing data treatments, were set at 1000 replicates
and complete deletion options, respectively.

The MC genes were named using the first letter of the
genus followed by the first letter of the species. Members
of MCs used for phylogenetic analysis were indicated as
following: AtMC1, AT1G02170.1 (A. thaliana); AIMC?2,
AT4G25110; AtMC3, AT5G64240.2; AtMC4,
AT1G79340.1; AtMCS5, AT1G79330.1; AtMC6,
AT1G79320.1; AtMC7, AT1G79310.1; AtMCS,
AT1G16420.1; AtMC9, AT5G04200.1; VaMC3,
XP 017408034.1 (Vigna angularis); AiMCI,
XP 016179981.1 (A. ipaensis); AiIMC3,
XP 016180860.1; AdMC1, XP 015943473.1
(A. duranensis); LaMC3, XP 019426387.1 (Lupinus
angustifolius); CaMC3, XP_004485587.1 (Cicer
arietinum); GmMC1, KRH43894.1 (Glycine max);
MtMCI1, XP_003593211.1 (Medicago truncatula);
VrMC3, XP _014519171.1 (Vigna radiata var. radiata),
CcMCl, XP 020222169.1 (Cajanus cajan); and GsMC1,
AO0AOB2RA4L3 (Glycine soja).

Real-time quantitative PCR analysis

RT-gPCR analyses of AhMCI expression in different
tissues (leaves, stems, and roots) of peanut were per-
formed with SYBR® Premix Ex Taq™ (Bio-Rad
Laboratories, Hercules, CA, USA) using the CFX96™
Real-Time System, according to the supplier’s manuals.
The UBQI0OR gene (accession number EG030441)
(Table S2) was used as the internal control to quantify
the relative transcript levels (Yao et al. 2019). The
primers of AAMCI and UBQIOR are shown in
Table S1. The reactions were prepared in a total volume
of 20 uL containing 10 uL. SYBR® Premix Ex Taq™,
2 puL ¢cDNA, 1 puL each 10- uM primer, and 6 pL
ddH,O0. The relative level of gene expression was cal-
culated using the 22" formula. Three technical rep-
licates were run for each biological sample.

Western blot analysis
Approximately 200 mg of peanut root tips were ground

in liquid nitrogen and then transferred to 500 pL protein
lysis buffer (Catalog No. P0O013B, Beyotime Institute of
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Biotechnology, Shanghai, China) containing 50 mM
Tris—HCI (pH 7.4), 0.15 M NacCl, 10% glycerol (w/v),
0.1% sodium dodecyl sulfate (SDS) (w/v), 1% TritonX-
100 (w/v), 1% sodium deoxycholate (w/v) and 1 mM
phenylmethanesulfonyl fluoride. The extracts were
placed on ice for 20 min, followed by centrifugation at
12,000xg for 15 min at 4 °C. The supernatants were
transferred to a fresh 1.5 mL tube and 6-10 times the
volume of 1:1 acetone:alcohol (v/v) was added. Samples
were centrifuged at 15,000xg for 10 min at 4 °C and
then maintained at —20 °C for 1 h or overnight. The
pellets were redissolved in 100 uL lysis buffer after
being air dried for 10 min. The lysates were either used
immediately or stored at —80 °C. The protein concen-
trations were determined using an enhanced BCA pro-
tein assay kit (Catalog No. P0O010S, Beyotime Institute
of Biotechnology, Shanghai, China) according to the
manufacturer’s instructions.

For western blotting, equal amounts of lysates were
mixed with 4x SDS-loading dyes treated for 10 min at
99 °C and electrophoresed in 12% SDS-polyacrylamide
gels. The separated proteins were transferred to
polyvinylidene fluoride membranes (Catalog No.
IPVHO00010, Millipore, Burlington, MA, USA) using a
trans-blot cell (Bio-Rad) after electrophoresis. The
membranes were blocked with 5% Difco™ Skim milk
(Catalog No. D8340, Solarbio Science & Technology
Co, Ltd., Beijing, China) at least 1.5 h. After washing
three times with 1x TBS-T (Catalog No. T1081-500,
Solarbio Science & Technology Co, Ltd., Beijing, Chi-
na) for 5 min each, membranes were incubated with a
polyclonal primary antibody to the whole AhMCI1 pep-
tide produced by Ab-mart Company (Shanghai, China)
at a 1:500 dilution overnight. After washing three times
in the same washing buffer, for a total of 15 min, each
membrane was incubated with a secondary rabbit anti-
goat antibody conjugated with horseradish peroxidase
conjugate (Catalog No. ZB-2306, ZSGB-Bio, Beijing,
China) at a 1:5000 dilution at room temperature for 2 h.
After several washes with the same washing buffer,
5 min each time, an ECL western blotting analysis
system was used to detect the substrates using an ECL
chemiluminescence kit (Catalog No. CW0049B,
CWBIo, Beijing, China) according to the manufac-
turer’s instructions. The integrated optical densities
(IODs) of the bands produced by western blotting were
analyzed using Gel-pro Analyzer 4.0 software (Media
Cybernetics, Bethesda, MD, USA) (Cheng et al. 2013).
The relative IODs of the bands were calculated using the
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ratios of the IOD of AhMCI protease to the IOD of f3-
Actin protease.

Subcellular localization of AhMC1 determined
by immune-electron microscopy

To investigate the ultrastructural localization and chang-
es after Al treatments, the root tips of ZH2 were treated
with 100 uM AICI; for 0, 4, 8, 12, and 24 h. The root
tips (approximately 2 mm) were fixed in 100 mM phos-
phate buffer (pH 7.2) containing 4% methanol, and
0.5% glutaraldehyde for 2 h at 4 °C. The tissues were
dehydrated in an ethanol series, permeated in a K;M
series at —20 °C and embedded in K4;M araldite resin.
Ultrathin sections were cut with an LKB ultra micro-
tome (8800, LKB, Bromma, Sweden) and collected on
nickel grids for the immune colloidal gold technique.

Grid-mounted tissue sections were processed for colloi-
dal gold immunocytochemistry by incubating the sections
with primary antibody (1:100 dilution), and subsequently
the immunolabeled patterns were visualized with a protein
A-colloidal gold complex (14- nm gold particles). This
was followed by conventional staining with 2% uranyl
acetate in 50% methanol for 10 min and then lead citrate
for 7 min. The sections were examined under a transmis-
sion electron microscope (JEM-1200EX, JEOL, Tokyo,
Japan) operated at 80 KV.

Protein expression, purification and activity assay

Recombinant pET-15b-AAMC1 was transformed into
E. coli strain Rosetta (DE3) (Sangon Biotech Co.,
Ltd., Shanghai, China). The strain cells were cultured
in LB liquid media supplemented with ampicillin
(50 pg mL ") and chloramphenicol (34 pg mL ) at
37 °C with a shaking at 220 rpm for 2-3 h until the
ODgoo value reached 0.4-0.6. They were subsequently
induced using 0.5 mM isopropyl-{3-D-thiogalactoside at
25 °C overnight and then at 37 °C for 4 h with a shaking
at 220 rpm. Subsequently, the cells were pelleted by
centrifugation at 4000xg for 10 min and resuspended
in 500 pL Tris-buffered saline (pH 7.4) containing 8 M
urea, 50 mM Tris-HCI, and 300 mM NaCl. SDS-PAGE
was performed, using 40 pL supernatant mixed with
10 pL 5x protein loading buffer treated for 10 min at
99 °C. After ultrasonication on ice for 20 min, the
supernatant was collected by centrifugation at
12,000xg for 20 min at 4 °C and then purified using
Ni-NTA affinity chromatography as described by Wang

et al. (2017b). Purified AhMC1 was confirmed through
western blotting experiments. Fluorogenic Ac-DEVD-
pNA, as a substrate of caspase-3, was used to measure
enzymatic activities as described previously (Yao et al.
2016).

Tobacco AhMC1 transformation and transgenic plant
confirmation

To investigate the roles of AxMCI in plants, transgenic
tobacco plants were generated. The sense (ST) and
transgenic genes were cloned using cDNA of ZH2 as
the template and the primer pairs shown in Table S1.
The genes were independently inserted into a pBI121-
eGFP vector that contained green fluorescent protein
(GFP), cauliflower mosaic virus 35S (CaMV35S) pro-
moter and nopaline synthase terminator using X%ol and
Spel restriction sites to generate the recombination plas-
mids pBI121-AhMCI-eGFP. Subsequently, the recom-
binant plasmids were independently transformed into
N. tabacum cv. K326 using an Agrobacterium-mediated
transformation method. From 60 putative transgenic
tobacco seedlings, 30 ST plants were propagated in
selective MS culture medium supplemented with
0.5mg L' 6-BA, 0.2 mg L' NAA, and 100 mg L™
kanamycin (Kan), and rooted in 1/2 MS medium sup-
plemented with 0.5 mg L™ NAA and 100 mg L™ Kan.
The transgenic plants were produced using the leaf-disk
infection method in a 100 mg L™ Kan-selection culture.
T1 seedlings were used for transgenic plant confirma-
tion. The green fluorescence of GFP was detected using
a confocal laser scanning microscope with excitation at
488 nm and emission capture at 500-550 nm. Simulta-
neously, genomic DNA was extracted from roots of
transgenic T1 generations and wild-type (WT) tobacco
plants using the cetyl trimethyl ammonium bromide
method with a slight modification (Gilio et al. 2017).
The specific primers used for PCR confirmation are
shown in Table S1, and each PCR reaction was carried
out in a final volume of 25 pL, containing 12.5 pL Taq
polymerase Master Mix, 1 pL first-strand cDNA (ap-
proximately 10 ng), 1 pL PCR primers, and 9.5 pL
ddH,O0.

Assays of relative root growth, cell death and Al content
in transgenic tobacco

The effects of different treatments on root growth, cell
death and Al content were determined as described by
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Yao et al. (2016) in two peanut cultivars. The relative
root growth was determined by measuring the main root
length, and the relative root elongation was calculated
using the following formula: (L4, — Lop) % 100% Lop
where Ly, represents the root length after the 24- h Al
treatment and Lo, represents the initial root length be-
fore the Al treatment.

Assay of caspase-3-like activities in transgenic tobacco

The caspase-3-like activity was determined as described
by Yao et al. (2016). In brief, root tips (1.0+0.1 cm)
were homogenized in lysis buffer (approximately
100 nuL/3—10 mg sample). The homogenate was imme-
diately collected by centrifugation at 12,000xg for
10 min at 4 °C. The supernatant was used for the
reactions or stored at —80 °C. Caspase-3-like activities
were detected using a 100- pL reaction mixture contain-
ing 25 pL extract, 5 pL 2 mM caspase substrate, and
70 uL caspase assay buffer, at 405 nm with a microplate
reader (Tecan Infinite RF200 pro, Swiss) after incuba-
tion under continuous dark conditions at 37 °C for 2 h.
The protein concentration of the extract was determined
quantitatively using the Bradford assay.

RT-qPCR analysis of AZMC]I in transgenic tobacco

The expression of AhMCI in the T1 generation of
transgenic tobacco plants under Al stress was detected
using RT-qPCR. NtActin transcripts (Table S1) were
used as an internal control in tobacco K326 (Pena
et al. 2017) to quantify AhMCI expression. The 35-
cycle reaction was carried out in a total volume of
20 pL, containing 10 pL SYBR® Premix Ex Taq™,
2 uL ¢cDNA, 1 uL of each 10 uM primer, and 6 pL
ddH,O. The RT-qPCR analysis method was the same as
for AhMC1 expression in peanut.

Assays of maleic dialdehyde (MDA), superoxide
dismutase (SOD), peroxidase (POD), and catalase
(CAT) activities in transgenic tobacco

MDA was measured using the thiobarbituric acid
(TBA)-based colorimetric method as described by Phan
et al. (2016). Superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT) activities were determined as
described by Pan et al. (2017). In brief, SOD activity
was determined by measuring the inhibition of photo-
chemical reduction of nitro-blue-tetrazolium at 560 nm,
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and POD activity was determined by measuring the rate
of guaiacol oxidation and monitoring the absorbance at
470 nm. CAT activity was determined by detecting the
decomposition of H,O, and monitoring the decrease in
the absorbance at 240 nm over 3 min.

Statistical analyses

Three repetitions were performed to determine each
value and their standard deviations. Data were analyzed
using IBM SPSS Statistics 19.0 software (Ehningen,
Germany) and presented as the means + standard devi-
ations. The statistical significance was determined using
Student’s ¢ test. The values were plotted using the means
+ standard errors (SEs) of the replications (n = 3). Values
in figures marked with different lowercase and capital
letters are significantly different at 0.05 and 0.01 prob-
ability levels, respectively.

Results
Cloning and structural features of AhMC1

AhMC1 had a 1068-bp open reading frame, encoding a
peptide of 355 amino acids, with a molecular weight and
isoelectric point of 39,669.01 Da and 6.40, respectively.
It contained five exons interrupted by four introns (Figs.
S1 and 1), but no results were generated using PSORT
software online to predict AhMC1’s subcellular locali-
zation. Transmembrane structures and a signal peptide
analysis showed that AhMC1 had no transmembrane
helices nor a signal peptide, indicating that it should
localize on the cytoplasmic matrix or organelle sub-
strate. A comparison of the deduced AhMC1 amino
acid sequence with GenBank and EMBL databases
revealed a high degree of conservation (Fig. S2).

As seen in Fig. S2, the AhMC1 protein contained a
putative conserved caspase-like catalytic domain pepti-
dase C_14 p20 subunit (InterPro accession No.
IPR001309) at the N-terminus and a non-catalytic p10
subunit (IPR002138) in the C-terminal domain. A re-
gion of 42 aa, which was shorter than that of AtMC4-9
in A. thaliana, linked the p20 and p10 subunits. Addi-
tionally, a lesion-simulating disease-1 (LSD1)-type do-
main was also found at the N-terminus, containing two
CXXC-type zinc finger structures (IPR005735). LSD1,
which encodes C,H, zinc finger protein GATA-type
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exon1 exon2

exon4 exons

_ _ - - . 2425(bp)

1 194 551 79 1135

1222 1341

5 infon1 inton2

1963 2156 2234 2292

inton3 inton4 3

Fig. 1 Exon-intron structures of AhMC1 gene. The exons are showed with orange boxes and introns by black lines. Numbers show the

length of gene’s exons and introns in bp

transcription factors, negatively regulated the hypersen-
sitive response (Fig. S2). These features indicated that
AhMCI belonged to the type I MC family defined by
Fagundes et al. (2015).

Data obtained from the phylogenetic analysis of
AhMCI1 using MEGA 6.0 software (Fig. 2) revealed
two different types (I and II) in the phylogenetic tree.
Type I consisted of 15 members, including AhMCI,
AtMC1-3 and AAMCl, while type II contained 6 pro-
teins, AtMC4-9.

AhMC] expression was induced by Al stress in peanut

The AhMCI protein has three forms: native form of
approximately 39 KD and two activated forms of 19
KD and 17 KD, which could be detected at the same
time (Martinon and Tschopp 2004). The expression of
different forms of AhMC1 protein occurred in the root
tips of ZH2 and 99-1507 (Fig. 3). For ZH2, the

© AhMC1

® GsMC1-Glycine soja AOAOB2R4L3 =
® GmMC1-Glycine max KRH43894.1

® CcMC1-Cajanus cajan XP_020222169.1

® \IMC3-Vigna radiata var. radiata XP_014519171.1
® LaMC3-Lupinus angustifolius XP_019426387.1
® CaMC3-Cicer arietinum XP_004485587.1

® MtMC1-Medicago truncatula XP_003593211.1

® AIMC1-Arachis ipaensis XP_016179981.1 =
® AdMC1-Arachis duranensis XP_015943473.1

expression levels of the activated forms were greater
than the native form (Fig. 3a and b). In contrast, the
expression levels of the activated forms in 99-1507
were lower than the native form (Fig. 3c and d). As
treatment time increased, the expression levels of all
AhMC 1 -protein forms first increased and then de-
creased. In addition, the highest expression levels,
whichwere0.19,3.57,and 3.15, respectively, occurred
at 12 h after treatment (Fig. 3b). For 99-1507, the
expression of the AhMC1 protein showed an overall
upward trend under Al-stress conditions (Fig. 3¢). Sig-
nificant differences were observed between Al-treated
and control samples, with the native form reaching a
maximum 0.36 at 24 h (Fig. 3d). Thus, the activated
protein expression level in ZH2 at 12 h was significant-
ly higher than in 99-1507 and the native form of the
AhMCI protein in ZH2 was more easily cleaved and
activated, thereby inducing PCD, compared with than
in 99-1507 under Al-stress conditions.

Leguminosae

1 adAL

® AIMC3-Arachis ipaensis XP_016180860.1
- \VaMC3-Vigna angularis XP_017408034.1
AtMC3-Arabidopsis thaliana AT5G64240.2
\_,—o AtMC1-Arabidopsis thaliana AT1G02170.1

AtMC2-Arabi isthaliana AT4G25110 =
o AtMC9-Arabi isthaliana AT5G04200.1 |
©® AtMC8-Arabidopsis thaliana AT1G16420.1

® AtMC7-Arabidopsis thaliana AT1G79310.1 L
® AtMC6-Arabi isthaliana AT1G79320.1
AL‘{:o AMC4-Arabidopsis thaliana AT1G79340.1
-® AtMC5-Arabidopsis thaliana AT1G79330.1

Arabidopsis thaliana

11 edAL

—
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Fig. 2 Phylogenetic relationships of the metacaspase family pro-
teins from peanut and other plant species. The phylogenetic tree
was constructed using the Neighbor-Joining method using MEGA
6.0 software. The caspase gene Caspl (NM_009807.2) from Mus
musculus was used as an outgroup to root the tree. Bootstrap
values shown at the nodes were set to 1000 replicates, and branch
lengths corresponding to the divergence of sequences are indicated
by the relative scale (0.2 weighted sequence divergence). Two

Arabidopsis thaliana

groups were indicated. The acronym of metacaspase genes were
named using the first letter of the genus followed by the first letter
of the species: AdMC(Arachis duranensis) Metacaspase;
AhMC(Arachis hypogaea); AiMC(Arachis ipaensis); AtMC
(Arabidopsis thaliana); CaMC (Cicer arietinum); CcMC(Cajanus
cajan); GmMC (Glycine max); GsMC(Glycine soja); LaMC
(Lupinus angustifolius); MtMC(Medicago truncatula); VaMC
(Vigna angularis), ViMC(Vigna radiata var. radiate)
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Fig.3 Expression of AhMC1 in ZH2 and 99-1507cultivar under 100 uM AICl; treatment for 0, 4, 8, 12, 24 h. a, Immunoblotting of ZH2; b,
Relative IOD of the bands in ZH2; ¢, Immunoblotting of 99-1507; d, Relative IOD of the bands in 99-1507

Subcellular localization of AhMC1

AhMCT1’s subcellular localization changed as Al expo-
sure time increased. Limited colloidal gold particles
were found in the nuclear membranes of meristematic
cells in peanut root tips not exposed to the Al stress,
indicating that the synthesis of AhMC1 protein was very
low (Fig. 4a—c). Greater amounts of colloidal gold par-
ticles were distributed in the nuclear membranes after
4 h of the 100 uM AIClI; treatment (Fig. 4d). Likewise,
limited colloidal gold particles were observed in both
the cytoplasm and mitochondria under the same condi-
tions, having disperse distributions (Fig. 4¢). Moreover,
a great amount of AhMC1 was also observed in the
nucleus, cytoplasm, mitochondria, and cell wall, with
clustered distributions after 8 h of the Al treatment (Fig.
4f-h). However, after 24 h of treatment, there was less
AhMCI protein in the mitochondria, but more AhMCI
protein in the cytoplasm, indicating that the AhMCI
protein transferred from mitochondria to cytoplasm
and accumulated in the cytoplasm during Al stress
(Fig. 41 and j). Limited gold particles appeared in nuclei
and cell walls (Fig. 4i and j). The AhMC1 polyclonal
antibody was replaced by normal rabbit serum in the
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negative control, revealing that no gold particles were
located on mitochondria, cytoplasm, nucleus, cell wall,
or other parts of meristematic cells (Fig. 4k and ).

Protein expression, purification and activity assay

A large amount of soluble AhMCI1 fusion protein was
produced by inducing E. coli Rosetta (DE3) cells bear-
ing pET-15b- AhMCT1 in LB liquid media with 0.5 mM
isopropyl-3-D-thiogalactoside for 8 h at 20 °C. The
purified AhMCI protein exhibited high caspase-3-like
protease activity, which was much greater than that in
the ZH2 root tip cells (Fig. 5).

Construction of transgenic tobacco plants

All the seedlings were produced following co-
cultivation of WT calli with Agrobacterium tumefaciens
carrying both AZMCI and GFP genes. PCR analysis
and green fluorescence protein detection confirmed that
AhMCI had been transformed into tobacco and stably
inherited (Fig. 6). PCR indicated that 25 ST and 21 AT
plants contained both the AhMC1 and GFP genes (Fig.
6a). The transformation efficiencies were 83.33% for ST
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Fig. 4 Subcellular localization of AhAMC1 by immune-electron
microscopy in root tips of ZH2. a-¢, 100 umol/L AICl; treatment
for 0 h (a: x40,000; b-¢: x60,000); d-e, 100 pmol/L AICl; treat-
ment for 4 h (x60,000); f-h, 100 wumol/L AICl; treatment for 8 h
(x60,000); i, 100 umol/L AICl; treatment for 12 h (x60,000); j,

100 pmol/L AICl; treatment for 24 h (x60,000); k-1, Negative
control (k: x60,000; 1: x40,000). Black arrows showing gold
particles. N, Nucleus; NW, Nuclear membranes; CW, Cell wall;
M, Mitochondria; G, Golgi apparatus; tER, Rough endoplasmic
reticulum
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Fig. 5 The caspase-3-like protease activities in root tip cells of
ZH2 and pET-15b-AhMCI protein. Values are present as the
mean =+ SD of three biological replications

plants and 70% for AT plants, respectively, based on
Kan resistance (data not shown). The GFP gene in T1
transgenic and WT tobacco plants was observed under a
confocal laser scanning microscope and revealed that
only transgenic plants produced green fluorescence (Al
and A3, Fig. 6b).

Fig. 6 Identification of a
transgenic tobacco plants. a.
Identification of AhMC1 and
GFP gene by PCR. Lines from
left to right: lanes 1-4, sense
transgenic plants; lanes 5-8,
antisense transgenic plants; lane
(—), negative control
(untransformed plants); lane (+),
positive control (the Pbil21-
AhMC1-eGFP plasmid); lane M,
(DL2 000 marker). b. Green
fluorescence detected in root tips
of transgenic plants and the con-
trol by laser scanning confocal
microscope. Bar=100 um. Al:
Fluorescent field of transgenic
tobacco; A2: Bright field of
transgenic tobacco; A3: Merge
field of transgenic tobacco; A4:
Fluorescent field of wild-type to-
bacco; AS: Bright field of wild-
type tobacco; A6: Merge field of
wild-type tobacco. Bar =100 pm
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In addition, the phenotypic differences among WT,
ST, and AT plants in T1 were analyzed. The plant types
and florescence were almost similar among WT and ST,
AT. Compared with WT, ST and AT plants had shorter
petioles and smaller leaf blades, but there was not dis-
tinct difference between ST and AT (Fig. 7a and b).

AhMC] enhanced Al-induced PCD by increasing
the caspase-3-like activity

Caspase-3-like activities were monitored in this study to
elucidate the function of AhMCI1 accumulation. As
shown in Fig. 7c, a significant increase in the caspase-
3-like protease activities in root tips of WT, AT, and ST
tobacco was observed after Al treatments. The caspase-
3-like activity increased along with the Al concentra-
tion, but there were no obvious differences between the
100- and 200 uM AICI; treatments. The caspase-3-like
activity in ST (5.27 umol:pNA-ug ' protein) was sig-
nificantly greater than those in AT (2.22 umol-pNA-pg ™’
protein) and WT (3.53 pumol-;pNA-pug ™" protein) plants

1 2 3 45 6 7 8

() (+) M

1. 2 3 .4 5 6 7 8
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Relative expression level

Fig. 7 The phenotype of transgenic (ST, sense transgenic, AT,
antisense transgenic) and WT (wild type) tobacco in T1 genera-
tion. a. the whole plants; b. the leaves(from left to right: WT, ST,

after 24- h 100 uM AICl; treatment, which represented
3.21-, 1.44-, and 2.39- fold increases compared with the
control (P value <0.01), respectively.

Likewise, the same change trend of AhMC1 expres-
sion in ST, AT, and WT plants occurred with the same
Al treatment (Fig. 7d). The expression of AhMCI in-
creased more steadily and rapidly in root tips treated
with greater Al concentrations in ST compared with AT
and WT plants, and there was no remarkable difference
between AT and WT plants receiving the same treatment
(Fig. 7d). Thus, AhMC1 appeared to enhance Al-
induced PCD in peanut root tips, which may be trig-
gered by an increased caspase-3-like activity.

Overexpression of AhMC1 decreased resistance to Al
stress

Al significantly inhibited root elongation in ST to-
bacco (Fig. 8a). Compared with the control, 50 uM
Al could significantly inhibit the elongation of roots
in ST plants, and the relative root elongation (RRE)
was decreased by Al treatments. However, this Al
treatment did not affect AT and WT plants. A 24- h
treatment with 200 uM AICl; produced RRE values
in ST, AT, and WT of 58.07%, 66.52% and 66.22%,
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AT); c. Caspase-3-like activity under Al treatments; d. Relative
expression level under Al treatments

respectively, compared with untreated plants (Fig.
8a). Thus, the overexpression of AhMC1 decreased
root elongation.

The integrity of the cell membrane during Al stress
was evaluated using the nonpermeable dye, Evans blue.
Al significantly increased the cell death of the mem-
brane to differing degrees. Compared with the control,
50 uM AICl; rapidly increased root tip cell death in ST
plants, which was significantly greater than in AT and
WT plants. When root tips were treated with 200 uM
AICl; for 24 h, there were up to 1.19- and 1.15- fold
increases in the cell death in ST plants overexpressing
AhMCI compared with AT and WT plants (Fig. 8b).
Therefore, ST plants had greatly increased levels of cell
death.

Al accumulation in root tips was detected using an
inductively coupled plasma optical emission spectrom-
etry technique. As shown in Fig. 8c, significant in-
creases in Al accumulation in root tips were observed
as Al concentrations increased, especially in ST plants.
However, compared with AT and WT plants, the Al
contents of ST plants were the greatest at the same
concentrations. There were significant differences be-
tween ST and both AT and WT, but there was no
significant difference between AT and WT plants.
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Fig. 8 Relative root length (a), root cell death (b), and Al content
(c) in transgenic and WT tobacco plants under Al treatment

AhMC1 enhanced Al-induced PCD by changing
the ROS capacity

To investigate the alteration in the redox status after Al
treatments, the lipid peroxidation levels in root tips were
assessed by measuring the MDA contents. There were
no significant differences in the MDA content among
ST, AT and WT not receiving an Al treatment. Signifi-
cant changes in the lipid peroxidation level were ob-
served initially after a 24- h 50 uM AICl; treatment. The
differences in the MDA contents in ST and WT plants
was approximately 1.8- fold at 24 h after the 200 uM
AICl; treatment. Likewise, there was no significant
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difference in the MDA contents of AT and WT under
Al stress conditions (Fig. 9a). The activities of some
antioxidant enzymes were monitored in this work to
elucidate the function of AhMC1 accumulation in ST,
AT and WT plants. The activities of SOD, POD, and
CAT markedly and steadily increased along with the Al
concentration compared with the control, but the degree
of increase in ST plants was minimum (Fig. 9b—d). The
transgenic ST plants showed significantly lower SOD,
POD, and CAT activities than those of AT and WT
plants after a 24-h 200 uM AICI; treatment.

Discussion

MCs are widespread in the Viridiplantae and are divided
into two types (I and II) based on amino acid sequence,
which have similarities to metazoan “initiator” and “ex-
ecutioner” caspases, respectively (Hill and Nystrom
2015; Uren et al. 2000). In this study, the full-length of
ARMCI in peanut was cloned and characterized. A
sequence alignment analysis showed that the amino acid
sequence of AZMC1 had high homology with those
from other species, especially Leguminosae family
caspase-like proteases, and this indicated that AZMC1
was a MC member. In Arabidopsis, both proline
(AtMC1 and AtMC2) and glutamine (AtMC3) were
enriched in predicted N-terminal prodomains, which
represent upstream “initiator” caspases in mammalians
and might be responsible for protein—protein interac-
tions between MCs and/or other signaling complexes,
leading to subsequent MC activation (Vercammen et al.
2004). Fagundes et al. (2015) hypothesized that the
acquisition of the zinc finger domain occurred later
during MC gene family’s evolution, and they reported
a distribution of 259 type I and 113 type II MCs in 42
plant species. The exon-intron structures in tomato (Liu
et al. 2016b), rubber tree (Liu et al. 2016a), and rice
(Wang and Zhang 2014) also supported type I MCs
having greater intron numbers and short final exons in
comparison with type II MCs. Here, the prodomain of
AhMCI protein was enriched with proline, indicating
that it might have similar function to those of AtMCI1
and AtMC2 (Tsiatsiani et al. 2011). In conclusion, we
hypothesize that AhMCl is a typical member of the type
I MCs.

It is likely that MCs carry out various functions. In
recent decades, some MC genes have been cloned and
characterized, and PCD occurs in response to various
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Fig. 9 Activities of MDA (a), SOD (b), POD (c¢) and CAT (d) in transgenic and WT tobacco plants under Al treatment

pathogens and elicitors, as well as abiotic stresses, in
different species (Cao et al. 2012; Coll et al. 2014; Hao
et al. 2016; Watanabe and Lam 2011; Wang et al.
2017b). The expression specificity of MCs in cells
undergoing PCD was various in different tissues and
organs of plants, such as Arabidopsis, rice, rubber tree,
and grape (Kwon and Hwang 2013; Liu et al. 2016a;
Wang and Zhang 2014). MCs became more active after
the generation of signals leading to PCD, such as BAX
expression, fungal pathogen attack (Wang et al. 2012),
and ultraviolet light and H,O, exposure (He et al. 2008).
Liu et al. (2016b) showed that type I MCs (MCI-6)
were significantly expressed in the roots of tomato dur-
ing abiotic stress- or ethylene-induced PCD. In this
study, AhMCI was highly expressed under Al-stress,
and this was consistent with the expression levels of
MCs in rice and tomato (Fig. 3a). Notably, the expres-
sion of AAMC1 was in accordance with the occurrence
of Al-triggered PCD and the activity levels of caspase-
like proteases in peanut. Caspase-like proteases were
activated during Al-induced PCD in peanut root tips,
and there was a positive correlation between PCD and
exposure time (Yao et al. 2016; Zhan et al. 2014).
Therefore, we focused on the role of caspase-like prote-
ases in Al induced PCD. MCs exhibit a caspase-3-like
protease activity (Chai et al. 2017; Li and Franklin-Tong

2008; Tan et al. 2016; Wilkins et al. 2015). Here, there
was a change between caspase-3-like protease activity
and AZMC1’s expression level during Al-induced PCD,
which further verified that AZMC1 has a caspase-3-like
protease activity. Additionally, the purified AhMCI
protein which was expressed in E. coli Rossetta (DE3)
cells also exhibited a high caspase-3-like protease activ-
ity (Fig. 5). Moreover, it is striking that both MC ex-
pression and caspase-like activity, possibly acting in the
same signaling cascade, are required for effective PCD.
Zhao et al. (2013) reported that the downregulation of
NtCYS, a cystatin-regulating NtCP14, or the overexpres-
sion of NtCP14, a papain-like Cys protease, increased
the caspase-like activity and caused premature PCD in
tobacco. This suggests that AhMC1 promotes PCD un-
der Al-stress and is likely involved in the caspase-like
protease signaling cascade.

Subcellular localization is critical in determining the
mode of action for plant MCs. The subcellular localiza-
tion of AhMC1 during Al-induced PCD was examined.
AhMCT’s subcellular localization changed as Al expo-
sure time increased. Thus, the AhMCI1 protein may
transfer from mitochondria to cytoplasm and accumu-
late in cytoplasm during Al-stress conditions.
Arabidopsis MC9 was also present in the apoplast,
nucleus, and cytoplasm, and its subcellular localization
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changed during the late autolysis process (Bollhoner
et al. 2013; Tsiatsiani et al. 2013). However, it was
previously reported that OsMCS, -6, and -8 were exclu-
sively localized in the cytoplasm without any localiza-
tion in the nucleus (Huang et al. 2015). Our studies
indicated that a potential cascade of cellular events
occurs during Al-induced PCD via mitochondria-
dependent pathways. Additionally, ROS is involved in
regulating Al-induced PCD (Huang et al. 2014b). In this
mechanism, including ROS bursts and caspase 3-like
protease activity, AhMCI1 protein probably participated
downstream of the signal transduction pathway. More
studies need to be performed.

Overexpressing AhMC1 in tobacco resulted in plants
being less tolerant to Al stress. The T1 generation of
AhMC]1 transgenic tobacco plants showed diverse resis-
tance levels, which indirectly indicated a function for
AhMCI gene in Al-stress responses as assessed by PCD
indexes and physiological traits. Wang et al. (2009)
reported that Caenorhabditis elegans apoptotic suppres-
sor Ced-9, a Bcl-2 homologue, inhibited both Al-
induced PCD and Al-induced activity of caspase-like
vacuolar processing enzyme, a crucial executioner of
PCD, in tobacco. Ced-9 significantly alleviated Al’s
inhibition of root elongation, decreased Al accumulation
in the root tips, and greatly inhibited Al-induced gene
expression in early responses to Al, leading to the en-
hanced Al tolerance of tobacco plants. There is also a
negative correlation between Al-induced PCD and Al-
resistance in peanut (Huang et al. 2014a; Zhan et al.
2013). Here, we showed that ST plants had shorter roots,
and higher Al contents, as well as cell death, AhMC1
expression, and caspase-3-like activity levels, than WT
and AT plants under Al stress (Figs. 7c and d, 8a—c). A
critical level of activated MC was needed to trigger Al-
induced PCD, while in MC-overexpression plants this
level was reached at a higher dose, which could promote
the occurrence of PCD. The results indicate that AhMC1
induces PCD as a trigger under Al stress.

MDA content was an indicator of the level of lipid
peroxidation damage that resulted from oxidative stress-
es (Bailly et al. 1996). The MDA content of ST plants
was significantly greater than those of AT and WT plants
after Al treatments. This indicated that lipid peroxida-
tion damage induced by Al was more serious in ST
plants than in AT and WT plants. Al induces ROS bursts
in mitochondria, which is an important component of
the plant’s reaction to toxic Al effects (Matsumoto and
Motoda 2013). POD, CAT and POD activities treated
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with high AICI; (>100 uM) were significantly lower in
ST plants than in WT plants (Fig. 9b—d), which indicat-
ed that the overexpression of AZMC1 inhibited the an-
tioxidant defensive reactions and affected the efficiency
of the ROS scavenging system against ROS-mediated
injury under Al stress. Additionally, the overexpression
of AhMCI might have played a key role in improving
ROS accumulation by inhibiting the activities of the
SOD, POD, and CAT enzymes.
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