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Abstract

Aim We aimed to explore the general response patterns
of plant biomass allocation to grazing disturbance and to
test two important hypotheses, optimal partitioning and
isometric allocation, for explaining potential
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mechanisms by which grazing controls biomass distri-
bution in an alpine grassland on the Tibetan Plateau.

Methods We identified 57 relevant papers about grazing
on the Tibetan Plateau, from which 366 data sets suit-
able for the meta-analysis were extracted. Effect sizes
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were assessed by computing natural log-converted re-
sponse ratios of response variables. Percentage change
relative to control was used for each estimate of grazing
effects.

Results The aboveground biomass, soil water content
(SWCQ), soil organic carbon, soil total nitrogen, and soil
total phosphorus significantly decreased with increased
grazing intensities, while plant species richness (SR),
soil bulk density (SBD) and the ratio of root to shoot
exhibited the opposite tendency. Belowground biomass
(BGB) showed no significant differences under light
and high grazing intensities while apparently increased
under moderate grazing intensity (MG) that verifies the
biomass transfer hypothesis. BGB was positively related
to SBD and SR but was negatively associated with
SWC.

Conclusions The biomass transfer in MG supports the
optimal partitioning hypothesis that plants partition bio-
mass among various organs to maximize growth rate
responding to environmental stress. The findings sug-
gest that the primary mechanisms leading to the en-
hancement of BGB in MG are compensatory growth
of individual plants, a dwarfing tendency within the
plant community, a significant increase in species rich-
ness, and changes in soil microbial communities
resulting from grazing.

Keywords Alpine grassland - Arid region - Grazing -
Meta-analysis - Biomass transfer hypothesis

Introduction

The Tibetan Plateau, more than 85% covered by alpine
grassland, holds approximately 44% of the total grassland
in China (Piao et al. 2012), which is equal to 6-8% of the
global grassland area, and accounts for 9-16% of the total
world grassland carbon stocks (Ni 2002). Moreover, the
alpine grassland ecosystem is of great importance for
ecological security in China (Li et al. 2014). This ecosys-
tem is highly sensitive to climate change and anthropogen-
ic activities, due to the extremely harsh environment and
unique alpine climate (Chapin et al. 2008; Sun and Wang
2016). Nevertheless, grazing is the major human activity in
alpine grassland on the Tibetan Plateau and plays a crucial
role in supporting the livelihood of Tibetan herdsmen
(Dong et al. 2010; Feng et al. 2010).

Grazing is considered to have extensive and pro-
found effects on alpine grassland ecosystem succession

@ Springer

by causing remarkable changes in the composition and
structure of plant communities (Sun et al. 2018; Sun
etal. 2014). Livestock numbers have recently expanded,
intensifying the grazing pressure, as a result of rapid
economic development and population increases since
the late 1970s (Yan et al. 2013). A report showed that the
overgrazing rates in Tibet, Qinghai, Sichuan, and Gansu
provinces were 38%, 25%, 37% and 36%, respectively
(Zhang et al. 2014). Overgrazing has led to serious
degradation and made the fragile alpine grassland eco-
system more sensitive to climate changes (Lu et al.
2015; Sun et al. 2014).

Vegetation biomass acts as the major source of soil
carbon (C) input, regulating terrestrial ecosystem C
cycling and storage (Li et al. 2014; Ma et al. 2008;
Sun et al. 2013). Aboveground and belowground com-
ponents of plants are closely related, and their interac-
tions greatly influence ecosystem processes and func-
tions (Bardgett et al. 2005; Fan et al. 2015; Wardle et al.
2004). As an important parameter of plant physiological
ecology (Mokany et al. 2006), biomass allocation rep-
resents photosynthate allocation between aboveground
and belowground biomass (BGB), which could reflect a
plant’s adaptation to habitat and disturbance after a long-
term life history (Shipley and Meziane 2002). Informa-
tion about vegetation biomass and allocation changes in
response to grazing is of great value not only for the
development of better grazing management practices
and protection of grasslands (Dong et al. 2015) but also
for the assessment of terrestrial ecosystem C budgets
(Dong et al. 2010).

Some scholars have determined that grazers should
be managed differently in different regions to mitigate
greenhouse gas emissions (Mcsherry and Ritchie 2013).
Additionally, numerous studies have explored the im-
pacts of grazing on vegetation biomass and allocation.
For example, grazing has shown positive (Mcnaughton
1979, 1983; Milchunas and Lauenroth 1993), negative
(Chen et al. 2006; Yan et al. 2013), or no (Mcnaughton
et al. 1989) effects on aboveground biomass (AGB), as
well as increased (Mcnaughton 1979, 1983; Milchunas
and Lauenroth 1993) or decreased (Biondini et al. 1998;
Yan et al. 2013) BGB in different investigations. Nev-
ertheless, researchers generally accept the grazing opti-
mization theory, which suggests that vegetation biomass
can exhibit a unimodal pattern with plant compensatory
growth increasing as a consequence of grazing intensity,
reaching a peak value at a moderate rate of herbivory
(Dyer et al. 1986; Hilbert et al. 1981; Yan et al. 2013).
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However, the regulating mechanisms by which
plants respond to grazing disturbance are still much
debated (Sun et al. 2014; Yan et al. 2013). Two impor-
tant hypotheses of biomass allocation, optimal
partitioning and isometric allocation, have been pro-
posed (Mccarthy and Enquist 2007; Miiller et al. 2000;
Sun and Wang 2016). The optimal partitioning hypoth-
esis states that plants partition biomass among various
organs to maximize growth rate in response to environ-
mental stress (Bloom et al. 1985; Chapin et al. 1987;
Sun et al. 2014). For instance, the optimal partitioning
hypothesis proposes that plants experiencing arid and
barren soil conditions should reduce the proportion of
AGB and allocate more photosynthetic products to be-
lowground parts to maximize water and nutrient uptake,
whereas under ample water supply plants should allo-
cate more to the aboveground portion to maximize plant
growth to better access light resources (Dukes et al.
2005; Ma et al. 2010). Conversely, the isometric alloca-
tion hypothesis proposes that there is an isometric net
primary productivity ratio of roots to shoots based on
individual plant size, regardless of plant species or com-
munity types (Cheng and Niklas 2007; Enquist and
Niklas 2002).

In fact, both hypotheses have some limitations and
are debated. Although the optimal partitioning hypoth-
esis emphasizes the impact of environmental factors on
plants’ photosynthate allocation, it does not account for
individual plant size (Mccarthy and Enquist 2007). As
for the latter, the isometric allocation hypothesis con-
siders vegetation biomass allocation as size-independent
but cannot explain how environmental factors influence
photosynthate allocation (Genard et al. 2008). Sun et al.
(2017) proposed a “self-restraint combined with envi-
ronment self-adaptation” hypothesis, where biomass al-
location would follow the optimal partitioning hypoth-
esis under environmental stress while complying with
the isometric allocation hypothesis when environmental
resources are sufficient. Biomass allocation is often, but
not always, mediated by environmental factors; for in-
stance, previous studies have suggested that biomass
allocation patterns are system-specific and change along
with the composition of plant species once the system is
subject to anthropogenic disturbance (Der Maarel et al.
1989).

To date, no conclusion has been drawn on whether a
uniform theory is applicable for describing the variation
in biomass allocation in response to different grazing
intensities in the cold and sensitive alpine grassland

ecosystem. We hypothesized that there would be a bio-
mass transfer from aboveground to belowground under
a certain intensity of grazing stress, based on the optimal
partitioning hypothesis. Thus, a meta-analysis was per-
formed to explore the general response patterns of veg-
etation biomass and allocation to different grazing in-
tensities on the Tibetan Plateau. We aimed to test the two
abovementioned opposing hypotheses and answer the
following questions: (i) does the hypothesis-suggested
biomass transfer occur in response to grazing distur-
bance? (ii) what are potential mechanisms by which
grazing disturbance drives variation in biomass alloca-
tion? The answers would provide a valuable ecological
understanding of the effects of different grazing strate-
gies and are meaningful for appropriate management of
livestock and grassland on the Tibetan Plateau.

Materials and methods
Data collection

In this paper, ISI Web of Science and China National
Knowledge Infrastructure (1990-2019) were used to
collect research literature on grassland grazing experi-
ments on the Tibetan Plateau. The Tibetan Plateau is
located in southwest China, starting from Kunlun moun-
tain range in the north, ending in Qilian mountain range
in the northeast, Hengduan mountain range in the east,
and Himalayan mountain range in the southwest. The
topographic areas mainly include the northern Tibet
plateau, the Qaidam basin, the Brahmaputra valley (the
southern Tibet valley) and a series of mountain ranges
(Wang et al., 2006). The following key words were used
to select the studies: grazing, Tibet Plateau, grassland
biomass, grassland productivity, and soil environment.
Studies were included based on the following criteria:
(1) the experimental data must have been collected from
field experiments of grazing on the Tibetan Plateau; (2)
the experiments had to have included grazing and con-
trol treatments, and the grazing patterns were obviously
indicated in the description of the grazing treatment (i.e.,
grazing intensity, grazing model and grazing with soil
depth); (3) the biomass and soil environment were stud-
ied during the peak growing season; and (4) each pre-
liminary study gave the mean, standard deviation (SD)
and/or standard error (SE), and confidence intervals for
grazing and control conditions. In addition, we assem-
bled background information related to the data from
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each article and conducted detailed analysis and com-
parisons. For instance, the grazing intensities and soil
depths were collected from journal articles. We acquired
the initial data directly from tables of published papers
or used the GetData Graph Digitizer (ver.2.25, <www.
getadata-graph-digitizer.com/>) to extract data from
digitized charts. Therefore, the sample observation on
line 598 conforms to the sampling standards; these were
derived from 57 published articles (Supplementary).
The locations of sample sites of the data sets were
shown in Fig. 1. To confirm that grazing patterns
expressed the impacts of grazing on grassland
ecosystems, we grouped the data according to grazing
intensity and soil depth (i.e., 0—-10 cm depth, 10-20 cm
depth and > 20 cm soil depth). The grazing intensity was
divided into three degrees including light grazing (LG),
moderate grazing (MG), and heavy grazing (HG) con-
sidering several indicators such as utilization of forage
grass, number of sheep and yak, and distance from the
source of water, etc. based on previous studies (Biondini
etal., 1998, Gao et al. 2008). The detail information was
shown in Table S2 in the Supplementary.

Data analysis (meta-analysis)
Based on the techniques reported in a previous study

(Hedges et al. 1999), the meta-analysis was performed
using the MetaWin 2.1 software package to calculate the

response ratios (RR) of the response variables
(Rosenburg et al., 2000). The response of each variable
to the change in grazing intensity was evaluated by
calculating the RR of each group as follows:

RR = Ln()_(,/)_(c) (1)

where X, and X, represent the treatment and control
groups, respectively. The variance (v) of the RR was
calculated by:

2 2
K K
V= ’_2 +—5 (2)
nX, nX,

where n; and n. symbolize the sample sizes, and S; and
S. are the SDs of the variable under consideration in the
treatment and control groups, respectively. The inverse
of the variance (w = %) was deemed to be the weight
(W) of each RR (Eldridge et al. 2011).

The mean response ratio (RR,,) was computed from
the individual RR of each paired comparison between
control and treatments, RR;; (i=1,2,3....m; j=
1,2,3....k), with the weight of each RR. In our study,
m refers to the number of groups, and & is the number of
comparisons. The RR,, was computed with Eq. 3:

Fig. 1 The location of sample
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Our study calculated the entire RR,, and the 95%
bootstrap confidence intervals (CIs) for an entire dataset.
The result of grazing control treatment is considered
statistically significant if the 95% bootstrap Cls does
not overlap zero, while the difference between categor-
ical variables (i.e., between light or heavy effects of
grazing) is considered significant if the bootstrap Cls
do not overlap with each other (Lu et al., 2016).

Principal Component Analysis (PCA) was carried
out with the soil physicochemical property data to ex-
plore the explanatory powers of variance in soil proper-
ties between grasslands with different grazing intensi-
ties, and the packages of “FactoMineR”, “factoextra”
and “corrplo?”’ in software R (CoreTeam, 2016) were
used for PCA. Pearson correlation analyses were per-
formed to examine the relationships between the RR of

control group, light grazing, moderate grazing and heavy grazing,
respectively. Small cube of each box represented the mean values

the BGB and the RR of species richness (SR). The two
analyses were carried out with R version 3.3.2
(CoreTeam, 2016) and SigmaPlot 14.0 software (Systat
Software, Inc., Chicago, IL, USA), respectively.

Results

Response patterns of plant biomass to different grazing
intensities

Our results showed that, with increasing grazing intensity,
the mean value of AGB exhibited a decreasing trend from
226109 g m > (Fig. 2a). However, BGB (030 cm) and
total biomass (TB) fluctuated within a certain range with
grazing intensity increasing, and there were no significant
trends (Fig. 2b and c). Interestingly, the mean value of the
ratio of root to shoot (R/S) responded well to grazing
intensity, increasing from 6.5-9.4 (Fig. 2d).
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Across all the studies, grazing had a significant neg-
ative effect on AGB. However, the intensity of this
negative effect varied with grazing patterns (Fig. 3a);
as the intensity of grazing increased, the negative re-
sponse of AGB to grazing increased. Moreover, we
found that MG had a significant positive effect on
BGB, with an increase of 5.38% (Fig. 3b). The effects
of grazing duration on AGB and BGB were similar to
those of grazing intensity. Conversely, LG and HG had
no significant effects on BGB. The smallest observed
effects on TB were observed in response to LG and MG,
but TB declined significantly under HG (Fig. 3c).

Grazing patterns not only affected grassland bio-
mass but also affected the allocation of above- and
below-ground materials (Fig. 3d). The RR of R/S
increased with intensified grazing. The results
showed that HG led to a larger proportion of below-
ground material allocation. In addition, when the
data were classified according to the soil depth,
there were significant differences among the sub-
groups. The response ratio of BGB increased with
soil depth only under MG (Fig. 4). However, the
opposite result was found for LG and HG. Regard-
less of the depth of the soil, LG and HG had no
significant effect on BGB.

Response patterns of soil properties to different grazing
intensities

The PCA results indicated that two components ex-
plained 58.1% of the total variance. Specifically, the
first principal component (PC1) was highly relevant to
soil bulk density (SBD), soil water content (SWC) and
BGB; PC2 was highly relevant to soil organic carbon
(SOC), total nitrogen (STN) and total phosphorus
(STP). It was obvious that the orientations of SBD and
BGB exhibited the smallest angle, which indicated that
SBD promoted the increase of BGB under MG. Con-
versely, BGB had the largest angle, with SWC, which
illustrated that SWC had negative effects on BGB
(Fig. 5).

Figure 6 showed that the responses of soil character-
istics to grazing increased with intensified grazing.
There was positive responses of SBD and SR to grazing,
while grazing had negative impacts on SWC, SOC,
STN and STP (Fig. 6). Additionally, when the data were
subdivided based on soil depth, the responses of SOC to
grazing differed significantly between different soil
layers (Fig. 6d). For example, LG significantly in-
creased SOC in the 0—-10 cm depth but reduced that in
the >20 cm soil depth.

F.lg. 3 Response ratios (RR) of (@AGB : (b)BGB :
biomass in response to different 1-2 years | “w— i o
grazing intensities. Grazing in- i i
tensity was divided into three 3-5 years |- 45— [ s TR
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ground biomass; BGB, below- MG | 32— or |——47
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Fig. 4 The effects of grazing intensity (GI) on below-ground
biomass (BGB) for three soil depth intervals (0—10, 10-20 and >
20 cm)

The differences in RR for SOC and STN under
different grazing intensities is most marked in the top
10 cm of soil and gradually decreases for the 10-20 and
20-30 cm depths. Regardless of soil depth, SWC gen-
erally decreased under grazing conditions (Fig. 6a).
There were decreasing tendencies in the RR of most
indicators with increased soil depth except for SBD
(Fig. 6b, d and e). Correlation analysis showed that
BGB was positively correlated with SR (R*=0.58,
P=0.01) (Fig. 7).

Discussion

The biomass transfer hypothesis was verified
under moderate grazing practice

In the present paper, grazing shows no significant effects
on TB in the MG condition, where the reduction of
AGB was offset by increased BGB (Fig. 3a—c). This
result provides evidence for the biomass transfer hy-
pothesis under MG, which, however, is not well sup-
ported under LG and HG conditions. BGB under LG
and HG changes insignificantly while remarkably in-
creasing under MG and 1-2 years duration (Fig. 3b),
supporting the grazing optimization hypothesis in that
BGB exhibits a unimodal curve with increasing grazing
intensity and peaked under MG due to compensatory
growth (Dyer et al. 1986; Hilbert et al. 1981).

The regional-scale response patterns are similar to the
results of Milchunas & Lauenroth (1993) at the global
scale, but conflict with those of Yan et al. (2013) who

found that grazing showed a substantial negative effect on
TB. The outcome of grazing greatly depends on grassland
productivity (Osem et al. 2010), with effects of grazing
switching from a decrease in plant biomass in regions with
lower productivity to an increase in biomass in more
productive areas (Yan et al. 2013). The alpine grassland
has a short growing season and relatively low productivity
due to the cold climate on the Tibetan Plateau (Sun et al.
2019), contributing to the insignificant effects on TB under
LG and MG. However, TB dramatically decreases when
the HG condition prevails (Fig. 3c), suggesting that alpine
grassland ecosystems can tolerate some extent of grazing
disturbance but become unstable once the disturbance
surpasses particular thresholds (Villnas et al. 2013).

Contrary to our expectation based on a surface soil
fertilization effect caused by faeces which is beneficial
for allocating greater BGB to surface soil, we found that
the increases in BGB in subsoil were higher than those in
topsoil under MG (Fig. 4), which is consistent with other
observations (Yan et al. 2013). The effects of grazing on
BGB allocation patterns at different soil depths might be
related to the original soil nutritional conditions, plant
species composition, and grazing duration (Yan et al.
2013).

The habitat determines biomass dynamics

We identify several mechanisms responsible for bio-
mass transfer in response to grazing that have been

Variables - PCA

Dim2 (26.3%)

SWC

10 05 0.0 05 10
Dim1 (31.8%)
Fig. 5 Principal component analyses (PCA) of belowground bio-
mass (BGB), soil organic carbon (SOC), soil total nitrogen (STN),
soil total phosphorus (STP), soil bulk density (SBD) and soil water
content (SWC)
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Fig. 6 Response ratios (RR) of'soil properties for three soil depth
intervals (0-10, 10-20 and >20 cm) and response ratios (RR) of
species richness(SR) in response to different grazing intensities.
GI, grazing intensity; LG, light grazing; MG, moderate

proposed in the past. In general, our results provide no
evidence for the size-independent isometric allocation
hypothesis, regardless of grazing intensity. Instead, the
enhancement of BGB under MD (Fig. 3b) supports the
optimal partitioning hypothesis that plants allocate pho-
tosynthate among various organs to maximize growth
rate under unfavourable growth conditions (Bloom et al.
1985; Chapin et al. 1987). The grazing-induced de-
creases in vegetation coverage greatly promote light
availability at ground level, causing a competitive re-
lease for light resources (Buis et al. 2009).

011
02+ Y ®
o
@031 Y
ks
@
& 04
05{@ @ R2=0.58 P=0.01
0.1 00 01 02 0.3
RR of SR

Fig. 7 Relationships of response ratios (RR) of species richness
(SR) a with response ratios (RR) of below-ground biomass(BGB)
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grazing;HG, heavy grazing; SWC, soil water content; SBD, soil
bulk density; SR, species richness, SOC, soil organic carbon;
STN, soil total nitrogen; STP, soil total phosphorus

In contrast, there were significant decreases in SWC,
SOC, STN, and STP, while SBD increased under MG
(Fig. 6), indicating a worse soil environment resulting
from grazing disturbance (Gao et al. 2008). Soil proper-
ties play vital roles in plant growth, for example, SWC
can regulate nutrient availability which affects soil nu-
trient supply ability and drives plant succession in the
alpine steppe (Hou et al. 2018). STN and SOC are
closely related to the physiological activities of plants
such as photosynthesis and respiration (Bennett and
Klironomos 2018). SBD is greatly associated with the
soil porosity which further affects plant root respiration
providing energy for protein synthesis within the roots
(Sun et al. 2018). Based on the optimal partitioning
hypothesis, plants reduce the proportion of AGB and
allocate more photosynthetic products to BGB so they
better access water and nutrients in deeper soils to adapt
to the relatively arid and barren soil environment (Dong
et al. 2010; Dukes et al. 2005; Ma et al. 2010).

The regrowth capacity and allocation patterns of
individual plants following grazing are considered to
represent the adaptive evolution of phenotypic plasticity
for the variable environments experienced (Juenger and
Bergelson 2000; Stowe and Marquis, 2000). At the
individual level, plants need to absorb more nutrients
to complete their life histories with a maximum life span
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by compensatory growth in response to grazing damage
(Rautio et al. 2005; Roa-Fuentes et al. 2012). Hence,
plants tend to overcompensate more frequently under
unfavourable growth conditions (Hawkes and Sullivan
2001). The enhancement of root growth under poor
resource conditions was conducive to the promotion of
plants’ ability to compete for water and nutrients (Sun
et al. 2014). Soil physical and chemical properties may
mediate the responses of BGB to grazing disturbance
(Gao et al. 2008; Wu et al. 2011), but the effects of soil
physical properties were much stronger than those of
nutrient resource deficiency in the present study (Fig. 5),
showing that SBD promoted the increase in BGB while
SWC was negatively correlated with BGB under MG.

At the community level, plant height is an impor-
tant trait in determining response patterns to grazing
(Diaz and Cabido 2010). As a strategy for avoiding
ingestion by herbivores, a plant community would
exhibit a dwarfing tendency to resist herbivores
when grazing occurs, demonstrated by taller plants
that allocate a large portion of photosynthate to
AGB typically declining in response to grazing,
which inversely favours shorter plant species that
allocate more to BGB (Diaz et al. 2007; Evju et al.
2009), perhaps leading to a significant increase in
BGB under MG intensity (Fig. 3b).

The significant increase in SR under MG (Fig.
6¢), in agreement with previous studies that demon-
strate that grazing positively affects SR through
weakening the dominance of the principal functional
group (Denyer et al. 2010; Wang et al. 2018), is also
responsible for the enhancement of BGB by grazing,
suggested by the dramatic positive correlation be-
tween BGB and SR shown in Fig. 7. Grazing alters
plant species composition, which is tightly linked
with biomass allocation patterns (Gao et al. 2011;
Stahlheber and D’ Antonio 2013; Wu et al. 2009). In
the presence of grazing, forbs that are unpalatable
and resistant to trampling replace native graminoids
with high palatability (Liu et al. 2011; Wan et al.
2011), likely due to competitive release from dom-
inance by graminoids (Borer et al. 2014; Knapp
et al. 2012). The exotic and remaining native forbs
are more deeply rooted than graminoids with crowd-
short rhizomes (Wang et al. 2004), perhaps leading
to the higher BGB in subsoil than topsoil under MG
(Fig. 4).

Additionally, grazing-induced changes in plant com-
munities affect soil microbial communities and related

processes by modifying the environment of decom-
posers (Klumpp et al. 2009). Different plant species
support different components and abundances of soil
microorganisms and microbe-feeding fauna because of
variation in both quantity and quality of litter returned to
soil (Groffman et al. 1996). In return, decomposer com-
munities exert great control over decomposition rates,
further affecting nutrient availability for plant growth as
a feedback loop (Wang et al. 2014). Moreover, soil
animal activity around the plant rhizosphere, which
benefits nutrient bioavailability and aggregate forma-
tion, is intimately associated with plant root growth
(Rashid et al. 2016). Thus, we infer that MG might
promote root-associated microbes and fauna that lead
to an increase in BGB under MG (Wardle 2010). On the
other hand, increased photosynthate allocation to roots
would enhance the resistance of plants impaired by
herbivores to arbuscular mycorrhizal infection of roots
(Strauss and Agrawal 1999).

Limitations of the current study

In the current study, we mainly focused on the general
effects of grazing intensity on plant biomass allocation.
However, responses of grasslands to grazing are affect-
ed not only by grazing intensity but also by other factors
(e.g., air temperature, precipitation, etc.). Previous stud-
ies also indicated that the effects of grazing might shift
from negative to positive with increasing temperature or
precipitation providing heat and moisture conditions for
plant growth (Yan et al. 2013). In addition, soil type
might also be a strong determinant of plant response
patterns to grazing, as it influences plant community
structure and the original nutritional conditions of soil
(Stahlheber and D’Antonio 2013). Additionally, the re-
sponses of plants may vary with land use history (Foster
et al. 2003), grazing duration (Yan et al. 2013), and
grazing patterns such as rotational grazing or continuous
grazing (Kirkman 2002). Unfortunately, most of these
data are not available in studies we collected, which
limits the quantitative assessments of effects on re-
sponse patterns of plants to grazing. Further studies
should allocate more effort to the elucidation of
regional-scale response patterns of plants to grazing
considering the abovementioned key factors, which is
of great significance for formulating appropriate region-
specific management of grasslands on the Tibetan
Plateau.
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Conclusions

The biomass transfer in alpine grasslands in response to
grazing in the present study supports the optimal
partitioning hypothesis. Compensatory growth of indi-
vidual plants, a dwarfing tendency of the plant commu-
nity, a significant increase in species richness, and
changes in soil microbial communities caused by graz-
ing are the primary mechanisms leading to the enhance-
ment of BGB in MG. Our results provide insight into the
general response patterns of plant biomass to different
grazing intensities, which is of great theoretical value for
alpine grassland sustainable management and carbon
budget assessment on the Tibetan Plateau.
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