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Abstract
Background and aims Soil phosphorus (P) availability,
as well as shoot P status, may alter root morphology.
However, how root morphological traits to light inten-
sity under various P environments remains unknown.
Methods Maize (Zea mays L.) cultivar CD418 grew
under nine P application rates (ranged from 0 to
300 mg P kg−1 soil, supplied as KH2PO4) under natural
light intensity (NL) and low light intensity (LL, 40% of
natural light intensity) in a naturally-lit rain-shed. Plant
growth, P uptake, and responses of root morphological

traits (i.e. total root length, root surface area, and pro-
portion of <0.2 mm diameter fine root) in the light and P
treatments were assessed after 36 d of growth (five-leaf
stage).
Results Shoot and root dry weights increased under the
natural light intensity in all P treatments. The ratio of
root to shoot dry weight increased under NL when the
soil Olsen-P was below 15.9 mg kg−1. At relatively low
soil P availability (6.7 to 15.9 mg kg−1), total root
length, root surface area, and fine root percentage were
enhanced with increases in light intensity from LL to
NL. These effects diminished in soil with either severely
low P (2.6 mg kg−1) or excess P (above 20.6 mg kg−1).
Express of the low P-tolerance transcription factor
ZmPTF1 (that influences root growth by regulating
carbon metabolism in leaves and roots), P uptake, and
fertilizer P use efficiency were higher under NL than
LL, especially under low P conditions (Olsen-P 6.7–
15.9 mg kg−1). Increased responses of root morpholog-
ical traits to low P conditions were associated with
relatively low P concentrations in the leaves and high
sucrose concentrations in the roots.
Conclusions Compared to LL, under P deficiency and
NL conditions, maize allocated more photosynthates to
roots as sucrose, which acts as a low-P signal; in addi-
tion, sucrose as a carbon and energy source stimulated
root growth and, consequently, adaptation of maize to
low P stress.

Keywords Photosynthesis . Root morphology.

Phosphorus deficiency. Sucrose .Maize

https://doi.org/10.1007/s11104-019-04259-8

Tao Zhou and Li Wang contributed equally to this work.

Responsible Editor: Jhonathan Ephrath.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11104-019-04259-8) contains
supplementary material, which is available to authorized users.

T. Zhou : L. Wang :X. Sun :X. Wang :W. Liu (*) :
W. Yang (*)
College of Agronomy, Sichuan Agricultural University,
Chengdu 611130 Sichuan, China
e-mail: lwgsy@126.com
e-mail: mssiyangwy@sicau.edu.cn

T. Zhou :Y. Chen : Z. Rengel
The UWA Institute of Agriculture, School of Agriculture and
Environment, The University of Western Australia, Crawley, WA
6009, Australia

Y. Chen
Institute of Soil and Water Conservation, Northwest A&F
University, and Chinese Academy of Sciences, Yangling 712100
Shanxi, China

Plant Soil (2020) 447:183–197

/Published online: 22 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11104-019-04259-8&domain=pdf
https://doi.org/10.1007/s11104-019-04259-8


Introduction

Phosphorus (P) is one of the most growth-limiting nu-
trients in plants (Vance et al. 2003; Vitousek et al. 2010).
Studies reveal that crops take up only 10–25% of the
fertilizer P applied each season (Johnston et al. 2014),
and the rest of the fertilizer P is strongly bound to soil
particles (Hinsinger 2001; Shen et al. 2011). Roots
grown in soil with low P availability showed high
plasticity to enhance the capacity of P acquisition, in-
cluding morphological and physiological changes
(Vance et al. 2003; Lambers et al. 2006; Shen et al.
2011). Increased photosynthates allocation to root
growth, enhanced lateral root emergence, and increased
production of fine roots, are the typical morphological
responses that enlarge the contact area between roots
and soil (Wang et al. 2010; Lambers et al. 2011; Niu
et al. 2012; Postma et al. 2014; Lynch 2015). In addi-
tion, increased proton release, and higher exudation of
carboxylates and phosphatases secretion into the rhizo-
sphere may alter soil properties and release soil-bound P
(Li et al. 2007; Richardson et al. 2011; Li et al. 2014;
Mehra et al. 2016).

Many studies have investigated the contribution of
root morphological and physiological changes to in-
creased P acquisition in the environments with low P
availability (e.g. Pang et al. 2009; Wang et al. 2010;
Deng et al. 2014; Lyu et al. 2016; Li et al. 2016a).
However, less attention has been paid to understanding
how the aboveground light influences these adaptations
in root morphology and physiology. Light intensity
influence photosynthesis, the translocation of photosyn-
thates to roots, and thus the growth and morphology of
the root system (Hermans et al. 2006; Hammond and
White 2008, 2011). The accumulation of root biomass
and total root length are enhanced when plants are
grown under high light intensity (Wissuwa et al. 2005;
Cheng et al. 2014; Zhou et al. 2019). In contrast, root
growth is more sensitive in reduction than shoot under
low light intensity, resulting in decreased root to shoot
biomass ratio, as the photosynthates are distributed pref-
erentially to shoots during leaf extension to increase the
interception of light (Hébert et al. 2001; Gommers et al.
2013; Gundel et al. 2014). The root morphology is
altered by the shoot-derived carbohydrate signals that
have been suggested to play a role in the systemic
control of the plant P-deficiency response. Exogenous
supply of sucrose and increased light intensity both
stimulate the formation of cluster roots in white lupin,

even when plants were under sufficient P supply (Zhou
et al. 2008; Cheng et al. 2014).

Light influences the expression of genes associated
with the low P responses by regulating the synthesis and
transport of photosynthates (Hammond and White
2008). For example, the expression of LaPEPC3 and
LaPT1, which are induced by P starvation and associat-
ed with the exudation of citrate and P uptake, respec-
tively, is upregulated when plants grow under high light
intensity, regardless P supply (Cheng et al. 2014). More-
over, the expression of three P-responsive genes
(LaPT1, LaSAP1 and LaMATE) is downregulated in
cluster roots of plants grown in darkness under a low P
environment, indicating that the supply of photosyn-
thates regulates the expression of these genes (Liu
et al. 2005). Furthermore, the expression of Atpht1;4,
which encodes a P transporter induced by P starvation,
is reduced when plants are kept in the dark, but the
presence of exogenous sucrose in the growth medium
can sustain high expression of Atpht1;4 (Karthikeyan
et al. 2007). Light not only influences root morphology
by regulating the synthesis and partitioning of photo-
synthates but also acts as a signal to directly regulate
root growth (van Gelderen et al. 2018a). For example,
far-red light detection in the shoot of Arabidopsis regu-
lates lateral root growth via the HY5 transcription factor
(Chen et al. 2016; van Gelderen et al. 2018b).

Maize, as an important food and feed, is widely
cultivated around the world. Maize roots respond to P
starvation by exhibiting extensive morphological al-
terations that contribute to the efficiency of P acqui-
sition (Zhu et al. 2005, 2010; Zhang et al. 2012;
Postma et al. 2014; Miguel et al. 2015). Similarly to
many species of Poaceae, maize adapts to low soil P
availability by altering root morphology, rather than
root physiology (Lyu et al. 2016; Wen et al. 2017).
However, whether and how the light intensity affects
adaptive responses of root morphological traits to
low soil P in maize has not been determined, espe-
cially in natural light conditions. Notably, most stud-
ies investigating the effects of light on root growth
have been conducted in laboratories (e.g., Cheng
et al. 2014; van Gelderen et al. 2018a), which might
not reflect natural growth conditions. For example, a
light intensity of 200 μmol m−2 s−1 is typical for the
cultivation of plants in the laboratory, which is con-
siderably lower than natural light intensities found
under field conditions (light intensity usually reaches
more than 1000 μmol m−2 s−1 in the field).
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The main purpose of this study was to investigate
how the light intensity influences maize root morphol-
ogy, especially under low soil P conditions. In addition,
we characterized the expression of low P tolerance
transcript factor (ZmPTF1), which is associated with
root growth by regulating carbon metabolism in leaves
and roots (Li et al. 2011). The expressions of ZmSPS1,
which encodes the key enzymes in the synthesis of
sucrose in leaves, and ZmSS2, which is associated with
sucrose decomposition in roots (Li et al. 2011), were
also evaluated. Specifically, this study aimed to (1)
quantify the dynamics of maize root growth in soil with
variable P supply and under natural (NL) and low light
(LL, 40% of natural light intensity) conditions; and (2)
characterize how maize integrates the light intensity and
P supply cues to improve root growth and P uptake in
soil with P availabilities ranging from deficient to opti-
mal to excess.

Materials and methods

The experiment was conducted in a naturally-lit rain-
shed at the research farm of Sichuan Agricultural Uni-
versity, Chengdu (30°42′ N, 103°51′ E). The height of
the rain-shed was 6 m, and the top of the shed was
covered with thin and transparent plastic sheets to ex-
clude rain. There was no wall around the rain-shed to
maintain the similar air temperature inside and outside.

There were nine P application rates (0, 2.5, 5, 10, 25,
50, 75, 150 and 300 mg P kg−1 soil, supplied as
KH2PO4) and two light intensity treatments, natural
light intensity (NL) and low light intensity (LL, 40%
of natural light intensity). The crop growth was limited
by light intensities lower than 50% of the natural under
field conditions in the region of this study (Yang et al.
2014). Thus, a 40% natural light intensity was
established as the low light intensity treatment by using
shade cloth (Table S1). The shade cloth was supported
by a stainless steel framework (3 × 3 × 3 m3). Under the
shaded space, a time-controlled slow-speed fan was
used to keep the air flow in the plant canopy. The
periodic fanning was set as 30 min on and 30 min off
during the day, and 30 min on and 60 min off during the
night. The experiment was conducted from July 1st to
August 5st, 2018. The daily light intensity and maxi-
mum and minimum air temperature during the plant
growth period were obtained from the meteorological

station located nearby the experimental rain-shed, as
shown in Fig. 1.

A sandy clay loam soil with low P availability was
collected from a long-term fertilizer experiment in
Renshou (30°06′N, 104°2′E). The soil was air-dried,
sieved to 2-mm and thoroughly mixed. The soil proper-
ties were as follows: pH 6.72 (1: 2.5, soil: water), Olsen-
P 2.6 mg kg−1, organic matter 8.6 g kg−1, total N
0.31 g kg−1, available K 84 mg kg−1, and available N
80 mg kg−1. Each pot (Φ 20 × 30 cm3) was filled with
5 kg of air-dried soil. To ensure the nutrient supply was
adequate for plant growth, soil was fertilized with basal
nutrients at the following rates (mg pot−1):
Ca(NO3)2·4H2O 8435, CaCl2 630, MgSO4·7H2O 215,
EDTA-FeNa 29, MnSO4·4H2O 33.5, ZnSO4·7H2O 50,
C u S O 4 · 5 H 2 O 1 0 . 0 , H 3 B O 3 3 . 3 5 , a n d

Fig. 1 Daily solar radiation (a) and minimum/maximum air tem-
perature (b) during maize growth period, from July 1st to August
5st in 2018
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(NH4)6Mo7O24·4H2O 1.30. The P treatments were im-
posed by increasing the application of KH2PO4, and the
equivalent K concentrations (1675 mg K pot−1) were
imposed using K2SO4. The fertilizers were manually
mixed in the soil and homogenized 4 weeks before
planting. After fertilization and homogenization, the soil
Olsen-P concentrations were determined (Table 1).

Seeds of maize (Zea mays L.) cultivar CD418 (wide-
ly cultivated in the region) were surface-sterilized in
30% v/v H2O2 for 20 min and washed with deionized
water before planting. Four uniformly germinated seeds
were planted per pot, and the seedlings were thinned to
two plants per pot at the 2-leaf stage. Three replicates
were grown for each treatment, and pots were arranged
in a split-plot design. The main plots consisted of NL
and LL treatment, and the subplots were nine P appli-
cation rates. All pots were watered daily until harvest.

Plant harvest and measurements of root morphology

After 36 d of growth (five leaf stage), the plants were
harvested. The shoot and root subsamples were frozen
in liquid nitrogen and stored at −80 °C until analysis of
gene expression or sucrose concentration, and same
subsamples were oven-dried at 80 °C for 3 d to measure
dry weight and P concentration. Root subsamples were

washed with deionized water and scanned using an
Epson Perfection V700 Photo scanner (Japan). Images
were analyzed usingWinRHIZO (WinRHIZO Pro2004,
Canada) to measure root length and surface area. Fine
roots were defined as roots with a diameter less than
0.2 mm (Jing et al. 2010).

Determination of net photosynthetic rate, P
concentration, and sucrose concentration

Net photosynthetic rate (Pn) was measured on a youn-
gest fully expanded leaf using a Li6400 photosynthesis
system (Li-COR, Lincoln, NE, USA). Measurements
were performed between 10:00 a.m. and 12:00 p.m. at
the five-leaf stage.

The P concentrations were determined in leaves,
stems and roots. The dry material was ground to pass
through a 0.149-mm mesh sieve, a 0.3-g sample was
digested with concentrated H2SO4 (5 mL) and H2O2

(30% v/v) (1 mL), and P was determined by the
vanadomolybdate method (Page 1982).

The freeze-dried leaves and roots (FDU-2110,
EYELA, Japan) were extracted in 80% v/v ethanol.
Sucrose was measured directly in the extract, using
resorcinol as the color reagent (Shi et al. 2016).

Table 1 Shoot and root dry weight of maize plants grown with different soil Olsen-P content under natural light intensity (NL) and low light
intensity (LL, 40% of natural light intensity)

P rate (mg P kg−1soil) Olsen-P (mg kg−1) Shoot dry weight (g plant−1) Root dry weight (g plant−1)

NL LL NL LL

0 2.6 (0.10) f 2.45 (0.30) f 2.22 (0.26) f 0.73 (0.16) d 0.55 (0.03) e

5 6.7 (0.08) e 9.01 (0.15) d 6.17 (0.66) e 1.65 (0.16) b 0.67 (0.04) d

10 7.2 (0.09) e 10.73 (0.23) c 6.20 (0.52) e 2.11 (0.10) a 0.67 (0.05) d

25 9.7 (0.11) e 12.35 (0.40) b 6.53 (0.86) e 1.90 (0.19) a 0.68 (0.11) d

50 15.9 (0.23) d 13.28 (0.48) a 6.80 (1.06) e 1.54 (0.04) b 0.68 (0.11) d

75 20.6 (0.23) d 14.07 (0.71) a 6.98 (0.63) e 1.58 (0.05) b 0.73 (0.08) d

100 39.6 (0.56) c 13.96 (0.56) a 6.56 (0.17) e 1.62 (0.13) b 0.73 (0.09) d

150 47.2 (0.66) b 13.55 (0.33) a 7.71 (0.91) e 1.49 (0.38) c 0.72 (0.06) d

300 79.0 (1.50) a 13.72 (0.78) a 6.84 (0.29) e 1.48 (0.05) c 0.75 (0.02) d

ANOVA

P rate (P) <0.001 <0.000

Light intensity (L) <0.000 <0.000

P × L <0.021 <0.001

Plants were sampled at five-leaf stage after 36 d of growth. Values are means of three biological replicates (SE). Values for the NL and LL
treatments at a given Olsen-P content followed by different lowercase letters are significantly different at P ≤ 0.05
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Quantitative real-time PCR analysis

Total RNA was isolated and treated with DNase I, and
cDNAwas synthesized to perform quantitative real time
RT-PCR using the SYBR Green PCRMaster Mix in the
QuantStudio 6 Flex real-time PCR detection system
(Thermo Fisher Scientific, USA) with appropriate
primers. Relative expression of genes compared to the
ACTIN was calculated using the ΔΔCt method
(Schmittgen and Livak 2008).

The primers used to quantify gene expression were as
follows: ZmPTF1, 5 ′-ACACGGAAGAATCG
GAAGACAC-3′ and 5′-GGATATGGCGGAAG
CAAGG-3′; ZmSPS1, 5′-ATGAGGGAGCGGCT
GAGGAT-3′ and 5′-GAGTGCCTGTGACCTTGATG
CT-3′; ZmSS2, 5′-CTGCCTTTACTCTGCCTGGTCT-
3′ and 5′-TTGGCCTTCTCGGTATGTGG-3′; Zm38,
5′-TGGATCAACTACCTCCGGCC-3′ and 5′-GCGA
TGAGCGACCACTTGTT-3′; ZmACTIN, 5′-ATGT
TGCTATCCAGGCTGTTCTT-3 ′ and 5 ′-TGTA
TCCTTCATAGATTGGAACCGT-3′.

Statistical analyses

Two-way analysis of variance was performed using the
SPSS statistical software package (Version 19.0, SPSS
Institute Inc., USA), and significant differences among
P application rates were assessed using the LSD multi-
ple range analysis test (p ≤ 0.05) and using t tests to
assess the significant differences between NL and LL
treatments (p ≤ 0.05).

The linear-plateau model was used to establish the
relationship between shoot dry matter, root/shoot ratio
and soil Olsen-P (Bai et al. 2013). Empirical polynomial
(inverse third order) equations were used in Origin
(Origin 16.0, USA) to analyze the relationship between
root morphological traits (i.e., total root length, root
surface area or proportion of fine roots) and soil
Olsen-P (Deng et al. 2014).

Fertilizer P-use efficiency (PUE) was used to evalu-
ate the P absorption efficiency of maize from P fertilizer
applied to soil. PUE was calculated as follows:

PUE %ð Þ ¼ U f −U 0

Pf
� 100

where Uf is plant total P uptake by the P-treated crops,
U0 is plant total P uptake by the crops treated with zero

added P, and Pf is the amount of P fertilizer applied. The
gap in PUE between the NL (NLPUE) and LL treatments
(LLPUE) was calculated as ΔPUE =NLPUE-LLPUE.

Results

Plant growth and biomass allocation

With the P application rate increasing from 0 to 300 mg
P kg−1 soil, the soil Olsen-P increased from 2.6 to
79.0 mg kg−1 (Table 1). Compared to the zero P appli-
cation, the P supply treatments increased shoot dry
weight by up to 460% (NL) and 208% (LL), and in-
creased root dry weight by up to 102% (NL) and 36.3%
(LL), respectively (Table 1). Shoot and root dry weights
were significantly higher in the NL compared with LL
when plants were grown with P supply, but were not
significantly affected by light intensity when plants were
grown at 0-P addition (Table 1).

There was a strong positive correlation between
shoot dry weight and soil P availability, with the soil
Olsen-P increasing up to approximately 13.5 (NL) and
7.4 mg kg−1 (LL) and then leveling off (Fig. 2a). The
ratio of root to shoot dry weight declined as soil Olsen-P
increased to 10.8 (NL) and 7.3 mg kg−1 (LL) and then
leveled off with a further increase in soil Olsen-P (Fig.
2b). Moreover, the root/shoot ratio was higher in the NL
than LL treatments only when the soil Olsen-P was
below 15.9 mg kg−1 (Table S2).

Root morphological traits

In the NL treatment, the total root length initially in-
creased with increasing soil Olsen-P, peaking when the
soil Olsen-P was approximately 7.2–15.9 mg kg−1, and
then gradually declined to a plateau (approximately
5100 cm plant−1) (Fig. 3a). In the LL treatment, the total
root length initially increased with increasing soil Olsen-
P up to approximately 20 mg kg−1 and then leveled off
(Fig. 3a). The effects of light intensity on root growth
were more pronounced when plants were grown with
low, rather than adequate P supply or zero-P supply. In
the treatment with soil Olsen-P of 9.7 mg kg−1, the total
root length was 2-fold greater in NL than LL, but the
total root length in NL and LL with no significant
difference when soil Olsen-P was higher than
39.6 mg kg−1 (Table S2).
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The relationships between soil Olsen-P and root sur-
face area or the fine root percentage were similar to total
root length: in the NL treatment, the values of each of
the root traits peaked in the Olsen-P range of 7.2–
15.9 mg kg−1 followed by a decline to a plateau with a
further increase in soil Olsen-P (Fig. 3b, c). In the LL
treatment, root surface area initially increased with in-
creasing soil Olsen-P up to the critical value and then
leveled off (Fig. 3c). The effect of light intensity was
obvious when plants were grown with a low (6.7 to
15.9 mg kg−1), rather than with an adequate P supply.
However, the fine root percentage decreased with in-
creasing soil Olsen-P under LL (Fig. 3b). Additionally,
in the treatments with soil Olsen-P ranging from 6.7 to
15.9 mg kg−1, the fine root percentage was higher in NL
than LL (Table S2).

Shoot P status, plant P uptake and fertilizer P use
efficiency

Leaf P concentration increased with increasing soil
Olsen-P up to 15.9 mg kg−1 and then leveled off regard-
less of light intensity (Fig. 4a). With increases in light
intensity from LL to NL, leaf P concentration decreased
in the treatments with relatively low soil Olsen-P, but not
in the treatments with zero-P addition or soil Olsen-P
higher than 20.6 mg kg−1 (Fig. 4a). Root P concentra-
tions in the treatments were lower under NL than LL
regardless of P supply (Fig. 4b). The ZmPTF1 (associ-
ated with root growth) was highly expressed under P
deficiency, and the increased light intensity stimulated
the expression further (Fig. 4d). In addition, the

expression of Zm38 (a low P response transcription
factor) shared the same trend as ZmPTF1 (Fig. 4e).
Indeed, P acquisition significantly increased from LL
to NL when P had been supplied (Fig. 4c, f).

The fertilizer P use efficiency (PUE) decreased with
increasing P fertilizer, regardless of light intensity. How-
ever, in the treatments with soil Olsen-P below
39.6 mg kg−1, the PUE was significantly higher in NL
than in LL (Fig. 5a). The PUE gap between NL and LL
reached a maximum (22.5%) when soil Olsen-P was
7.2 mg kg−1, but declined with increasing soil Olsen-P
(Fig. 5b).

Photosynthetic efficiency and carbohydrate
accumulation in leaves and roots

In the NL treatment, net photosynthesis (Pn) increased
with increasing soil Olsen-P up to 39.6 mg kg−1, and
then leveled off (Fig. 6a). However, the Pn showed no
response to P supply in the LL treatment (Fig. 6a). Net
photosynthesis increased significantly from LL to NL
regardless of P supply (Fig. 6a).

The leaf sucrose concentration generally followed sim-
ilar trends as Pn under the variable soil Olsen-P and light
treatments (Fig. 6b): Leaf sucrose concentration was sig-
nificantly higher in the treatments under NL than LL.
Moreover, leaf sucrose concentration was also increased
with increasing P supply, especially under NL (Fig. 6b).
The gene ZmSPS1 encoding the key enzymes participat-
ing in the synthesis of sucrose in leaves was expressed
more strongly under NL than LL, and the expression was
also stimulated with low-P supply (Fig. 6e).

Fig. 2 Effects of P supply and light intensity on shoot dry weight (DW) (a) and the ratio of root to shoot DW (b). Each symbol represents the
mean (±SE) of three replicates. NL = natural light intensity, LL = low light intensity (40% of natural light intensity)
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The root sucrose concentration increased from LL to
NL, regardless of P supply (Fig. 6c). Moreover, this
concentration was higher in the treatments with low than
sufficient P supply. The ZmSS2 (involved in sucrose

decomposition in root) was highly expressed under
low P conditions, and decreasing light intensity stimu-
lated the expression of ZmSS2 further (Fig. 6f). Addi-
tionally, the ratio of root to shoot sucrose was higher in
NL than LLwith soil Olsen-P values ranging from 2.6 to
15.9 mg kg−1 (Fig. 6d).

Correlations between total root length and P
concentration in leaves, and sucrose concentration
in roots

The root sucrose concentration was inversely related to
leaf P concentration: the root sucrose concentration
decreased with increasing leaf P concentration regard-
less of light conditions (Fig. 7a). The total root length
was positively related to the leaf P concentration and
sucrose concentration in roots in the NL treatment, and
the relationships between root length and leaf P or root
sucrose were approximated to a parabola (Fig. 7b, c). In
the LL treatment, total root lengthwas negatively related
to the leaf P concentration and sucrose concentration in
roots (Fig. 7b, c).

Discussion

Maize growth in response to variable soil P availability
and light intensity

Maize growth first increased with an increase in soil
Olsen-P and then leveled off when soil Olsen-P
surpassed the critical value. For example, the critical
soil Olsen-P values ranged from 13 to 15 mg kg−1 for
maize and 11 to 15 mg kg−1 for wheat in long-term P
application experiments in China (Tang et al. 2009). In
Europe, the critical soil Olsen-P values ranged from 7 to
18 mg kg−1 (Poulton et al. 2013; Colomb et al. 2007;
Bollons and Barraclough 1999). The critical soil Olsen-
P value for maize (14. 6 mg kg−1) grown in northwest-
ern China with high solar radiation was higher than that
in the same region (11.1 mg kg−1) of this study with
low solar radiation (Bai et al. 2013). The data reported
here indicated the critical soil Olsen-P value for shoot
dry weight production was higher under NL
(13.5 mg kg−1) than LL (7.4 mg kg−1) (Fig. 2a). This
result may indicate the promotion of high light intensity
in root growth and P acquisition (Hammond and White
2008; Gao et al. 2017).

Fig. 3 Maize root morphological traits in response to increasing
soil Olsen-P and light intensity: (a) total root length, (b) fine root
(diameter ≤ 0.2 mm) percentage over total root length, (c) total root
surface area. Each symbol represents the mean (±SE) of three
replicates. NL = natural light intensity, LL = low light intensity
(40% of natural light intensity)
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Many previous studies have reported that both P-
deficiency and high light intensity increase the ratio of
root to shoot dry weight, which was associated with
increased carbohydrate concentration in roots (Cruz
1997 ; Hébe r t e t a l . 2001 ; C i e r e s zko and
Barbachowska 2000; Hammond and White 2008,
2011). Similarly, in the study presented here P-
deficiency increased the ratio of root to shoot dry weight
and root sucrose concentration; moreover an increase in
light intensity from LL to NL enhanced the root sucrose
concentration further (Table 1, Figs. 2b and 6c).

However, the light intensity had no significant effects
on the root to shoot ratio when the soil Olsen-P
surpassed the critical value (Fig. 2b). The soil Olsen-P
for maize growth in the present study ranged from 2.6 to
79.0 mg kg−1, covering deficiency, optimum and excess
(Table 1). As expected, the plant growth showed a
positive response to increased light intensity and P
supply (Table 1, Figs. 2b and 6d), suggesting that the
experimental conditions were suitable for estimating the
root morphological responses to the variable soil P
availability and light intensity.

Fig. 4 Effects of P supply and light intensity on maize P status (a:
leaf P concentration, b: root P concentration, c: shoot P content, f:
root P content) and the expression of the low-P tolerance transcrip-
tion factor ZmPTF1 (d) and low-P response gene Zm38 (e). Each
symbol represents the mean (±SE) of three replicates. NL = natural
light intensity, LL = low light intensity (40% of natural light in-
tensity). For ZmPTF1 expression, data are expressed as relative

values based on the expression of ZmPTF1 in roots grown with
soil Olsen-P 39.6 mg kg−1 under LL referenced as 1.0. For Zm38
expression, data are expressed as relative values based on the
expression of Zm38 in root grown with soil Olsen-P
39.6 mg kg−1 under LL referenced as 1.0. *and** indicated
significant difference between the NL and LL treatments at a given
soil Olsen-P content (t-test at p ≤ 0.05 and p ≤ 0.01, respectively)
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Root morphological response to leaf P concentration

In many species of Poaceae (such as maize, wheat, and
rice), root morphological plasticity is the major response
to low P stress and plays an important role in P uptake
(Pearse et al. 2006, 2007; Nuruzzaman et al. 2006; Lyu
et al. 2016;Wen et al. 2017). It is generally accepted that
the root morphological plasticity response to P-
deficiency was mainly triggered by internal P status
(leaf P status) rather than external P concentration (Li
et al. 2008; Lambers et al. 2011; Pang et al. 2009). For
example, the leaf P status regulated the formation of
cluster roots in white lupin grown with a divided root
system, in which one root half was supplied with P and
the other half was not (Shane et al. 2003). Moreover,
leaf P status also regulated the root morphological
(root/shoot ratio, fine root percentage, and specific root
length) traits of maize in responses to low P stress (Wen
et al. 2017). In the present study, the expressions of
ZmPTF1 (associated with root growth) (Fig. 4d) and
Zm38 (low P response gene) (Fig. 4e) was corresponded
well with the P concentration in leaves, not in root (Fig.
4a, b), suggesting that root growth might be affected by
a leaf P status.

In the present study, a wide range of root morpho-
logical changes were observed in response to altered
light intensity under variable P environments
(Table S2, Fig. 3). Leaf P concentration was the lowest
in the treatments with soil Olsen-P of 2.6 mg kg−1,
regardless of light intensity (Fig. 4a), and the total root
length and root surface area were severely inhibited,
with no significant difference between NL and LL

(Table S2). These findings suggested leaf growth and
photosynthesis were impaired at extremely low P
(Mollier and Pellerin 1999; Plénet et al. 2000), which
subsequently inhibited root growth and function. Maize
had higher total root length (Fig. 3a), total root surface
(Fig. 3c) and fine root percentage (Fig. 3b) when grown
at low Olsen-P (6.7 to 15.9 mg kg−1) under NL than LL.
These finding might have been due to an increase in
light intensity from LL to NL increasing both Pn (Fig.
6a) and carbon fixation (Fig. 6b), followed by a growth-
induced P-starvation signal (Fig. 4a) enhancing root
morphological responses to low P stress. These results
were consistent with findings in lupin, soybean, and
maize, whereby plants with more light capture increased
the photosynthesis and shoot growth, thus (1) increasing
shoot P demand that might have exceeded the capaclity
of roots to supply P to leaves, (2) causing growth-
induced P-starvation in the shoot, and (3) producing a
systemic signal to induce root morphological responses
to low P stress (Cheng et al. 2014; Zhou et al. 2019).
Fine roots in maize are critical for nutrient uptake
(Zhang et al. 2012; Li et al. 2016b) and are regulated
by the leaf P status (Wen et al. 2017). High light inten-
sity increases the percentage of fine roots may be an
efficient strategy for maize to adapt to P-deficiency (Fig.
3b), with increased total root length and surface area to
improve P uptake capacity achieved at a minimal carbon
cost (Zobel et al. 2007; Pang et al. 2009; Lambers et al.
2006; Lynch 2015). The low-P tolerance transcription
factor ZmPTF1, which promotes root growth, was
expressed in roots at a higher level under NL than LL,
and corresponded well with the P concentration in leaf

Fig. 5 Effects of P supply and light intensity on maize fertilizer P
use efficiency (a: PUE, b: the PUE gap between the treatments NL
and LL). Each symbol represents the mean (±SE) of three repli-
cates. NL = natural light intensity, LL = low light intensity (40% of

natural light intensity). ** indicated significant difference between
the NL and LL treatments at a given soil Olsen-P content (t-test at
p ≤ 0.01). Letters are significantly different among P application
rates at p ≤ 0.05
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(Fig. 4a, d), providing additional evidence that relatively
low P concentrations in leaves under NL than LL (Fig.
4a) enhanced root growth.

With soil Olsen-P above 20.6 mg kg−1, the root traits
(total root length, total root surface, and fine root per-
centage) were relatively low and stable (Table S2, Fig.
3). Moreover, leaf P concentrations were relatively high,
and expressions of both ZmPTF1 and Zm38 were rela-
tively low; for all these variables there was no signifi-
cant difference between NL and LL (Fig. 4a, d, e),
suggesting that the effects of light intensity on root
growth decreased at sufficient and excess P (with soil

P availability not a limiting factor) compared to low P
supply (see also Chiou and Lin 2011; Wen et al. 2017).

The quadratic models fit the relationship between
total root length and leaf P concentration well in the
NL treatment, with the low leaf P concentration (up to
2.3 mg g−1), inducing root growth (Fig. 7b). However,
in the LL treatment, the total root length was not posi-
tively related to leaf P concentration (Fig. 7b), which
indicated that P was not the main limiting factor under
low light intensity (cf. Wissuwa et al. 2005; Cheng et al.
2014). A similar experiment (Wen et al. 2017) conduct-
ed with a wide range of soil showed that when the maize

Fig. 6 Effects of P supply and light intensity on maize net pho-
tosynthetic (Pn) rate (a), sucrose status (b: leaf sucrose concentra-
tion, c: root sucrose concentration), ratio of root to shoot sucrose
(d), and the expression of the key enzymes in the sucrose synthesis
(e: ZmSPS1, f: ZmSS2). Each symbol represents the mean (±SE) of
three replicates. NL = natural light intensity, LL = low light inten-
sity (40% of natural light intensity). For ZmSPS1 expression, data
are expressed as relative values based on the expression of

ZmSPS1 in leaves of plants grown with soil Olsen-P 2.6 mg kg−1

under LL referenced as 1.0. For ZmSS2 expression, data are
expressed as relative values based on the expression of ZmSS2 in
roots of plants grown with soil Olsen-P 79.0 mg kg−1 under LL
referenced as 1.0. ** indicated significant difference between the
NL and LL treatments at a given soil Olsen-P content (t-test at p ≤
0.01)
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leaf P concentration ranged from 1 to 2 mg g−1, the total
root length, specific root length, and fine root percentage
increased with increasing leaf P; in contrast, the root
morphological traits were relatively low and stable
when the leaf P concentration was higher than
2.7 mg g−1. The critical leaf P values between the two
experiments were different, as the various results might
be due to different maize genotypes and growth condi-
tions (i.e., temperature and light intensity) or soil prop-
erties. However, these results indicated that light inten-
sity stimulated the root morphological traits response to
P starvation by influencing leaf P status.

Root morphological responses to carbohydrate
metabolism in leaves and roots

Plants with insufficient P showed reduced shoot growth
rates and translocated carbohydrate in excess of their
shoot growth capacity to roots, which resulted in rela-
tively high carbohydrate concentration in roots (Rychter
and Randall 1994; Hermans et al. 2006; Hammond and
White 2008, 2011; Niu et al. 2012). Similarly, increasing
light intensity also increased translocation of carbohy-
drates to roots (Cruz 1997; Hébert et al. 2001; Lemoine
et al. 2013; Zhou et al. 2019). Stem girdling has been
used to explore the importance of photosynthates in P-
deficiency signaling. For example, in white lupin stem
girdling to block phloem translocation to roots resulted
in a significant reduction in the expression of the low P
response genes LaPT1 and LaSAP1 (Liu et al. 2005).
Similar results were also obtained in common bean (Liu
et al. 2010). Taken together, the results of these studies
suggest that carbohydrates (such as sucrose) serve as
both a low P signal and a carbon-substrate for roots
growth to increase the P foraging capacity (i.e. low P
adaptations) (Hermans et al. 2006; Müller et al. 2007;
Hammond and White 2008; Liu et al. 2005; Zhou et al.
2008). The findings of the study presented here were
consistent with the observations that both P-deficiency
and increasing light intensity increased translocation of
sucrose to roots (Fig. 6d) and root sucrose concentration
(Fig. 6c). However, how maize integrates sucrose- and
P-based regulation of root growth with a wide range of
soil P availability requires further investigation.

Increased light intensity from LL to NL increased the
net photosynthetic rate of maize with soil Olsen-P cov-
ering deficiency, optimum and excess. However, net
photosynthesis was impaired when maize was grown
with extremely low soil P availability regardless of light

Fig. 7 Correlations between leaf P concentration and root sucrose
concentration (a). Correlations between total root length and leaf P
concentration (b) or root sucrose concentration (c). Data points
represent individual replicates. NL = natural light intensity, LL =
low light intensity (40% of natural light intensity)
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intensity (Fig. 6a), which was consistent with the results
obtained with other species (Rao et al. 1990; Wissuwa
et al. 2005; Cheng et al. 2014). The root sucrose con-
centration was the highest in the treatment with soil
Olsen-P of 2.6 mg kg−1, regardless of light intensity
(Fig. 6c), but the root growth was severely inhibited
(Table S2) due to severe root P-starvation (Fig. 4b).
Similarly, in rice and white lupin under extreme P-
starvation, the carbohydrates supply was not limiting
root growth (Wissuwa et al. 2005; Cheng et al. 2014).

When soil Olsen-P increased from 6.7 to
15.9 mg kg−1, more photosynthates were allocated to
roots as sucrose under NL than LL (Fig. 6c, d), which
was associated with greater total root length and fine
root percentage (Fig. 3a, b). Enhanced translocation of
carbohydrates to roots and enhanced total root length
were the universal responses to P deficiency in maize
(Mollier and Pellerin 1999; Zhang et al. 2012; Deng
et al. 2014) because P-deficient plants invested more
carbon to root growth to improve the P acquisition
capacity (Fernandez and Rubio 2015; Hammond and
White 2008; Ruan 2014).

In excess P supply, natural light did not en-
hance the allocation of sucrose to the roots be-
tween the NL and LL treatments (Fig. 6d). Fur-
thermore, there was also no significant difference
in the total root length between the two light
treatments (Table S2). One possible explanation
might be that P-sufficient plants lacked a P-
starvation signal associated with increased carbon
investment to root growth and increased P acqui-
sition capacity (Shipley and Meziane 2002; Poorter
et al. 2012). Like the expression of ZmPTF1,
which is associated with root growth by allocating
carbon to root, was downregulated and showed no
significant difference between NL and LL in the
treatments with sufficient P supply (Fig. 4d). The
quadratic model fit the relationship between total
root length and root sucrose concentration well in
NL (Fig. 7c), indicating that light intensity en-
hanced the root morphological adaptations re-
sponse to P starvation by regulating root sucrose
concentration.

Direct root morphological responses to light conditions

Stimulation of root growth by increased light intensity
might not be controlled exclusively by increased alloca-
tion of sucrose to roots; instead, other systemic signals

(such as phytohormone) could also contribute to root
growth. For example, auxin was found to stimulate root
growth in maize, particular in low P conditions (Martí-
nez-de la Cruz et al. 2015; Li et al. 2018; Zhang et al.
2019). High light intensity enhanced sensitivity of clus-
ter root formation to auxin by downregulating the ex-
pression of an auxin-response repressor gene (Cheng
et al. 2014), whereas sucrose increased the sensitivity
of lateral root development to auxin in P-deficient
Arabidopsis (Jain et al. 2007). In the present study, the
expression of the auxin response factor (ARF), which
activates the auxin-induced gene expression response,
was found to be upregulated under NL, especially under
low P conditions (data not shown). In addition, light
could also enhance the biosynthesis of indole-3-acetic
acid (Bhalerao et al. 2002): specifically, light increases
flavonol biosynthesis, which increases root auxin levels
(Buer and Muday 2004; Silva-Navas et al. 2016). Ex-
cept for the sensitivity and formation, light can also
affects the transportation of auxin in the root by control-
ling the removal of PIN proteins from the plasma mem-
brane via the process of vacuolar degradation (Korbei
and Luschnig 2013). Further work is needed to elucidate
a role of auxins in the light- and P-availability-
dependent regulation of root growth.

Conclusion

Our results demonstrated that an increase in light inten-
sity enhanced total root length, root surface area, and
fine root percentage, underpinning increased P acquisi-
tion and P use efficiency, especially at low soil P avail-
ability (soil Olsen-P from 6.7 to 15.9 mg kg−1). These
effects diminished in soil with either severely low P (soil
Olsen-P 2.6 mg kg−1) or excess P (soil Olsen-P above
20.6 mg kg−1). Maize may integrate the environmental
cues (P supply and light intensity) to regulate leaf P
status and root sucrose concentration to determine plant
growth. It is possible that photosynthesis and the leaf P
status coordinate the morphological responses of roots
by controlling the transfer of carbohydrates to roots.
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