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Abstract

Aims The forest floor is a significant contributor to the
stand-scale fluxes of biogenic volatile organic com-
pounds. In this study, the effect of tree species (Scots
pine vs. Norway spruce) on forest floor fluxes of volatile
organic compounds (VOC) was compared in boreal and
hemiboreal climates.

Methods Monoterpenoid and sesquiterpene flux rates
were determined during 2017-2018 using dynamic
(steady-state flow-through) chambers placed on perma-
nent soil collars on boreal and hemiboreal forest floors,
where the canopy was formed by Scots pine (Pinus
sylvestris), Norway spruce (Picea abies) or dominated
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by Scots pine with small coverage of Norway spruce
and birches (Betula pendula and Betula pubescens).
Results The total monoterpenoid fluxes were higher
from the Scots pine forest floor (boreal 23 pgm > h™")
and from the mixed forest floor (hemiboreal
32 ug m > h™") compared to the Norway spruce forest
floor in both boreal (12 ug m > h™') and hemiboreal
(9 ugm > h™") climates. Due to higher litterfall produc-
tion, the forest floor seems to be a greater source of
monoterpenoids and sesquiterpenes in the hemiboreal
mixed stand dominated by Scots pine compared to the
boreal Scots pine stand, although the difference was not
statistically significant. Forest floor VOC fluxes follow-
ed a similar seasonal dynamic in different forest stands,
with the highest flux rates in spring and summer. Sig-
nificant VOC sources in the boreal forest floor were
synthesis and release from vegetation and living roots
together with litter decomposition of fungi and other
microbes, where VOCs are released from needle storage
pools. Ground vegetation in the hemiboreal forest is
scanty under the dense tree canopy, meaning soil pro-
cesses, such as litter decomposition, microbial metabo-
lism and root release, were likely the dominating VOC
sources. VOC fluxes from the hemiboreal forest floor
were reduced by increases in soil moisture.
Conclusions This study indicates that if the warming
climate changes tree species’ abundance and stand bio-
mass, by increasing tree growth and coverage of broad-
leaf species, it may affect VOC fluxes from the forest
floor and impact the total VOC emissions from northern
soils.
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Introduction

Boreal and hemiboreal forests form a diverse biome,
where species composition, vegetation structure, and
soil properties vary depending on site history and pre-
vailing climate. Boreal and hemiboreal forests affect
atmospheric chemistry by releasing biogenic volatile
organic compounds (BVOCs) (Bourtsoukidis et al.
2014a; Hakola et al. 2017; Rantala et al. 2014), such
as oxygenated volatile organic compounds, sesquiter-
penes and monoterpenes. Monoterpene emissions con-
tribute 11% of global BVOC emissions (Sindelarova
et al. 2014) and affect the global secondary organic
aerosol yield due to oxidation reactions with OH, NOx
and O3 (Jokinen et al. 2015). If boreal forests transition
to hemiboreal forests in a warming climate, higher
BVOC fluxes may affect atmospheric chemistry. Also,
if the boreal, hemiboreal and temperate vegetation zones
move northwards in the warming climate (Lathiere et al.
2005; Hickler et al. 2012; Noe et al. 2016), it could also
increase the total BVOC emissions from the biosphere.
Forest floor processes, releasing VOCs, contribute sig-
nificantly to forest stand fluxes (Aaltonen et al. 2013;
Miki et al. 2019). To determine the effect of climate on
forest floor VOC fluxes in the Northern Hemisphere, we
compared VOC fluxes from the forest floor between
hemiboreal and boreal climates. This knowledge is re-
quired to predict how the total VOC emissions from
northern forest floors may change in the warming
climate.

Hemiboreal stands release more BVOCs than boreal
stands (Bourtsoukidis et al. 2014a; Noe et al. 2011,
2012). Growing season length and temperatures are
higher in hemiboreal ecosystems compared to boreal
ecosystems, which may have implications to stand bio-
mass and VOC biosynthesis and release of plants.
Hemiboreal ecosystems are typically formed by mixed
stands including both coniferous and broadleaf species
(Bourtsoukidis et al. 2014a), which affects the VOC
blend released by the forest stand and may increase
ecosystem adaptability for the warming climate. Global
warming may change tree species composition, which
impacts VOC emissions released by forest canopies
(Kellomiki et al. 2001). If tree cover changes in the
Northern Hemisphere, there will also be an impact on
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ground vegetation cover and soil properties, which
could alter forest floor VOC exchange. If warming
increases stand biomass, VOCs from decomposing litter
— a significant VOC source — could increase (Hayward
et al. 2001; Miki et al. 2017). Litter addition increases
nutrient levels in soil (Rinnan et al. 2008), which may
affect soil processes and further increase VOC fluxes
from the boreal forest floor, as nitrogen availability
typically restricts plant growth in the boreal forest
(Nésholm et al. 1998). The effect of tree species and
stand biomass on forest floor VOC fluxes was deter-
mined in this study.

Forest floor processes, releasing VOCs, might
shift in response to the warmer climate. According
to long-term remote sensing data, warming-induced
changes in vegetation productivity and growing
season length are already visible in the Northern
Hemisphere (Park et al. 2016). Ground vegetation
is affected when temperatures increase and nutrient
levels change due to warming (Hedwall et al.
2015). Vegetation BVOC emissions from the sub-
arctic heath were found to increase by warming
induced vegetation change together with litter addi-
tion (Valolahti et al. 2015). Long-term warming in
the forest-tundra may change vegetation cover, with
declining lichen cover and increasing evergreen
ericoid dwarf shrub cover (Vuorinen et al. 2017).
Some studies have estimated that abundance or
biomass of deciduous shrubs may increase in the
warming climate (Tape et al. 2006; Rinnan et al.
2008), which may change VOC fluxes from the
forest floors. Greater vegetation cover, caused by
warming, may also increase fine root biomass and
soil carbon content (Rinnan et al. 2008), which
may accelerate microbial decomposition and VOC
synthesis due to a higher amount of labile carbon
i.e. easily available for microbes in the soil.
Warming may have both direct and indirect effects
on litter decomposition rates. Warming may directly
increase microbial activity and indirectly affect mi-
crobial decomposition rates by changing vegetation
cover, which regulates litter quality and quantity
(Hobbie 1996; Cornelissen et al. 2007). Vegetation
changes in the warming climate may influence mi-
crobial VOC synthesis on a global scale (Gray
et al. 2010).

VOC sources likely differ between the boreal and
hemiboreal forest floors. Forest floors are formed by
varying microclimate, vegetation cover, and soil
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properties (texture, availability of water, oxygen and
nutrients and amount of soil organic matter) and quality
and quantity of fresh litter containing VOC storages
varies between forest stands. Composition of
metabolised VOCs likely varies between different soil
types and climate conditions, because microbial enzyme
activities and community structure are affected by soil
moisture (Brockett et al. 2012; Veres et al. 2014). VOC
release from ground vegetation and soil processes is also
affected by soil moisture (Aaltonen et al. 2013; Asensio
et al. 2007a; Bourtsoukidis et al. 2018; Svendsen et al.
2016). Microbial VOC synthesis occurs in both anaero-
bic and aerobic conditions (Seewald et al. 2010). Soil
moisture reduces gas diffusion in soil (Zhong et al.
2014), although VOC bursts from litter have also been
observed after rain (Greenberg et al. 2012). Soil may
also be a VOC sink due to microbial driven degradation
of VOCs (Cleveland and Yavitt 1998; Albers et al.
2018). Increasing soil moisture may stimulate microbial
VOC uptake in soil and increase VOC dissolution into
soil water, wet deposition of VOCs on soil surface and
VOC leaching towards the bedrock (Cousins et al. 1999;
Asensio et al. 2007a). Forest floor VOC exchange is
also affected by VOC adsorption on soil particles
(Cousins et al. 1999). The effect of soil moisture on
forest floor VOC fluxes was compared between
hemiboreal stands with higher soil water content and
boreal stands with lower water content.

Activity of VOC sources may also vary depending
on temperature. Forest floor VOC fluxes are typically
correlated with temperature (Aaltonen et al. 2013; Méki
et al. 2017), as temperature regulates plant VOC bio-
synthesis, volatility of compounds, and VOC release
from litter storage pools due to microbial decomposition
(Guenther et al. 1993; Kesselmeier and Staudt 1999;
Kainulainen and Holopainen 2002; Greenberg et al.
2012). For this reason, VOC flux rates may be higher
from the hemiboreal forest floor compared to the boreal
forest floor.

The aim of this study was to determine the effect
of tree species and climate zone on forest floor VOC
fluxes. We hypothesised: (1) Tree species affect the
quality and quantity of decomposing litter, and there-
fore also VOC flux rates from the forest floor. (2)
VOC flux rates are higher from the hemiboreal forest
floor compared to the boreal forest floor due to
higher litter production rate and higher temperatures
that accelerate litter decomposition and VOC synthe-
sis of microbes.

Material and methods
Research sites

We selected four measurement sites, two in hemiboreal
forests and two in boreal. The first measurement site is
an almost 60-year-old boreal Scots pine forest (Pinus
sylvestris) located at the SMEAR II (Station for Mea-
suring Ecosystem-Atmosphere Relations) station in
Southern Finland on Haplic podzol soil (61°51°N,
24°17°E, 180 m above sea level). The canopy is formed
by Pinus sylvestris (715%), Picea abies (15%), and
broadleaf trees (10%) such as Betula pendula and
Sorbus aucuparia. The second site is a boreal Norway
spruce forest (Picea abies) located immediately adjacent
(100 m) to the boreal Scots pine stand, also on Haplic
podzol soil. The canopy basal area is formed by Picea
abies. The third site is a hemiboreal mixed stand at the
SMEAR Estonia station (58 °25°N, 27°46°E, 36 m
above sea level) (Noe et al. 2016). The canopy is formed
by Scots pine (Pinus sylvestris) with small coverage of
Norway spruce (Picea abies) and birches (Betula
pendula and Betula pubescens). The fourth site is a
hemiboreal Norway spruce (Picea abies) stand, located
close (200 m) to the pine stand. The stand age for both
Estonian stands is over 100 years (Noe et al. 2016). The
soil is covered by a thick raw O-horizon with a mean
thickness of 24 cm and hydraulic conductivity in soil is
low due to high clay content (Noe et al. 2011). The
hemiboreal forest floor is covered by mounds and pits
with varying soil moisture, while the forest floor in the
boreal stands is relatively flat. Measurement sites are
described in more detail in Tables 1 and 2. Ground
vegetation cover of the different stands is shown in the
Table 2. The stand biomass is higher in the hemiboreal
stands compared to the boreal stands due to the prevail-
ing climate, soil properties (availability of nutrients) and
forest management practices. Due to a dense tree canopy
that limits light availability, ground vegetation cover
was sparser in the hemiboreal stands compared to the
boreal stands (Fig. 1).

VOC flux measurements from the forest floor
and supporting data

Six permanent, stainless steel soil collars (height 7 cm,
diameter 21.7 cm) were installed randomly at each
measurement site: at site one in spring 2012, site two
in spring 2017, and at sites three and four in spring 2016.
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Table 1 Features of measurement sites at the SMEAR II and
SMEAR Estonia stations, including: tree cover, climate zone
based on the Kdppen-Geiger climate classification, annual mean

temperature (°C), the total annual precipitation (mm), number of
soil collars, soil type, and timing of the 2017 and 2018

Station Site  Tree cover Climate Mean Total Number Soil type Measurements
zone temperature  precipitation  of soil
(0C) (mm) collars 2017 2018
SMEAR II 1 Scots pine stand ~ Cold 3? 697° 6 Haplic Podzol =~ May-Oct April-August
Finland
SMEAR 11 2 Norway spruce  Cold 3 697° 6 Haplic Podzol =~ May-Oct April-August
Finland stand
SMEAR 3 Mixed stand Cold 4-6° 500-700° 6 Haplic Gleysol May-Oct May—August
Estonia dominated by
Scots pine
SMEAR 4 Norway spruce  Cold 4-6° 500-700b 6 Haplic Gleysol May-Oct May—August
Estonia stand

lvesniemi et al. 2010 and ® Noe et al. 2012

From each collar, we measured isoprenoid flux rates
using two glass steady state flow-through chambers
(SMEAR II chamber: height 25 cm and chamber vol-
ume 6 | and SMEAR Estonia chamber: height 30 cm
and chamber volume 9.5 1). The used flow-through
chamber technique has been tested earlier for carbon
dioxide (Pumpanen et al. 2004). The headspace is equil-
ibrated by flushing the system continuously (flow rate

1-1.5 1 min~") with filtered (active carbon trap and
MnO2-coated copper net) ambient air to avoid chamber
temperature increase during measurements. Isoprenoids
were sampled by collecting incoming and outgoing air
for 40-50 min through Tenax TA-Carboback-B adsor-
bent tubes using 0.1-0.2 1 min"' flow rate. This mea-
surement technique has been used earlier in VOC flux
measurements from the forest floor (Hellén et al. 2006;

Table 2 Plant cover of the soil collars and soil properties in O-, A- and B-horizons for all the studied stands

SMEAR 11 SMEAR Estonia
Stand Pine stand Spruce stand Mixed stand Spruce stand
Total plant coverage v v 11 1
Coverage of Vaccinium vitis-idaea I I
Coverage of Vaccinium myrtillus I I I
Coverage of mosses I I I I
Coverage of other plant species I
pH in the O-horizon 33 29 29
pH in the A-horizon 34 2.9 32
pH in the B-horizon 43 33 39
C % mass in the O-horizon 37 31 35
C % mass in the A-horizon 4 18 4
C % mass in the B-horizon 3 3 1
N % mass in the O-horizon 1.3 1.1 1.2
N % mass in the A-horizon 0.1 0.6 0.2
N % mass in the B-horizon 0.1 0.1 0.03

Soil properties are means of five sampling points at the SMEAR 1I station and of three sampling points at the SMEAR Estonia station. Plant
cover was determined based on visual assessment in July—August and divided into four categories, where the mean plant cover was 1-15%
I), 16-45% (11), 46-70% (111) and 71-100% (IV) of the area of soil collars

@ Springer
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Fig. 1 Ground vegetation in the boreal Scots pine stand a at the
SMEAR 1I station and in the hemiboreal Scots pine stand b at the
SMEAR Estonia station

Aaltonen et al. 2011; Méki et al. 2017). Isoprenoid flux
rates from the forest floor were measured once a month
from May to October in 2017 and from April to August
in 2018. Isoprenoid fluxes were not measured at the
SMEAR Estonia station in July 2017 and in April and
June in 2018.

The chamber temperature was measured from the
chamber headspace or from outlet sampling air using a
thermometer. At the SMEAR 11 station, soil temperature
was monitored using thermistors (Philips KTY81-110,
Philips Semiconductors, Eindhoven, The Netherlands)
and soil water content using the TDR method (TDR
100, Campbell Scientific, Inc., Logan, USA) from the
O-, A-, B- and C-horizon (n=5) in 2017-2018
(supporting data from the SMEAR 11 station is available
from https://avaa.tdata.fi/web/smart). At the SMEAR
Estonia station, soil water content and temperature
were measured next to each soil collar using the Soil
Moisture Probe with ThetaProbe moisture sensor (ML3-
PR2, Delta-T, UK) and temperature sensors (KM330,
Comark Instuments, UK) (Noe et al. 2015) from the
Norway spruce and mixed stands (n=2-4) in 2017—
2018. We measured monthly litterfall using litter

collectors from both forest stands at the SMEAR Esto-
nia station, and from the Scots pine stand at the SMEAR
II station.

Soil properties including carbon (C) and nitrogen (N)
content and soil acidity (pH) were determined for both
forest stands at the SMEAR Estonia station, and from
the Scots pine stand at the SMEAR 1I station were
determined (Table 2). At the SMEAR 1I station, soil
properties were determined for the O-, A-, and B-
horizons as the means of five locations and at the
SMEAR Estonia station, as the means of three locations.
Plant cover was estimated in July—August based on
visual assessment by dividing vegetation into four cate-
gories, where the mean plant cover was 1-15% (1), 16—
45% (II), 46-70% (III) and 71-100% (IV) of the soil
collar area (Table 2).

Analytical methods

The VOC concentrations of the adsorbent tubes were
analysed using a thermal desorption-gas chromatogra-
phy-mass spectrometer (TD-GC-MS, PerkinElmer,
Waltham, MA, United States). The adsorbent tubes were
desorbed at 300 °C for 5 min. The compounds were then
cryofocused at =30 °C in a Tenax cold trap and injected
into the gas-chromatograph column by heating the cold
trap to 300 °C (Aaltonen et al. 2011; Maki et al. 2017).
The mass detector uses simultaneous full scan and se-
lected ion monitoring. Four calibration standards of the
different VOC concentrations in methanol solutions
were used to calibrate the instrument. Calibration stan-
dards contained all the different monoterpenoids (x-
pinene, camphene, A-3-carene, B-pinene, myrcene,
1,8-cineol, linalool, limonene, p-cymene and
terpinolene), but for sesquiterpenes only longicyclene,
isolongifolene, {3-caryophyllene, «-humulene, «-
gurjunene and {3-farnesene were included in the stan-
dard solution. Due to lack of calibration standards for
most of the sesquiterpenes (o-buinesene, 'y-muurolene,
«-bisabolene, B-himachalene, a-muurolene, A-
cadinene and SQT1), these were tentatively identified
by their retention indexes and mass spectrums and
quantitated by the responses of the known sesquiter-
penes: [3-caryophyllene, isolongifolene, or
longicyclene. Lack of calibration standards for sesqui-
terpenes likely causes some bias for sesquiterpene quan-
tification. One sesquiterpene could not be identified and
was marked as SQT1.
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Statistical analyses

The non-parametric Kruskal-Wallis test was used with
significance levels of p<0.100 (°), p<0.050 (*),
p<0.010 (**), and p <0.001 (***) to determine wheth-
er the climate zone (boreal/hemiboreal) and the forest
type (Scots pine/Norway spruce) had a significant effect
on monoterpenoid and sesquiterpene flux rates from the
forest floor (n=6). Exponential regression of the total
monoterpenoid and sesquiterpene fluxes with tempera-
ture and soil moisture were determined for each stand.
The R? and p values <0.1 indicate the exponential
regression was significant. Guenther algorithm [t = E;
[exp (B(T—T))] was used to calculate the emission
potentials i.e. normalized emission rates (Eg, pg
m 2 h') in 30 °C (Guenther et al. 1993) for each
compound.

The comparison between the two sites, differing by
climate and by current forest vegetation, allows a simple
comparative analysis of the long-term effects of climate
change on forest floor emissions at landscape level. This
accounts for the potential long-term impacts of changing
tree species distribution (e.g. Kelloméki et al. 2008) and
biomass density changes, but not the immediate impacts
of soil moisture or temperature. The percentage of
broadleaf trees and mixed forests is predicted to increase
considerably in the southern parts of the country, and the
dominance of spruce will decrease especially in South-
em Finland. Changes in the geographic distribution of
conifers may also affect forest floor vegetation, litter
production (both quantity and quality) and carbon and
nitrogen pools (Hansson et al. 2011, 2013a, b), and
consequently also the main sources of forest floor
VOCs.

Results
Conditions at the measurement sites

The daily mean temperatures showed very similar tem-
poral dynamics between the SMEAR II station and the
SMEAR Estonia station (Fig. 2). The median difference
between the SMEAR 1II and SMEAR Estonia tempera-
tures was 1.6 °C, with slightly higher temperatures
observed at SMEAR Estonia. Water holding capacity
was highest in the hemiboreal mixed stand (0.08—
0.90 m® m ), second highest in the hemiboreal Norway
spruce stand (0.06-0.69 m> m>) and lowest and most
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constant in the boreal Scots pine stand (0.07—
045 m’ m>) (Fig. 3). Soil water content in the boreal
Norway spruce stand is likely very similar to the boreal
Scots pine stand, because the stands are located next to
each other on Haplic Podzol soil. Soil water content was
lower in 2018 compared to 2017 at both stations. The
cumulative mean litterfall was mostly highest and rather
stable throughout the season in the hemiboreal mixed
stand (May-Oct 2017: 347.1 gpw m > and May—Aug
2018: 225.6 gpw m ?). Litterfall varied more in the
other stands and was the second highest in the boreal
Pine stand (May—Oct 2017: 223.7 gpw m 2 and May—
Aug 2018: 224.7 gpw m 2), and lowest in the
hemiboreal Norway spruce stand (May—Oct 2017:
154.7 gpw m Z and May—Aug 2018: 182.8 gpw m ?)
(Fig. 4). Litterfall was not measured from the boreal
Norway spruce stand. Soil pH and carbon and nitrogen
content were rather similar between the studied stands
(Table 2).

VOC fluxes at different forest floor stands

The mean monoterpenoid flux rates were mainly similar
between the boreal Scots pine and the hemiboreal mixed
stands, but the difference in flux rates was statistically
significant for p-cymene, 1,8-cineol, linalool, limonene
and terpinolene (Table 3). The mean flux rates of «-
pinene, camphene, [3-pinene, limonene and
bornylacetate were higher from the boreal Norway
spruce forest floor compared to the hemiboreal Norway
spruce forest floor, while the opposite trend was ob-
served for p-cymene, 1,8-cineol, terpinolene, linalool
and myrcene. The mean flux rates of different sesqui-
terpenes were mainly similar between the studied
stands, while the difference in flux rates was statistically
significant for «-gurjunene, SQT1, x-bisabolene and (3-
himachalene.

The total mean monoterpenoid fluxes were higher
from the boreal Scots pine forest floor (boreal
23 ugm 2h ', p <0.1°) and from the hemiboreal mixed
forest floor (32 pgm 2 h™', p <0.01%**) compared to the
Norway spruce forest floor in boreal (12 ug m > h™')
and hemiboreal (9 ug m 2 h'") climates (Table 3). The
total mean sesquiterpene fluxes were also higher from
the boreal Scots pine forest floor (0.8 pgm >h™', p<
0.1°) and from the hemiboreal mixed forest floor
(13 pg m 2 h™', p<0.05*%) compared to the Norway
spruce forest floor in boreal (0.5 pg m > h™') and
hemiboreal (0.6 pg m 2 h™!) climates (Table 3).
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Seasonal dynamics of VOC fluxes from the forest floor

The highest monoterpenoid and sesquiterpene fluxes
were observed in spring and summer (May—August) in
all the studied forest stands (Figs. 5 and 6). The highest
monoterpenoid flux rates were observed from the boreal
Scots pine forest floor in May and June and from the
hemiboreal mixed forest floor in May, June and July. The
monoterpenoid fluxes were also high from the boreal
Norway spruce forest floor in July 2017 and in May
and July in 2018 and from the hemiboreal Norway spruce
forest floor in May 2017 and in August 2018. The total
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monoterpenoid fluxes from the boreal Scots pine forest
floor decreased from June to July 2018 after a dry sum-
mer period (Fig. 5a), while the sesquiterpene fluxes in-
creased further in higher chamber temperatures (28—
30 °C) (Fig. 6a). Sesquiterpene fluxes peaked from the
hemiboreal forest floor in August 2018, when the cham-
ber temperature was high (1629 °C) (Fig. 6b). The total
monoterpenoid fluxes from the hemiboreal mixed forest
floor also peaked in October 2017 (Fig. 5b).

Chamber temperature explained 10-75%
(p <0.001***) of the total monoterpenoid fluxes, except
in the hemiboreal mixed stand (Fig. 7). Generally
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Fig. 3 Daily means of soil water content (m® m ) during 2017-2018 from the Scots pine stand at the SMEAR I station (n = 5, 14-25 cm
depth) and from the mixed and the Norway spruce stands (n =2-5, 10-30 cm depth) at the SMEAR Estonia station
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Fig.4 The total monthly litterfall (gnw m 2) during 2017-2018 from the Scots pine stand at the SMEAR 1I station and from the mixed and

the Norway spruce stands at the SMEAR Estonia station

monoterpenoids showed stronger correlation with cham-
ber temperature in the Norway spruce stands compared to
the Scots pine and the mixed stands (Supplementary Ta-
ble 1). Chamber temperature explained 32-61%
(p <0.001**#*) of B-pinene, camphene, 1,8-cineol, limo-
nene, and myrcene fluxes in the boreal Norway spruce
stand and 81-93% (p <0.001***) of A3-carene, 1,8-
cineol, myrcene, terpinolene and linalool fluxes in the
hemiboreal Norway spruce stand. Fluxes of 1,8-cineol,
myrcene and p-cymene were also explained by chamber
temperature (35-72%, p <0.001*%*) in the hemiboreal
mixed stand.

Contrary to monoterpenoid fluxes, chamber temper-
ature explained only 9-32% (p < 0.001***) of the total
sesquiterpene fluxes, when all measurements were
pooled (Fig. 8). However, individual sesquiterpenes
showed better correlations with temperature.
Longicyclene, «-gurjunene, (3-farnesene, o-humulene
and (3-himachalene correlated with chamber tempera-
ture in the hemiboreal stands and longicyclene, -
gurjunene, (3-farnesene, aromadendrene, «-muurolene
and A-cadinene in the boreal stands (Supplementary
Table 1). Chamber temperature explained 20-77% (p
<0.001%*#*) of the variation of «-gurjunene, (3-
himachalene, SQT1, a-humulene and longicyclene
fluxes from the hemiboreal mixed forest floor and 40—
74% (p <0.05%) of the variation of -humulene, {3-
farnesene and longicyclene fluxes from the hemiboreal
Norway spruce forest floor. Chamber temperature also
explained 24-62% (p <0.05*) of the variation of
longicyclene, a-gurjunene, p-farnesene,
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aromadendrene, o-muurolene and A-cadinene fluxes
from the boreal Scots pine forest floor and 27%
(p <0.001*#*%*) of the variation of A-cadinene from the
boreal Norway spruce forest floor (Supplementary
Table 1). Normalized emission rates (Eo, pg m > h™")
in 30 °C (Guenther et al. 1993) were also calculated for
each compound (Supplementary Table 1).

In general, the variation of the total monoterpenoid
and sesquiterpene fluxes from forest floors in the boreal
sites was not correlated with soil moisture. However, in
the hemiboreal Norway spruce stand, the total
monoterpenoid fluxes from the forest floor decreased
when soil moisture increased and soil moisture ex-
plained 24-72% (p < 0.01**) of the variation of some
monoterpenoids, including 1,8-cineol, camphene, A3-
carene, myrcene, linalool, terpinolene and p-cymene. As
the Norway spruce site was highly heterogenic with
moist pits and drier mounds, the effect of soil moisture
on the total monoterpenoid fluxes was also compared
separately on mound surfaces with lower soil moisture
(R*=0.99, p <0.001***) and on the pit surfaces with
higher soil moisture (R?= 0.89, p < 0.001#*%*) (Fig. 9b).
Although in the hemiboreal mixed forest floor there was
no correlation between the total monoterpenoid fluxes
and soil moisture (Fig. 9a), soil moisture still explained
44-68% (p <0.001***) of the variation of 1,8-cineol,
myrcene and p-cymene from the hemiboreal mixed
forest floor (Supplementary Table 2).

Soil moisture explained 47-52% (p < 0.001*%*) of
the hemiboreal Norway spruce forest floor (Fig. 10), and
also 11-46% (p < 0.001***) of the hemiboreal mixed
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Table 3 The mean for monoterpernoid and sesquiterpene fluxes (g m > h™') from Scots pine and Norway spruce forest floors at the
SMEAR 1I station (boreal) and the SMEAR Estonia station (hemiboreal) from 2017 to 2018

Flux SMEAR II SMEAR Estonia
Pine stand Spruce stand Mixed stand Spruce stand

Monoterpenoids
o-pinene 12.4* (8.5) 4.4° (2.0) 21.1° (6.5) 2.3°(4.4)
camphene 1.9 (0.8) 2.6 (1.3) 2.6%(0.7) 0.7° (0.3)
B-pinene 0.6 (0.6) 1.2°(0.7) 0.8 (0.19) 0.37°(0.51)
A3-carene 8.4% (6.1) 1.8° (1.1) 8.7*(0.7) 2.7°(1.6)
p-cymene 0.3*(0.1) 0.2° (0.02) 0.8°(0.3) 17.4° (10.3)
1,8-cineol 0.02% (0.002) 0.3°(0.1) 0.31°(0.1) 0.7° (0.4)
limonene 0.5% (0.4) 2.6° (1.1) 1.9 (0.5) 0.5 (0.3)
terpinolene 0.1° (0.1) 0.02° (0.004) 0.2°(0.1) 0.1 (0.1)
linalool 0.5 (0.7) 0.2% (0.1) 0.1°(0.1) 0.8°(0.9)
myrcene 0.5% (0.4) 1.0% (0.6) 0.5%(0.1) 4.6° (2.4
bornylacetate 0.03* (0.01) 0.1° (0.1) 0.1°(0.1) 0.03% (0.02)
Sum of the monoterpenoids 23.1 (14.6)* 11.5 (5.2)° 32.1 (6.0)° 9.1 (6.0)°

Sesquiterpenes
longicyclene 0.01 (0.01) 0.02 (0.01) 0.01 (0.004) 0.01 (0.005)
isolongifolene 0.01 0.2 0.03 (0.02) BDL
o-gurjunene 0.4% (0.1) 0.1° (0.03) 0.2™ (0.3) 1.9°(0.7)
[3-farnesene 0.2 (0.2) 0.2%(0.1) 0.1°(0.1) 0.1 (0.03)
B-caryophyllene 0.3 (0.2) 0.2 (0.1) 0.2% (0.1) 0.1° (0.04)
aromadendrene 0.1 (0.02) 0.1 (0.1) 0.1 (0.04) 0.3
o-humulene 0.04 (0.02) 0.02* (0.01) 0.04° (0.02) 0.03 (0.02)
SQTI 0.1 (0.1) 0.04° (0.03) 6.3°(4.8) 1.3 (2.5)
x-curcumene 0.1% (0.04) 0.1% (0.02) 0.02° (0.01) BDL
o-buinesene 0.1% (0.03) 0.1 (0.1) 0.1% (0.04) 0.02° (0.01)
~y-muurolene 0.04% (0.02) 0.03 (0.02) 0.02° (0.01) 0.02° (0.01)
o-bisabolene 0.1° (0.04) 0.04° (0.02) 0.1 (0.04) 0.1° (0.1)
f-himachalene 0.1° (0.02) 0.04* (0.02) 0.1° (0.05) 0.3°(0.1)
o-muurolene 0.1° (0.03) 0.1 (0.1) 0.05% (0.02) 0.03° (0.05)
A-cadinene 0.3* (0.1) 0.2°(0.2) 0.2%(0.1) 0.1°(0.1)
Sum of the sesquiterpenes 0.9 (0.3)° 0.5 (0.4)* 1.3 (1.2 0.6 (0.6)°

The mean flux rates with standard deviation are means of six soil collars for each measurement site and the flux rate of each soil collar is an
average over the full measurement period. Significant differences in fluxes between the forest stands are marked with different letters (a, b,
and ¢ p<0.1°). BDL =below detection limit of the VOC quantification. The highest value is highlighted in bold

forest floor total sesquiterpene fluxes, and was signifi-
cant contributor in fluxes from both mounds and pits.
Soil moisture also explained 32—45% (p <0.05%) of the
variation of some sesquiterpenes, including «-
gurjunene and o-humulene from the hemiboreal Nor-
way spruce forest floor and 34-36% (p < 0.05%) of the
variation of a-gurjunene and longicyclene from the
hemiboreal mixed forest floor (Supplementary Table 2).

Discussion

Climate and stand type affects forest floor VOC fluxes
This study is the first one to compare forest floor mono-
terpene and sesquiterpene fluxes between stands differ-

ing in climate region and stand composition, and pro-
vides evidence that the forest floor VOC fluxes from
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Fig. 5 Seasonal patterns in mean a
monoterpenoid fluxes

(ug m > h™") during 2017-2018
from a the boreal Scots pine and
the Norway spruce stands at the
SMEAR 11 station and b from the
hemiboreal mixed and the Nor-
way spruce stands at the SMEAR
Estonia station. Error bars show
standard deviation (n =5 or 6)
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conifer-dominated ecosystems vary a lot with stand
type, tree species and climate. There may be several
reasons for the differences. A likely one is the longer
growing season and higher temperatures in more south-
em, hemiboreal ecosystems, increasing the total VOC
production and release from forest floor and soil. This
was seen in this study, where the hemiboreal mixed
forest floor was the largest VOC source compared to
the boreal pine or spruce. However, the climatic effect
was not consistent across all stands, and the Norway
spruce forest floor was a greater source for several
monoterpenoids in the boreal climate compared to the
hemiboreal climate. This indicates that also the stand
composition has a significant effect on VOC fluxes.
Overall, the measured total mean monoterpenoid
fluxes from forest floor (932 ug m 2 h™" for the differ-
ent stands, Table 3) were comparable to earlier studies
from boreal forest (440 pg m > h™'; Aaltonen et al.
2011, 2013; Maki et al. 2017, 2019). Significantly
higher fluxes were occasionally measured by Hellén
et al. (2006) and Janson (1993), likely reasons for these
high numbers are monoterpene fluxes from
decomposing litter after snowmelt and after fresh
litterfall release in autumn. Normalized emission rates
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for monoterpenes from a Sitka spruce forest soil
(Hayward et al. 2001: 34 ug m > h™') were also at
the same magnitude as in our study (42—
123 ug m % h™') (Supplementary Table 1). The total
monoterpene fluxes in our study were higher than
those in arctic and temperate climates, such as sub-
arctic heath (Faubert et al. 2010: 1.5-9.8 ug m2hh,
high Arctic Salix-heath (Lindwall et al. 2015:
0.01 ug m > h™"), high Arctic Cassiope-heath
(Lindwall et al. 2015: 7 ug m > h™"), and temperate
Deschampsia flexuosa heath (Rinnan et al. 2013:
0.05 ug m > h™"). Together, these studies show that
although northern soils are a significant monoterpene
source, monoterpene flux rates vary between ecosys-
tems or even within an ecosystem type.

The total mean sesquiterpene fluxes from boreal and
hemiboreal forest floors (0.5-1.3 ug m > h™' for the
different stands, Table 3) were mainly higher compared
to earlier studies from boreal forest floors (0.004—
0.35 ug m 2 h™', Aaltonen et al. 2011; Miki et al.
2017). However, sesquiterpene fluxes in this study were
similar in magnitude to the sesquiterpene fluxes in arctic
climates, such as in subarctic heath (Faubert et al. 2010:
2.7-3.4 ugm > h"), subarctic heath with evergreen and
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deciduous dwarf shrubs (Rinnan et al. 2013:
4 pug m 2 h™"), high arctic Cassiope-heath (Lindwall
et al. 2015: 0.15 pg m 2 h_l), low arctic Betula-heath
(Lindwall et al. 2015: 7 pg m 2 hY), and in low arctic
Salix-heath (Lindwall et al. 2015: 1 pg m 2 hY). These
studies show that sesquiterpene flux rates vary strongly
depending on the prevailing vegetation type, which was
also clear in our study.

VOC sources likely differ between the studied
stands. Ground vegetation of the boreal forest floor
was covered by Vaccinium spp. and mosses, which
release isoprene, monoterpenes, sesquiterpenes, and
oxygenated VOCs (Hanson et al. 1999; Hellén et al.
2006; Aaltonen et al. 2011; Faubert et al. 2012;
Miki et al. 2019), while the hemiboreal forest floor
was open or covered by mosses that mostly emit
isoprene and oxygenated VOCs (Hanson et al. 1999;
Hellén et al. 2006). Tree roots were also a likely
source of VOCs from the hemiboreal forest floor
with high water content, because short-term flooding
and increasing soil water content was found to en-
hance isoprenoid release from trees (see e.g. Bracho-
Nunez et al. 2012; Bourtsoukidis et al. 2014b).

Dense ground vegetation cover of Vaccinium spp.
and mosses releases VOCs in boreal stands, but
forest floor vegetation may also be a monoterpene
sink (Miki et al. 2017), when monoterpenes are
absorbed on the cuticle layer of leaves (Joensuu
et al. 2016). However, ground vegetation was scanty
under the dense tree canopy in the hemiboreal forest
floor and for this reason, a monoterpene sink effect
on net VOC flux was likely small, leading to higher
monoterpenoid and sesquiterpene fluxes from the
hemiboreal mixed forest floor.

The large stand biomass in the hemiboreal mixed
stand, accompanied with higher leaf litter production
and thus high quantities of monoterpenes from
decaying storages during litter decomposition
(Kainulainen and Holopainen 2002) very likely con-
tributes to differences in emissions between the
stands. This is supported by earlier studies per-
formed in-situ and in the laboratory. Tree species
have been shown to affect forest floor VOC fluxes,
because litter decomposition is a large source of
VOCs (Hayward et al. 2001; Greenberg et al.
2012). In the mixed hemiboreal stand, birches were
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Fig. 7 Relationship between the total monoterpenoid fluxes
(ug m 2 h") and chamber temperature (°C) in the boreal Scots
pine (R*=0.10, p<0.001***) and the Norway spruce stands
(R*>=0.39, p<0.001*%**) at the SMEAR 1I station and in the
hemiboreal mixed (p > 0.1) and the Norway spruce stands (R” =
0.75, p <0.001#**) at the SMEAR Estonia station in 2017-2018.
The R? and p values indicate the exponential correlation was
significant for SMEAR 11

abundant (Betula pendula and B. pubescens, 55% of
the forest cover), and their leaves were also present
in the soil collars of the boreal Norway spruce stand.
Birch leaves decompose faster than needles
(Cornwell et al. 2008) due to substrate lability that
accelerates microbial activity (Leff and Fierer 2008),
which may increase VOC fluxes from the
hemiboreal mixed forest floor as well as from the
boreal Norway spruce forest floor. Further, Isidorov
et al. (2010), observed that monoterpene flux rates
from Scots pine litter were from five to nearly ten
times higher compared to Norway spruce during the
first 77 days of litter decomposition, and also
Smolander et al. (2006) found higher monoterpene
concentrations in soil air beneath pine canopies
compared to spruce canopies. Sesquiterpene frac-
tions have been found to be larger in pine needles
(~34%) compared to spruce needles (~11%)
(Isidorov et al. 2003), supporting our finding that
the pine forest floor and the mixed forest floor were
higher sesquiterpene sources than the spruce forest
floor in both climates.
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Fig. 8 Relationship between the total sesquiterpene fluxes
(ug m 2 h™") and chamber temperature (°C) in the boreal Scots
pine (R*=0.11, p<0.001***) and the Norway spruce stands
(R*=0.09, p<0.001*%**) at the SMEAR 1I station and in the
hemiboreal mixed (R>=0.16, p <0.001*%*) and the Norway
spruce stands (R*=0.32, p<0.001***) at the SMEAR Estonia
station in 2017-2018. The R? and p values indicate the regression
was significant in SMEAR 11

It is important to note that VOC production rates may
differ between laboratory studies and field measure-
ments, because temperature, moisture and vegetation
may cause more variation in the field (Leff and Fierer
2008). Isidorov et al. (2010) observed a larger difference
in isoprenoid flux rates between Scots pine and Norway
spruce litter in the laboratory than we observed in situ
from the forest floor of Scots pine and Norway spruce
stands in this study. In-situ VOC flux rates may also
vary due to different microbial communities
metabolising species-specific VOCs (Isidorov et al.
2016) at different forest stands. Soil microbial commu-
nities were found to differ between Pinus sylvestris,
Picea abies and Betula pendula stands (Priha et al.
2001). The varying VOC flux rates between the stands
could also be explained by a significant effect of the
microbial community such as the VOC production and
degradation (Béck et al. 2010) and the soil organic
matter content (Cederlund et al. 2014). According to
Ramirez et al. (2010), litter emitted VOCs stimulated
microbial respiration activity in soil. In several studies,
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collars positioned on pit surfaces (n=2, R* = 0.46, p < 0.001%*%)
and four on mound surfaces (n=4, R%= 0.11, p<0.001%#%**);
results from the hemiboreal Norway spruce forest floor are from
three soil collars positioned on pit surfaces (n=3, R*=0.52,
p<0.001**%*) and three on mound surfaces (n=3, R*>=047,
p <0.001%%%)
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the activity of carbon and net nitrogen mineralization
was higher in spruce stands compared to pine stands
(Priha et al. 2001; Kanerva and Smolander 2007,
Smolander and Kitunen 2011). Additionally, higher
VOC uptake of microbes in the spruce forest floor could
also explain higher VOC fluxes from the boreal Scots
pine forest floor and from the hemiboreal mixed forest
floor compared to the spruce forest floors.

Seasonal dynamics of forest floor VOC fluxes

Isoprenoid fluxes followed a rather similar seasonal
dynamic across the different forest stands.
Monoterpenoid and sesquiterpene flux rates from
the forest floor were generally highest in spring
and summer, correlating with the period when new
biomass production of ground vegetation occurred
and microbial activity was likely high due to rising
temperatures. Our results are supported by earlier
studies, where forest floor monoterpene fluxes were
found to be higher in spring and sesquiterpene
fluxes in summer (Hellén et al. 2006; Miki et al.
2017). High sesquiterpene release from the forest
floor in summer likely ordinates from intensive root
growth and root interactions with soil organisms
(Ditengou et al. 2015). The high fluxes in spring
are likely caused by decomposing litter and growth
of forest floor vegetation (Hellén et al. 2006;
Aaltonen et al. 2011). Coniferous roots store and
release isoprenoids (Hayward et al. 2001; Lin et al.
2007). Abiotic mechanisms including VOC adsorp-
tion on clay particles and litter degradation through
thawing-freezing and drying-wetting cycles may al-
so affect forest floor VOC fluxes (Asensio et al.
2007a, b; 2008; Insam and Seewald, 2010; Deng
et al. 2017). Soil clay content was high in
hemiboreal stands (Noe et al. 2011).

When the forest floor and soil emissions are com-
pared with aboveground emissions measured at the
same stands, similarities in seasonal patterns are found.
At our boreal pine site, Scots pine shoots release the
highest monoterpene fluxes from May to August, and
sesquiterpene fluxes from June to August (Hakola et al.
2009). Monoterpene flux rates from boreal Norway
spruce shoots adjacent to our measurement site are also
highest from June to August and sesquiterpene flux rates
in July (Hakola et al. 2017). This is in accordance with
the results in this study, indicating that, at the ecosystem
scale, it is difficult to separate the forest floor emissions

@ Springer

from the canopy emissions since they occur at same
temporal dynamics. The importance of forest floor to
whole stand VOC fluxes was significant, but strongly
dependent on the season (Maki et al. 2019). Forest floor
monoterpene and methanol fluxes cover about 1-20%
of the forest stand fluxes in summer (Maki et al. 2019).
The effect of forest floor increases in spring and autumn
and ranges from few percent up to 90% for monoter-
penes and from a few per cent up to over 100% for
methanol (Maiki et al. 2019). These results are supported
by other study, where litter-released VOCs covered
under 1% of the canopy fluxes in summer in a
Ponderosa pine stand (Greenberg et al. 2012) and by
other studies, where the Scots pine forest floor released
from a few per cent to 40% of the canopy fluxes, when
measurements were performed from spring to autumn
(Janson 1993; Aaltonen et al. 2013).

It has been previously shown that the time of
maximum litter production coincides with high for-
est floor emissions (e.g. Aaltonen et al. 2011; Maiki
et al. 2017; Wang et al. 2018). In this study, the
result was not so clear, and positive correlations
between emissions and litter quantities were not
seen. Litter decomposition is typically a high VOC
source during the early decomposition phase
(Isidorov et al. 2005), i.e. when the litter is fresh.
Abiotic processes, such as mechanical decaying due
to freezing-thawing events and photo- and thermo-
chemical reactions, may also release VOCs (Cho
et al. 2005; Fall et al. 2001; Warneke et al. 1999),
especially in spring and autumn when temperatures
vary greatly between day and night. The lack of
correlations may reflect the large heterogeneity of
the below-canopy processes affecting emissions:
even though litter production at stand level can be
high (as in our boreal SMEAR II site in October
2017), the probability that the litter actually falls on
the six collars and increases the emissions is still
quite low. Further, in the hemiboreal stand the
litterfall quantity was quite stable throughout the
summer, but emissions varied according to some
other factors. Detailed experiments would be needed
in order to verify the magnitude and regulating
factors in litter-originating emissions.

The main physical factors influencing isoprenoid
fluxes from forest floor and soil are temperature and soil
moisture. Temperature correlated rather well with forest
floor monoterpenoid and sesquiterpene fluxes in other
stands than in the mixed forest, agreeing with earlier
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studies (Aaltonen et al. 2013; Miki et al. 2017, 2019). It
is well known that temperature promotes plant VOC
biosynthesis (Kesselmeier and Staudt 1999) as well as
accelerates compound volatilization (Guenther et al.
1993) and microbial activity that produces VOCs
(Isidorov et al. 2016), and these factors are likely the
main reasons for the temperature response of VOC fluxes
from the forest floor in this study as well. The effect of
soil moisture on forest floor VOC exchange is highly
complex, because increasing soil moisture may increase
or decrease forest floor VOC exchange. Increasing soil
moisture hinders gas diffusion in soil and volatilization
from the soil surface, increases deposition of VOCs on
soil surface and VOC leaching towards the bedrock, but
it may also increase VOC synthesis or uptake of microbes
and VOC release of trees (Cousins et al. 1999; Asensio
et al. 2007a; Bracho-Nunez et al. 2012; Bourtsoukidis
et al. 2014b; Zhong et al. 2014; Bourtsoukidis et al.
2018). Earlier studies confirm that forest floor VOC
fluxes are affected by soil moisture in boreal forests
(Aaltonen et al. 2011), in Mediterranean forest soils
(Asensio et al. 2007a), in arctic habitats (Svendsen et al.
2016) and in tropical forest soils (Bourtsoukidis et al.
2018). Most of these studies focus on the effect of dry
soils on VOC fluxes. VOC emissions may occur under
very dry conditions despite a probably low decomposi-
tion rate due to stress responses of living tissues. In this
study, the hemiboreal site had a large soil moisture gra-
dient with dry mounds and very wet depressions, and this
diversity was also affecting the VOC fluxes locally.
VOC fluxes from the hemiboreal forest floor de-
creased with increasing soil moisture, indicating that
indeed the excess moisture can decrease emissions.
The main effects of soil moisture are linked to microbial
decomposition, VOC evaporation from the soil surface
and gas diffusion in soil (Skopp et al. 1990; Davidson
and Janssens 2006; Asensio et al. 2007b; Zhong et al.
2014; Som et al. 2017). High soil moisture may also
increase microbial VOC uptake, similar as in Mediter-
ranean soil (Asensio et al. 2007a). Rewetting after
drought is generally known to boost soil emissions
probably because of moisture-induced increase in mi-
crobial activity (Rossabi et al. 2018). The drying-
wetting dynamic may also affect VOC biodegrada-
tion in soil (Cho et al. 2005), which may decrease
VOC fluxes in high soil moisture. It is likely that
both microbial decomposition and biodegradation
play a role in soil VOC exchange and the compo-
sition of microbial community defines, which one

of those two is a dominating mechanism in soil
VOC exchange.

In general, hemiboreal forests have a higher propor-
tion of deciduous trees compared to boreal forests
(Bourtsoukidis et al. 2014a) which traditionally are
managed as conifer monocultures with only sporadic
understorey with deciduous tree saplings. In the future,
the warming climate may lead to significant changes in
forest tree distribution and transform boreal coniferous
forests into mixed forests, resembling more the
hemiboreal forest type. This will likely also change
soil characteristics and affect the VOC emissions from
forest floor. Smolander and Kitunen (2011) found that
soil pH, NH4-concentrations and carbon and nitrogen
content in microbial biomass were higher in boreal birch
stands compared to Norway spruce and Scots pine
stands, especially in older stands. This indicates that
increased abundance of broadleaf species may acceler-
ate microbial activity and nutrient availability in soil,
potentially affecting microbial VOC synthesis and up-
take, and increasing VOC biosynthesis and emissions
also from the ground vegetation. This study showed that
large differences in fluxes can be seen between stands
with only conifers and those with mixed tree species
composition. Our results show the need for detailed
experiments to clarify the driving processes in these
different stands. Without such understanding it is very
difficult to forecast future emissions from forest soil and
forest floor vegetation.
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