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Abstract
Background and aims Soil cadmium (Cd) contamina-
tion threatens food safety and human health. In-
creas ing Cd phytoext rac t ion eff ic iency by
hyperaccumulators and growing safe products dur-
ing remediation remain challenges.
Methods A pot experiment was conducted to explore the
effects of different rates of sulfur (S) associated with
alternating drying and wetting on a Sedum
plumbizincicola-Oryza sativa rotation in Cd-
contaminated neutral and calcareous soils.
Results The oxidation of added S under aerobic condi-
tions significantly decreased soil solution pH and in-
creased soluble sulfate (SO4

2−), Cd and iron (Fe) con-
centrations in both soils. During the rice growing season
the soil solution redox (Eh) decreased to < −200 mVand
the solution pH increased to neutral during the first few
days of flooding. Soluble SO4

2− and Cd in the S treat-
ments decreased significantly with increasing duration
of flooding. Sulfur addition promoted shoot Cd concen-
trations of S. plumbizincicola by 1.7–5.5 times on

calcareous soil and 1.7–2.3 times on neutral soil com-
pared to the controls. Rice yields increased but Cd
concentrations decreased at suitable S addition rates.
Conclusions Appropriate sulfur amendment combined
with water management can be a feasible strategy to
enhance the Cd remediation efficiency of the
hyperaccumulator and reduce the accumulation of Cd
in the rice grains in this rotation.

Keywords Cadmium contamination .Oryza sativa .

Phytoextraction . Sedum plumbizincicola . Sulfur .Water
management

Introduction

Elevated cadmium (Cd) concentrations in Chinese ara-
ble soils due to industrial and agricultural activities
represent an important threat to human and animal
health (Teng et al. 2014; Chen et al. 2015; Xue et al.
2017). Many Cd-polluted soils urgently require remedi-
ation. A range of options have been proposed including
the identification of the contaminant sources in agricul-
tural systems, minimization of contaminant inputs, re-
duction of the phytoavailability of potentially toxic ele-
ments in soils by liming or the application of other metal
immobilizing materials, selection and breeding of crop
cultivars with low metal accumulation ability, adoption
of appropriate water and fertilizer management prac-
tices, bioremediation, and changes in land use to grow
non-food crops (Zhao et al. 2015). One technique,
phytoextraction using hyperaccumulators, is an in-situ,
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environmental friendly and low-cost approach to the
remediation of metal contaminated agricultural soils
(Van der Ent et al. 2013). Rotation or intercropping of
hyperaccumulators with crops is now widely used to
remove metals from contaminated soils and continue
agricultural production (Yang et al. 2017; Zhan et al.
2016; Deng et al. 2016). However, technologies for
increasing metal phytoextraction efficiency and mini-
mizing remediation time need to be developed (Li et al.
2018). Growing safe products during the period of re-
mediation by hyperaccumulators remains a major chal-
lenge (Wan et al. 2016; Shen et al. 2010).

Synthetic or natural metal chelating agents such as
EDTA (ethylene diamine tetraacetic acid), EDDS (eth-
ylene diamine disuccinic acid), and citric acid are often
used to increase phytoextraction efficiency (Anwar et al.
2017; Freitas et al. 2013; Attinti et al. 2017). Acidifying
compounds such as elemental sulfur (S) have been
proposed to enhance metal uptake by phytoextraction
crops grown in polluted soils (Kayser et al. 2000; Wang
et al. 2006; Iqbal et al. 2012). Sulfur is an essential
element to all living organisms because it forms part of
important life sustaining molecules such as cysteine,
thioredoxin metallothionein, enzymes and vitamins
(Hell 1997; Saito 2000). These compounds can increase
plant tolerance to metals through complexation and/or
sequestration into vacuoles (de Oliveira et al. 2014). It is
well known that sulfur changes its valence state due to
moisture-driven soil oxidation status. In aerobic condi-
tions S application can decrease soil pH because the
oxidation of S to sulfate (SO4

2−) by sulfur-oxidizing
bacteria or chemical process releases protons (H+) (Cui
et al. 2004). After sulfur application the soil pH de-
creases significantly, thus increasing the solubility of
soil Cd and plant Cd accumulation (Wang et al. 2007).
In anaerobic environments, HS− and S2− produced by
sulfate reduction can precipitate with thiophilic elements
(Cd, Cu, Fe) or co-precipitate with FeS (Khaokaew et al.
2011; Hu et al. 2013; Fulda et al. 2013; Hashimoto et al.
2016). However, there is little information on the effects
of S on Cd solubility in drying-wetting rotation systems.

S e d um p l um b i z i n c i c o l a , a n a t i v e C d
hyperaccumulator found in east China, has shown a
considerable capacity to extract Cd from soils (Wu
et al. 2013; Hu et al. 2015; Li et al. 2014b). Several
modes have been developed using this plant for reme-
diation practice, for example rotation with rice and
intercropping with maize or aubergine (Deng et al.
2016). A recent study shows that the optimum pH for

phytoextraction with S. plumbizincicola was ~5.5 be-
cause of high Cd bioavailability (Wu et al. 2018). How-
ever, the bioavailability of Cd in neutral and calcareous
soils is usually poor, and phytoextraction takes longer
times (Li et al. 2014a, 2016; Wu et al. 2018). It is
therefore necessary to develop techniques to increase
the phytoextraction efficiency of S. plumbizincicola and
to inhibit Cd accumulation in associated rice.

In the present study a pot experiment was conducted
to explore the effects of different addition rates of S
associated with drying-wetting rotation between
S. plumbizincicola and rice in Cd-contaminated neutral
and calcareous soils. We hypothesized that S oxidation
in aerobic conditions decreases soil pH and increases Cd
bioavailability and thus increases Cd phytoextraction by
S. plumbizincicola. Furthermore, sulfate reduction in
flooded conditions can precipitate Cd and restrict Cd
accumulation by rice. The aim was to develop a rotation
system that would optimize phytoextraction and pro-
duce safe rice on Cd-contaminated agricultural soils.

Materials and methods

Soil characterization

Two test soils were collected from the top 15 cm of the
soil profile of agricultural fields. One is classified as a
Calcaric Purpli-Orthic Primosols from Lanping County,
Yunnan Province (designated L-soil) with a pH of 8.0
and a total Cd concentration of 4.44 mg kg−1. The other
is classified as a Typic Hapli-Stagnic Anthrosols from
Taicang City, Jiangsu Province (designated T-soil) with
pH 6.5 and total Cd 1.33 mg kg−1. Selected physico-
chemical properties of the test soils are listed in Table 1.

Design of pot experiment

A glasshouse pot experiment was conducted with two
consecutive crops comprising S. plumbizincicola (days
0 to 90) followed by rice (days 120 to 210). There were
five rates of S addition, namely controls (L0 and T0),
0.5 g kg−1 (L0.5 and T0.5), 1.0 g kg−1 (L1 and T1),
2.0 g kg−1 (L2 and T2) and 4.0 g kg−1 (L4 and T4).
Sulfur was added to the soils before S. plumbizincicola
was transplanted. Four cuttings of S. plumbizincicola
were transplanted into each 15-cm-diameter plastic pot
containing 1.5 kg (oven dry basis) of 2-mm sieved air
dry soil. There were four replicate pots of each treatment
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giving a total of 40 pots. Fertilizers were applied at rates
of 0.3 g CO(NH2)2 and 0.3 g KH2PO4 kg

−1 soil 30 days
after S. plumbizincicola was transplanted. Deionized
water was added daily to maintain soil moisture at about
60% of soil water holding capacity (WHC) during the
S. plumbizincicola growth period. Shoots of the
hyperaccumulator were harvested after growth for
90 days. The remaining soil was used for the subsequent
rice crop (Oryza sativa cv. Xiangzaoxian 24) which
grew from days 120 to 210. The soil in each pot was
mixed with basal fertilizer composed of 0.4 g CO(NH2)2
kg−1 and 0.4 g KH2PO4 kg

−1. Then 0.6 g CO(NH2)2 and
0.6 g KH2PO4 kg

−1 were top dressed at the tillering and
grain filling stages, respectively. A water layer about
4 cm deep above the soil surface was maintained during
the rice growing period. The pots were fully randomized
and then re-randomized once a month.

One Rhizon soil moisture sampler (Rhizon-MOM,
Wageningen Research Products, Wageningen,
The Netherlands) was installed in the middle of the soil
in each pot at an angle of 45° during the growth of both
plant species. Soil solution samples of ~15 ml were ex-
tracted from each pot on days 1, 10, 20, 30, 50, 70, 90, 121,
125, 150, 175 and 200. The soil water content was adjusted
to 80% of the WHC with deionized water 12 h before
sampling during the S. plumbizincicola growing period.

At harvest, S. plumbizincicola shoots and rice grains
were collected and washed with running tap water and
rinsed twice with deionized water, oven dried at 75 °C,
weighed, and ground. Fresh soil samples were collected
at the same time and immediately used for the determi-
nation of soil extractable Cd.

Chemical analysis

Soil pH, organic matter content, texture, and available
nitrogen, available phosphorus and available potassium
contents were determined following the methods of Lu
(2000). Soil available sulfur was extracted with
Ca(H2PO4)2 and determined by ion chromatography
(ICS3000, Thermo Dionex, Sunnyvale, CA). Soil total
Cd, Zn, Fe and Mn concentrations were determined by
digestion of 0.20-g samples with 5 mL HCl and 5 mL
HNO3. Available Cd in fresh soil samples was extracted
with 0.01 M CaCl2 at a soil:water ratio of 1:10 (w/v).
Plant samples (0.20 g) were digested with 6 mL HNO3

and 2 mL H2O2. Metal concentrations in the digest
solutions and extract solutions were determined by in-
ductively coupled plasma-mass spectrometry (ICP-MS,
Ultramass, Varian, Palo Alto, CA). Plant S concentra-
tions were determined by inductively coupled plasma-
optical emission spectrometry (ICP-OES, Perkin Elmer
Optima 8000, Waltham, MA). Replicates, blanks and a
certified reference material (GBW07406) were included
for analytical quality control.

The pH and Eh values of soil solutions were deter-
mined immediately after sampling. Soil solutions were
acidified (1% (v/v) of concentrated HNO3) and stored at
−20 °C for metal and SO4

2− determination (Fulda et al.
2013). Metal concentrations in solutions were determined
by ICP-MS or ICP-OES and SO4

2− concentration was
determined by ion chromatography as described above.

Statistical analysis

All data are expressed as mean ± standard error (SE).
The data were tested by one-way analysis of variance
and mean values were compared by least significant
difference (LSD) at the 5% protection level. Data pro-
cessing was conducted using Microsoft Excel 2013 and
the SPSS 21.0 for Windows software package (SPSS
Inc., Chicago, IL).

Results

Soil solution pH, Eh and dissolved SO4
2− at different

plant growth stages

The dynamics of pH, Eh, SO4
2−, Cd, Fe, and Mn in the

soil solution during aerobic (the first 90 days,
S. plumbizincicola) and anaerobic (days 120–210, rice)

Table 1 Selected physicochemical properties of the two test soils

Soil L-Soil T-Soil

pH 8.0 6.5

Organic matter (g kg−1) 56.8 51.5

Clay (%) 8.64 12.8

Available N (mg kg−1) 167 134

Available P (mg kg−1) 116 77.5

Available K (mg kg−1) 203 170

Available S (mg kg−1) 23.2 40.4

Total Cd (mg kg−1) 4.44 1.33

Total Zn (mg kg−1) 331 137

Total Fe (g kg−1) 18.8 25.2

Total Mn (g kg−1) 0.37 0.32
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culture under the different rates of S amendment are
shown in Fig. 1. In the L-soil control treatment solution
pH was maintained between 6.6 and 7.6 in the early part
of the aerobic stage but showed a decreasing trend after
30 d. Soil solution pH increased and then remained
between 7.5 and 8.2 during the flooded stage and similar
trends occurred in the T-soil. Sulfur treatments led to
lower pH than in the control in both soils. A rapid
decrease in soil solution pH occurred during the first
30 days. On day 30 the solution pH in L2 (5.68), L4
(5.03), T2 (3.78) and T4 (3.23) decreased by 1.82, 2.47,
2.62 and 3.17 units compared with the controls L0
(7.50) and T0 (6.40), respectively. On day 90 the solu-
tion pH of L2 (4.63), L4 (3.98), T2 (3.19) and T4 (2.77)
decreased by 1.95, 2.60, 2.09 and 2.81 units compared
with the controls L0 (6.58) and T0 (5.58), respectively.
During the growth of the rice the soil solution pH
changed from acid to neutral with the exception of
treatments L4, T2 and T4.

Soil solution Eh of all treatments was between
200 mV and 400 mV during the growth of
S. plumbizincicola and decreased to −200 mV five days
after flooding and then remained between −200 mVand
− 300 mV until the rice harvest. Dissolved SO4

2− in the
controls was maintained at 50.8–103 mg L−1 in the L-
soil and 83.1–189 mg L−1 in the T-soil during the
S. plumbizincicola growth period. Dissolved SO4

2− in
the S treatments increased significantly within the first
30 days in both soils. Dissolved SO4

2− reached a max-
imum of 1151 mg L−1 after 50 days in the T4 treatment.
On day 90 the concentrations of SO4

2− were 461 and
646 mg L−1 in treatments L2 and L4, respectively,
values 4.48 and 6.27 times that of the control L0
(103 mg L−1). The SO4

2− of treatments T2 and T4 were
445 and 876 mg L−1, respectively, 2.35 times and 4.63
times that of the control T0 (189 mg L−1). After one day
of flooding (day 121) the soil solution SO4

2− concentra-
tions in all treatments increased above those on day 90.
During flooded rice growth, dissolved SO4

2− declined in
general. After 200 days the concentrations of SO4

2− in
treatments L0 and L4 were 0.47 and 360 mg L−1, re-
spectively, and the SO4

2−concentrations in treatments
T0 and T4 were 0.67 and 154 mg L−1, respectively.

Soil solution ion concentrations and CaCl2-extractable
Cd concentrations at different growth stages

During the growth of S. plumbizincicola the solution
Cd in both soils increased with increasing S addition

rate from 0 to 30 days. Solution Cd declined slightly
from day 30 to day 90 in the controls and some of
the S treatments. On day 90 the solution Cd concen-
trations in L2 and L4 were 21.7 and 184 μg L−1,
respectively, values 9.0 and 76.3 times that of L0
(2.41 μg L−1). In T-soil the 0.5 g kg−1 S treatment
(L0.5) increased the solution Cd concentration to
7.4–24.8 μg L−1, and higher S application led to
higher solution Cd concentrations. During flooding
(days 120 to 210) the soil solution Cd showed a
maximum value after 5 days of flooding (on day
125). After flooding for 30 days (day 150) the
concentration rapidly decreased to ~0.1 μg L−1 and
was maintained until the harvest in the control and
lower S treatments, e.g. 0.5–2 g kg−1 in L-soil and
0.5 g kg−1 in T-soil. The high S treatments also
reached minimum concentrations but did so over a
longer time period.

Soil CaCl2-extractable Cd concentrations in both
soils were determined at the S. plumbizincicola and
rice harvests (Table 2). They increased with increas-
ing S application rate at the S. plumbizincicola har-
vest. Soil CaCl2-extractable Cd concentrations de-
creased substantially after flooding compared to aer-
obic conditions. Furthermore, the S treatments at
0.5–2 g kg−1 in L-soil and 0.5–1 g kg−1 in T-soil
led to significantly lower extractable Cd than in the
controls. However, S application at 4 g kg−1 in L-
soil and 2–4 g kg−1 in T-soil produced significantly
higher extractable Cd than in the controls.

The dynamic changes in soil solution Fe and Mn
followed similar trends. From 0 to 90 days Fe and Mn
increased with plant growth time and S rate. Fe showed
a decrease after flooding for 5 days (on day 125) and
then increased rapidly. Sulfur treatments showed higher
solution Fe andMn concentrations during the rice grow-
ing period compared to the controls.

Plant biomass and elemental accumulation

Compared with the controls the growth of
S. plumbizincicola was significantly affected when the
S rate was ≥ 2 g kg−1 in L-soil and ≥ 1 g kg−1 in T-soil
(Table 3). The S. plumbizincicola shoot Cd concentra-
tions in the S treatments were significantly higher than in
the controls in both soils. For example, the shoot Cd
concentrations in L2 and T0.5 were 106 and
96.8 mg kg−1, respectively, values 4.16 and 1.67 times
those of L0 and T0. Soil Cd removal rate increased after
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S treatment. For example, the soil Cd removal rates in L2
and T0.5 treatments were 14.6 and 44.7%, respectively,
values significantly higher than in L0 (4.03%) and T0
(32.0%). Sulfur treatments significantly increased brown
rice yields in L4, T1 and T2 treatments compared to the
controls (Table 4). Brown rice Cd concentrations at 0.5–
2 g kg−1 S treatments in both soils were significantly
lower than the controls. Sulfur treatments also signifi-
cantly increased S concentrations in S. plumbizincicola
shoots and brown rice (Tables 3 and 4).

Discussion

Dynamics of soil chemical processes affected by sulfur
addition and water management

Our experiment indicates that S addition combined with
alternating drying and wetting of the soil significantly
a f f e c t e d s o i l c h em i c a l p r o c e s s e s i n t h e
S. plumbizincicola and rice rotation system. The

behaviour of S is closely linked to paddy soil redox
conditions because of the transformation of inorganic
species between valence −2 and valence +6 and oxida-
tion of organic S compounds. In aerobic conditions with
S. plumbizincicola a dramatic increase in soil soluble
sulfate indicates the oxidation of sulfur which was very
pronounced for the first 30 days (Fig. 1). This was the
period of rapid sulfur oxidation (Wen et al. 2001; Wang
et al. 2007). The sulfur oxidation process under aerobic
conditions resulted in a decrease in soil pH. Generally,
soil pH determines the processes of dissolution-
precipitation and adsorption-desorption of metals in
soils. The decrease in soil solution pH therefore further
increased the soil solution Cd, Mn and Fe concentra-
tions (Fig. 1). These effects depended on both the sulfur
addition rate and soil properties. In general, the degree
of change is proportional to the sulfur rate. However,
similar amounts of S had significantly different effects
in the two soils. For example, on day 30 the soil solution
pH values in treatments L4 and T4 were 5.03 and 3.23,
respectively. This is because of the different properties

Table 2 Soil CaCl2-extractable Cd at the harvests of S. plumbizincicola and rice (μg kg−1)

S rate S. plumbizincicola Rice

(g kg−1) L-soil T-soil L-soil T-soil

0.0 34.1 ± 0.8e 44.8 ± 1.5e 1.19 ± 0.11b 12.7 ± 2.6c

0.5 41.6 ± 3.0d 83.6 ± 7.6d 0.27 ± 0.03c 2.48 ± 0.67d

1.0 65.8 ± 1.5c 151 ± 4c 0.24 ± 0.03c 5.86 ± 1.72cd

2.0 164 ± 7b 296 ± 37b 0.22 ± 0.01c 120 ± 11b

4.0 920 ± 28a 772 ± 54a 11.7 ± 1.2a 228 ± 38a

Data are mean values ± SE (n = 4); means followed by the same letter are not significantly different at P < 0.05

Table 3 Effects of sulfur on biomass and elemental accumulation by S. plumbizincicola shoots

S rate
(g kg−1)

L-soil T-soil

Dry biomass
(g pot−1)

[Cd] (mg kg−1) [S] (g kg−1) Soil Cd removal
rate (%)

Dry biomass
(g pot−1)

[Cd]
(mg kg−1)

[S] (g kg−1) Soil Cd removal
rate (%)

0.0 10.3 ± 1.2a 25.5 ± 2.6d 1.83 ± 0.15d 4.03 ± 0.60c 11.1 ± 1.1a 58.1 ± 2.1d 1.46 ± 0.11b 32.0 ± 2.0b

0.5 8.79 ± 0.99ab 44.3 ± 4.5c 2.93 ± 0.22c 6.44 ± 0.09b 9.45 ± 1.14ab 96.8 ± 9.2c 1.74 ± 0.11b 44.7 ± 5.0a

1.0 8.49 ± 0.38ab 54.7 ± 4.2c 3.24 ± 0.28bc 7.15 ± 0.78b 7.90 ± 0.40b 115 ± 7bc 1.93 ± 0.13b 44.9 ± 1.3a

2.0 8.95 ± 0.77ab 106 ± 4b 3.80 ± 0.37b 14.6 ± 1.3a 4.78 ± 0.11c 155 ± 9a 2.97 ± 0.16a 36.7 ± 1.2ab

4.0 7.43 ± 0.57b 139 ± 2a 6.21 ± 0.26a 15.8 ± 1.3a 2.86 ± 0.16c 135 ± 8ab 3.02 ± 0.31a 19.3 ± 1.9c

Data are mean values ± SE (n = 4); means followed by the same letter are not significantly different at P < 0.05

Soil Cd removal rate (%) = (M1 × C1 × 10
−3 ) / (M2 × C2). M1 = the dry biomass of S. plumbizincicola shoots (g pot

−1 ); M2 = the soil mass of
a pot (1.5 kg); C1 = Cd concentration in S. plumbizincicola shoots (mg kg−1 ); C2 = initial soil Cd concentration, e.g. 4.33 mg kg−1 and
1.33 mg kg−1 in L-soil and T-soil, respectively
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of the two soils including the initial pH and clay con-
centrations (Table 1). It is notable that soil solution pH
and solution Cd decreased slightly in some treatments
from 30 to 90 days and this can be explained by rhizo-
sphere acidification and Cd accumulation by
S. plumbizincicola (Sun et al. 2019).

Upon flooding, O2 in the soil is depleted quickly and
this is followed by reduction of nitrate, manganese oxides
and then iron oxides/hydroxides. After the reduction of Fe,
sulfate is reduced to sulfide mainly due to microbial activ-
ity (Borch et al. 2010; Hashimoto et al. 2016). One day
after flooding (day 121) in the current study the concen-
tration of soil solution SO4

2− in all treatments increased
compared to day 90. This was due to the competitive
effects of anions e.g. CO2, acidic carbonates and organic
acids resulting from the decomposition of organic matter
(Ding and Xu 2011). Subsequently, soil solution SO4

2−

showed an overall downward trend (Fig. 1) which indi-
cates reduction of SO4

2− (Burton et al. 2013, 2014). When
flooding was prolonged the soil solution Eh decreased
from −200 mV to −300 mV and soil SO4

2− was reduced
to generate reducing substances such as HS−/S2− which
formed sulfide precipitates with various trace metals, e.g.
Cu, Cd, Fe, and Zn (Fulda et al. 2013; Hashimoto et al.
2016). On the other hand, the reduction reaction consumes
protons, thus the soil pH of all treatments changed to
neutral (Burton et al. 2013). However, the pH in treatment
T4 remained low, possibly because the sulfur rate
exceeded the buffering capacity of the soil.

It is notable that at day 125 (five days after flooding)
the soil solution Cd concentration increased but Fe and
Mn concentrations decreased (Fig. 1). One possible ex-
planation is that Fe/Mn oxides underwent a reduction and
dissolution process, releasing Cd2+ (Kocar et al. 2010;
Stroud et al. 2011). The soil solution Fe concentration is
higher than that of Cd and therefore Fe readily combines

with S2− to form FeS precipitate. This resulted in a
temporary decline in solution Fe concentration. After
prolonged submergence the continuous reduction of Fe/
Mn oxides provided soluble metals while soil solution
Cd directly formed CdS or replaced Fe in FeS (Ditoro
et al. 1990). Moreover, the continuous flooding within
30 days in appropriate S treatments eliminated elevated
soluble Cd resulting from S oxidation, and maintained
soluble Cd at a low level (~0.1 μg L−1) until the rice
harvest. This is consistent with previous studies (de
Livera et al. 2011; Fan et al. 2010). It has been reported
that moderate sulfur-containing substances in flooded
soils change the diversity of the bacterial community
and this accelerates the reduction of sulfate and facilitates
the precipitation of metal sulfides (Wu et al. 2019;
Sebastian and Prasad 2014; Kelly and Wood 2000).
The 0.5–2 g kg−1 S treatments in L-soil and 0.5–
1 g kg−1 S treatments in T-soil showed significantly lower
extractable Cd concentrations than the controls (Table 2).
More Cd would be expected to form CdS precipitate
which would be stable and non-extractable by weak
extracting agents such as CaCl2 (Furuya et al. 2016).
However, the excessive S treatments, e.g. L4, T2 and
T4, took a long time to reduce soluble Cd to the mini-
mum level, and the concentration of CaCl2-extractable
Cd after the rice harvest was also maintained at a high
level (Fig. 1, Table 2). One possible explanation is the
inhibition of Cd precipitation under extremely low soil
pH conditions.

Effects of sulfur application and water management
on phytoextraction and accumulation of Cd
by S. plumbizincicola and rice

Sulfur addition and water management also affected
plant growth and metal accumulation. Appropriate S

Table 4 Effects of sulfur amendment on yield and elemental concentrations in brown rice

S rate (g kg−1) L-soil T-soil

Yield (g pot−1) [Cd] (μg kg−1) [S] (g kg−1) Yield (g pot−1) [Cd] (μg kg−1) [S] (g kg−1)

0.0 11.2 ± 1.2b 40.9 ± 6.0a 0.62 ± 0.04d 18.8 ± 0.6b 144 ± 12b 1.17 ± 0.07b

0.5 12.2 ± 1.3ab 19.8 ± 1.9b 1.22 ± 0.08bc 19.7 ± 0.7b 40.4 ± 6.5d 1.30 ± 0.12b

1.0 12.0 ± 0.5ab 16.1 ± 3.0b 1.10 ± 0.07c 23.0 ± 1.5a 44.3 ± 7.0d 1.18 ± 0.07b

2.0 13.6 ± 0.7ab 20.1 ± 2.4b 1.43 ± 0.09b 25.4 ± 1.2a 94.4 ± 9.0c 1.80 ± 0.19a

4.0 14.6 ± 0.7a 28.8 ± 4.9ab 2.29 ± 0.15a 8.42 ± 0.85c 179 ± 12a 2.02 ± 0.10a

Data are mean values ± SE (n = 4); means followed by the same letter are not significantly different at P < 0.05
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treatment had no significant negative effect on
S. plumbizincicola biomass but significantly increased
the shoot Cd concentrations because of the increase in
soil Cd bioavailability both in neutral and calcareous
soils. For example, shoot Cd concentrations in the S
treatment in L-soil were 1.74–5.45 times and in T-soil
were 1.67–2.67 times higher than in the controls. More-
over, the soil Cd removal rate in L2 and T0.5 reached
14.6 and 44.7%, respectively, values significantly higher
than in L0 (4.03%) and T0 (32.0%). The increase in Cd
removal rate with S treatment will markedly shorten the
duration of remediation. For example, we assume that the
Cd removal rate by S. plumbizincicola is consistent in
subsequent remediation, costing three crops in T0.5 but
four crops in T0 to decease the soil Cd (1.33 mg kg−1,
pH 6.5) to below the Chinese risk screening value
(0.4 mg kg−1, 5.5 < pH ≤ 6.5, GB15618–2018). Similar-
ly, the cost is around 42 crops in L0 but only 11 crops in
L2 to decrease soil Cd (4.44 mg kg−1, pH 8.0) to below
the Chinese risk screening value (0.8 mg kg−1, pH > 7.5,
GB15618–2018). Previous studies also report that
phytoextraction efficiency in S treatments was enhanced
by 50% during microbial S oxidation in the rhizosphere
of willow (Iqbal et al. 2012). The addition of S had
positive effects on the accumulation of Cd and Zn in
Sedum alfredii because of a Bsulfur-induced Cd
requirement^ (Li et al. 2008). In our study the S treat-
ments at 2 g kg−1 in L-soil and 0.5 g kg−1 in T-soil
produced relatively high Cd removal rates by
S. plumbizincicola (Table 3). Further increase in S treat-
ment did not promote Cd removal or even decrease Cd
removal because of the toxic effects on plant growth.
Excessive S over-acidifying the soil during the first few
weeks might inhibit new root development and induce
aluminium toxicity (Rao et al. 2016).

Furthermore, a novel finding was that appropriate S
treatments significantly increased yields and reduced
total Cd concentrations of brown rice from both test
soils. There are several possible contributory factors.
Firstly, as discussed above the continuous flooding and
reduction of SO4

2− maintained soil soluble Cd at a very
low level during the intermediate and later growth stages
of rice (Fig. 1 and Table 2). Secondly, S might enhance
the formation of iron plaque in the rhizosphere which
would suppress Cd accumulation by rice (Hu et al.
2007). Thirdly, S treatment increased rice S concentra-
tions and led to the formation of glutathione and chlo-
rophyll that alleviated Cd stress (Sarwar et al. 2010;
Dixit et al. 2015). This type of defence mechanism

involving Cd-induced photosynthetic inhibition appears
to be more effective when the soil is treated with the
optimum rate of S rather than excessive S (Masood et al.
2012). However, it is important to note that excessive
levels of S in T-soil increased rice Cd accumulation and
thus increased the Cd risk (Table 4).

Taking into account the effects of S addition on soil
chemical processes, plant growth and Cd uptake and
potential environmental risk, S addition at 2 g kg−1 to
the calcareous soil (L-soil) and 0.5 g kg−1 to the neutral
soil (T-soil) are the optimum treatments to simultaneous-
ly increase the soil Cd removal rate by S. plumbizincicola
and depress the Cd concentration in the brown rice.
Excessive levels of S should be avoided because of
growth inhibition of S. plumbizincicola and increased
Cd uptake by rice. This may also increase the potential
risk of Cd leaching and induce S toxicity to the plants.

Strategy for phytoextraction and safe rice production
in Cd-contaminated soils

This study indicates a new strategy for phytoextraction
together with the safe production of food in Cd-
contaminated soils. This involves the rotation of the
Cd hyperaccumulator S. plumbizincicola with a low
Cd accumulating cultivar of rice. Appropriate applica-
tion rates of S are recommended during the
S. plumbizincicola growing season especially in neutral
and calcareous soils to activate soil Cd through S oxi-
dation to increase Cd phytoextraction and shorten the
duration of the remediation. Then, during the rice sea-
son, flooding should be maintained to promote the re-
duction of sulfate and the formation of CdS precipitate
to ensure low Cd availability and thus minimize the risk
of Cd contamination in the rice. In the next rotation,
there is no need to add S again. Soil pH will decline in
oxidised conditions and the re-oxidation of sulfide com-
pounds will release Cd again (Fulda et al. 2013; Furuya
et al. 2016) which is beneficial for phytoextraction by
S. plumbizincicola. Soil total Cd concentrations can be
removed gradually with safe agricultural production
until the soil remediation goal is finally achieved. In
addition, it is notable that Cd release with S oxidation is
a rapid process compared to plant uptake, and this may
increase the Cd leaching risk in field practice. The
future development of slow release S fertilizers and
relevant agronomic measures, e.g. low dosage with
suitable frequency, may help to overcome this limi-
tation (Mann et al. 2019).
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Conclusions

Sulfur addition combined with water management sig-
nificantly affected soil chemical processes and plant
Cd uptake in neutral and calcareous soils. The oxida-
tion of applied S in aerobic conditions significantly
acidified the soil and increased soluble SO4

2−, Cd and
Fe concentrations and promoted Cd phytoextraction
by S. plumbizincicola. In the rice season continuous
flooding decreased soil Eh and increased pH. Appro-
priate rates of S application induced the reduction of
SO4

2− and facilitated the stabilization of Cd. This
rapidly eliminated elevated soluble Cd resulting from
S oxidation in the former season and also maintained
available Cd at lower levels than in the controls until
the rice harvest. This increased rice yields and reduced
rice Cd uptake. Therefore, appropriate sulfur amend-
ment associated with alternating drying and wetting of
the soil can enhance soil Cd remediation efficiency by
the hyperaccumulator and control Cd accumulation in
rice grains in the rotation system. This study thus
proposes a new strategy for phytoextraction and con-
tinued safe production of rice in Cd-contaminated neu-
tral and calcareous soils.
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