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Abstract
Aims In recent decades, ecologists have investigated the
effects of shrub encroachment on regional carbon cy-
cling in semi-arid and arid regions. Although differences
in carbon sequestration and stocks have been recognized
in different soil layers, the vertical changes in soil or-
ganic carbon (SOC) at the molecular level following
shrub encroachment remain unexplored. In this study,
we used biomarkers to assess the impacts of shrub
encroachment on SOC composition.

Methods We collected soil samples along the 1-m pro-
file within shrub patches and grassy matrix in three
typical shrub-encroached grassland (SEG) sites in
Inner Mongolia, and quantified the vertical distribution
of the biomarkers, including free lipids, bound lipids
and lignin-derived phenols.
Results The principal component analysis (PCA) of the
biomarker data showed that samples in the grassy matrix
had strong positive loadings along the first two compo-
nents (PCs); in contrast, samples in the upper 50 cm of
the shrub patches had negative loadings along the first
component (PC1) as well as a narrower range. The acid
to aldehyde ratios of the vanillyl and syringyl type mono-
mers increased simultaneously along the 1-m profile in
the grassy matrix; however, this trend was not observed
in the shrub patches. In addition, the vanillyls to syringyls
to cinnamyls ratio was approximately 3:2:1 in the shrub
patches and 3:2:1 or 2:2:1 in the grassy matrix.
Conclusions Shrub encroachment altered the vertical
patterns in SOC composition, especially in the upper
50 cm, as well as the oxidation status of lignin-derived
phenols along the entire 1-m profile. Further, shrub
encroachment influenced the soil carbon composition
under the shrub canopy as well as in the grassy matrix
due to the sprawling canopies and the horizontal exten-
sion of the root systems of the encroaching shrubs.
These results provided new insights into the vertical
patterns of SOC changes after shrub encroachment at
the molecular level and have important implications for
understanding the mechanisms of soil carbon dynamics
with changes in vegetation structure and composition.
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Introduction

Over the past 150 years, a phenomenon in which the
cover or density of natural shrubs increases in grassland
and savanna ecosystems, commonly defined as Bshrub
encroachment^, has been reported in arid and semi-arid
regions (Van Auken 2009; Eldridge et al. 2011; Chen
et al. 2015). Shrub encroachment usually leads to a
landscape characterized by shrub patches embedded in
the grassland matrix, and affects the plant species rich-
ness, production, hydrological properties and soil nutri-
ents of the grasslands (Eldridge et al. 2011; Peng et al.
2013; Li et al. 2016). Of particular importance are the
effects of shrub encroachment on the cycling of soil
organic carbon (SOC), which is the largest pool of
organic carbon (OC) in terrestrial ecosystems (Schmidt
et al. 2011). However, there is no consensus regarding
changes in SOC stock after shrub encroachment, which
has been shown to increase (Maestre et al. 2009; Blaser
et al. 2014), remain stable (Hughes et al. 2006), or
decrease (Jackson et al. 2002; Oelofse et al. 2016).
These inconsistencies can be ascribed to differences in
the soil characteristics, historical land-use patterns and
sampling depths (Zhou et al. 2017a). Given that topsoil
is the most sensitive to environmental changes, previous
studies that evaluated the impacts of shrub encroach-
ment have focused on the upper 20–30 cm of soils
(Maestre et al. 2009; Saixiyala et al. 2017). However,
there is increasing evidence that deeper soils (i.e., below
50 cm) have a strong potential ability to sequester car-
bon; therefore, a comprehensive investigation of the
vertical changes of SOC following shrub encroachment
is needed (Zhou et al. 2017b).

Due to vertical changes in substrate quality and mi-
crobial activity with soil depth, the carbon dynamics and
biological processes are quite different between topsoil
and deeper soil (Salomé et al. 2010; Rumpel and Kögel-
Knabner 2011). Previous studies have demonstrated that
the quality and quantity of aboveground litter contribute
to the accumulation of SOC in the top layer (Filley et al.
2008; Tamura and Tharayil 2014); in contrast, roots and
rhizodeposition are the main carbon sources in the
deeper soil layers (Jobbágy and Jackson 2000; Zhou
et al. 2017b). The chemistry and quantity of above-

and belowground plant inputs are commonly different,
and these inputs can be traced by molecular-level anal-
yses (Crow et al. 2009; Angst et al. 2016). Therefore,
characterizing the vertical distribution patterns of SOC
changes following shrub encroachment at the molecular
level can help model the carbon dynamics in deep soil.
Additionally, this understanding is crucial for under-
standing how changes in vegetation composition can
affect the SOC pool.

Organic matter (OM) biomarkers have been used
successfully to assess the source and degradation of
SOC (Kögel-Knabner 2002; Feng and Simpson 2011).
For example, dichloromethane-methanol-extractable
C16-C30 n-alkanoic acids (FAs) and long-chain (>C20)
n-alkanes and n-alkanols are predominantly derived
from vascular plants, while the short-chain (<C20)
alkanols indicate a microbial origin in an Inner
Mongolian grassland (Zhou et al. 2017a). Although
the individual composition varies according to the plant
species, cutin and suberin monomers in bound lipids are
typical biomarkers of underground and belowground
inputs, respectively (Bull et al. 2000; Nierop et al.
2003; Crow et al. 2009; Feng et al. 2010). In addition,
lignin, which consists of a polymeric network of phe-
nols (e.g., cinnamyls, syringyls and vanillyls), is specific
to vascular plants. For example, the cinnamyls/vanillyls
(C/V) ratio indicates non-woody tissues and grasses
because of the absence of C-type lignin phenols in
woody tissues; the syringyls/vanillyls (S/V) ratio indi-
cates angiosperm-derived OM because gymnosperms
(e.g., conifers) do not contain S-type lignin phenols
(Hedges andMann 1979). In addition, the ratios of acids
to aldehydes in lignin phenols (i.e., Ad/Al) are related to
the degradation status of soil organic matter (SOM)
(Feng and Simpson 2011). Together, these biomarkers
can provide detailed information about vegetation
(Angst et al. 2016). In grasslands and forests, biomarker
contents change with soil depth (Rumpel et al. 2004;
Feng and Simpson 2007; Angst et al. 2016), suggesting
the possibility of understanding the vertical distribution
of SOC at the molecular level. Biomarker analysis has
been applied to examine the SOM responses to climate
change (Feng et al. 2010; Pisani et al. 2015) and land use
change (Zhao et al. 2014; Armas-Herrera et al. 2016) in
grasslands (Otto and Simpson 2005, 2006; Feng and
Simpson 2007), forests (Feng et al. 2010; Angst et al.
2016) and shrublands (Cai et al. 2017). However, very
few studies have examined the vertical distribution of
SOC composition in shrub-encroached grasslands
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(SEGs), where the vegetation and chemical composi-
tions of SOM are markedly different from those in
forests and grasslands (Kögel-Knabner 2002; Feng and
Simpson 2007).

Shrub encroachment is prevalent in the grasslands of
Inner Mongolia. Compared to herbaceous plants, shrubs
provide more aboveground litter and deep roots in soil at
a depth of 1.2 m (Knapp et al. 2008; Rumpel and Kögel-
Knabner 2011; Zhou et al. 2017b). In this study, we
assessed the compositional changes in SOM in entire 1-
m soil profiles following shrub encroachment in Inner
Mongolian grasslands. Our objectives were to (1) esti-
mate the vertical distribution of plant-derived carbon
components, including free lipids, bound lipids and
lignin phenols in the shrub patches and the grassy ma-
trix; and (2) determine the underlying mechanisms by
which shrub encroachment induced changes in SOC.

Materials and methods

Study sites and soil sampling

We selected three study sites in nearby SEGs in Inner
Mongolia. These sites included the typical shrub species
Caragana microphylla and Amygdalus pedunculata.
This grassland ecosystem is characterized by a temperate
continental monsoon climate. The soils are predominant-
ly Kastanozems (IUSSWorking GroupWRB 2015), and
the 1-m profile had Ah (20–40 cm), Bk (25–45 cm), and
C horizons (National soil survey office 1994). Table 1
lists the climate and vegetation characteristics of the
study sites. The root depths of the dominant shrubs
C. microphylla and A. pedunculata in our study areas
could reach 1.8–2.2 m and 1.7 m, respectively (Niu et al.
2013; Zhang et al. 2013; Wang et al. 2017).

At each site, soil samples were taken from three
uniform shrub canopies (with diameters greater than
1 m) and from the grassy matrix in September 2013.
Within each shrub patch, three cores of soil were col-
lected using a stainless-steel corer, and then mixed into
one soil sample. Moreover, three cores located at least
3 m from the nearest shrub were also collected from
each site (Fig. 1). Soil samples were collected at fixed
depths (0–10, 10–20, 20–30, 30–50, 50–70 and 70–
100 cm), an approach that has been widely used to
estimate SOC vertical dynamics along the soil profile
(Toriyama et al. 2011; Blaser et al. 2014; Li 2015; Zhou

et al. 2017b). All the soil samples were stored at −20 °C
until analysis.

Soil pretreatment and elemental analyses

Grasses have a dense, fibrous root system in the upper
20–30 cm of the soil profiles, while shrubs have a
greater root depth (Briske 2017). Correspondingly,
shrub encroachment had no significant effects on the
upper 30 cm based on our previous studies at the re-
gional scale (Li 2015). In addition, the Ah horizon in our
study areas was approximately 20–40 cm. Taking these
results into consideration, we combined the upper 30 cm
of the soil samples as topsoil to analyze the vertical
distribution of SOC. All samples were air-dried, and
then sieved through a 2-mm sieve. The plant roots were
carefully removed from the soil samples using tweezers,
and the soil samples were ground thoroughly using a
grinder. The soil total carbon (STC) and soil total nitro-
gen (STN) contents were measured using an elementary
analyzer (Vario EL III, Elementar, Germany). The soil
inorganic carbon (SIC) content was quantified using a
carbonate content analyzer (Eijkelkamp 08.53,
Netherlands). Finally, the SOC was calculated by
subtracting the SIC from the STC.

Chemical extractions and GC/MS analysis

Sequential chemical extractions, including solvent ex-
traction, base hydrolysis and copper (II) oxide (CuO)
oxidation, were conducted to isolate the free lipids,
bound lipids and lignin-derived phenols, respectively
(a flowchart is shown in Fig. 2; Feng et al. 2010; Zhao
et al. 2014; Zhou et al. 2017a). Briefly, soil samples
(~6 g from 0 to 30 and 30–50 cm or ~9 g from 50 to 70
and 70–100 cm) were extracted using 15 mL of
chromatography-grade dichloromethane (DCM): meth-
anol (MeOH) (1:1; v: v) by ultrasonication for 15 min
(Zhao et al. 2014; Zhou et al. 2017a). The extracts were
centrifuged at 3500 rpm for 10min, and the supernatants
were transferred into 150-mL pre-combusted flasks. The
extraction was repeated three times for each sample. The
combined solvent extracts were filtered using glass fiber
columns and concentrated by rotary evaporation.
Approximately 3 g air-dried residues from the solvent
extraction were heated at 100 °C for 3 h with 15 mL of
1 mol/L KOH/MeOH. Next, the suspension was acidi-
fied to a pH of 1 with 6 mol/L HCl. The bound lipids
were recovered by liquid-liquid extraction with 20 mL
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ethyl acetate, and then concentrated by rotary evapora-
tion (Zhao et al. 2014; Zhou et al. 2017a). The product
was methylated at 70 °C with 1 mL of 14% BF3: MeOH
for 90 min, and the bound lipids were obtained by
liquid-liquid extraction with 2 mL hexane. For lignin
analyses, the air-dried residues after solvent extraction
were mixed with 15 mL of 2 mol/L NaOH, 1 g of CuO
and 100 mg of ammonium iron (II) sulphate hexahy-
drate. After the oxygen was exhausted using high-pure
N2 gas, the mixtures were heated at 170 °C for 2.5 h.
The supernatant was then acidified to a pH of 1 with
6 mol/L HCl. The extracts were kept in the dark at room
temperature for 1 h, because cinnamic acids are unstable
and easy to decompose under light. Then, the lignin-
derived phenols were recovered by liquid-liquid

extraction with 20 mL ethyl acetate (three times). All
biomarkers were identified using an Agilent 7890A gas
chromatograph coupled to an Agilent 5973 N quadruple
mass selective detector (GC-MS) and quantified using a
flame ionization detector (FID) coupled to the Agilent
7890A instrument (GC-FID). Details of the qualitative
and quantitative analyses for all biomarkers were pro-
vided by Zhou et al. (2017a). All biomarkers were
standardized to mg/g OC.

Establishment of the specific biomarkers
and parameters based on the plant characteristics

In our previous paper, we identified biomarker charac-
teristics of the common plants in our study area (Zhou

Fig. 1 Study location, soil
sampling and photos of shrub-
encroached grasslands (SEGs)

Table 1 Climate and vegetation characteristics in the study sites. MAT, mean annual temperature; MAP, mean annual precipitation

Site Latitude (°N) Longitude (°E) MAT (°C) MAP (mm) Shrub cover (%) Dominant
shrub plants

Dominant herbaceous plants

1 42.33 114.30 3.9 287 7.3 Caragana microphylla Stipa krylovii, Allium
ramosum, Melilotoides
ruthenica

2 42.57 112.44 4.4 211 16.8 Amygdalus pedunculata,
C. stenophylla,
C. pygmaea,
C. microphylla

Cleistogenes squarrosa,
Stipa klemenzii,
Agropyron mongolicum

3 42.57 112.43 4.9 213 12.5 A. pedunculata,
C. stenophylla,
C. pygmaea,
C. microphylla,

C. squarrosa, Cleistogenes
songorica, A. mongolicum

a Site 1 is located in the Xianghuang Banner; Sites 2 and 3 are located in the Sonid Right Banner
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et al. 2017a). Briefly, for free lipids, the leaves were
dominated by C16 or C18 n-FAs, C28 or C30 n-alkanols
and C29-C33 n-alkanes, while long-chain (>C20) n-FAs
and C27 n-alkane were mainly identified in the roots. In
addition, n-alkanes displayed the maximum abundance
at C29 in shrub leaves, but at C31 or C33 in herb leaves.
Consistent with previous studies, the short-chain α,ω-
alkanedioic acids (DAs) and ω-hydroxyalkanoic acids
(OH FAs) in bound lipids were predominantly identified
in leaves, while the long-chain DAs and ω-OH FAs were
mainly detected in roots (Feng et al. 2010; Zhao et al.
2014; Zhou et al. 2017a). Furthermore, the Prml ratio
(assessed by the short-chain to the long-chain ratios of
n-FAs) of leaves were more than five-fold greater than
those of the roots. Similarly, the C/Vand S/Vratios in the
leaves (0.30–3.10 and 0.66–3.38) were higher than those
in the roots (0.19–2.35 and 0.29–2.26). In contrast, the
suberin to cutin ratios in the roots were 5–40 times
greater than those in the leaves (Zhou et al. 2017a).

Similarly, the compounds of interest in this present
study were categorized based on their structural origin.
The free lipids included C16-C32 n-FAs, C22-C30 n-
alkanols, C27-C31 n-alkanes and ergosterol. The bound
lipids were grouped into C14-C30 bound n-FAs, C16-C24

DAs, C16-C22 ω-OH FAs and C22-C24 a-OH FAs.
Among these lipids, the C16 and C18 n-FAs, C28 and
C30 n-alkanols and C29-C33 n-alkanes were specific
biomarkers for leaves, while the long-chain (>C20) n-
FAs and C27 n-alkane were specific biomarkers for
roots. In addition, C29 n-alkane was a specific indicator
of shrub leaves, while C31 n-alkane was a specific
indicator of herb leaves. Moreover, the predominant

C16 and C18 ω-OH FAs with mid-chain hydroxy or
epoxy groups are defined as cutin biomarkers, C16,
C18 ω-OH FAs and DAs are biomarkers in both cutin
and subern (∑CS), while long-chain α,ω-DAs and ω-
OH FAs are defined as suberin biomarkers in the present
study according to the biomarker characteristics of the
local plants (Zhou et al. 2017a). In addition to the Prml
ratio, the suberin to cutin ratio was also calculated by
(suberin + ∑CS)/ (cutin+ ∑CS) to evaluate the relative
contribution of aboveground or belowground inputs to
the soil. Moreover, the ratios of C/V and S/V were
calculated as indicators to assess the origins of lignin
(Angst et al. 2016; Zhou et al. 2017a). In addition, the
ratios of ω-C16/ΣC16 (sum of C16 ω-OH FA and DA),
syringic acid/syringaldehyde ((Ad/Al)s) and vanillic
acid/vanillin ((Ad/Al)v) were calculated to assess the
degradation of cutin, suberin and lignin (Otto and
Simpson 2005, 2006).

Statistical analysis

Statistical analyses were conducted using the R 3.3.1
platform (R Foundation for Statistical Computing,
Vienna, AT). One-way ANOVA testing was conducted
to compare the differences between variables among
soils from different depths and to examine the differ-
ences between variables in the shrub patch and the
grassy matrix from within the same layer. The relative
contributions of free lipids, bound lipids and lignin-
derived phenols were calculated as their respective con-
tributions to the sum of these three biomarkers (Feng
and Simpson 2007). The SOC content, major biomarker

Sub-samples Sub-samples

Air-dried 2 mm sieved soil 

Elemental analysis

TC,SOC,TN

Biomarker analysis

GC-MS,GC-FID

-OH FA

-OH FA

, -di acids

n-FA

Base hydrolysis

Bound lipid analysis

CuO oxidation

Lignin phenol analysis

V: vanillin, acetovanillone, 

vanillic acid

S: syringaldehyde, 

acetosyringone, syringic acid

C: p-coumaric acid, ferulic acid

Solvent extraction

Free lipid analysis

n-FA

n-Alkanes

n-Alkanols

Steriods

Fig. 2 Flow chart of elemental analysis and molecular biomarker analysis for soil samples. FA = alkanoic acids
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groups and degradation parameters were Z-score nor-
malized and entered into the principal component anal-
ysis (PCA) to assess the vertical distribution patterns in
SOC composition using the package Bvegan^.
Similarly, eight lignin compounds were entered into
the PCA to evaluate the patterns of lignin.

Results

Vertical distribution of the specific biomarkers
and parameters in the shrub patches and the grassy
matrix

In both the grassy matrix and the shrub patches, the
dominant compounds of the solvent extracts from each
interest group were C18 n-FA, C28 n-alkanol and C31 n-
alkane (Fig. 3). The contents of dominant C18 n-FAs
(0.39–0.90 mg/g OC), C28 n-alkanols (0.17–0.24 mg/g
OC) and C31 n-alkanes (0.08–0.10 mg/g OC) increased
slightly with depth in the grassy matrix; however, in the
shrub patches, these three compounds generally de-
creased downwards, ranging from 0.59 to 0.72, 0.23 to
0.36 and 0.10 to 0.23 mg/g OC, respectively (Fig. 3). In
addition, the Prml and C27/C31 n-alkane ratios generally
increased with depth in both the grassy matrix (1.08–
1.35 and 0.39–1.15, respectively) and the shrub patches
(0.98–1.60 and 0.22–0.62, respectively) (Table 2).

Similar to the solvent extracts, the contents of dom-
inant C18 bound n-FA (0.75–5.21 mg/g OC), C16 DAs
(0.24–1.47 mg/g OC), C20 ω-OH FAs (0.27–1.17 mg/g
OC) and C22 a-OH FAs (0.00–0.11 mg/g OC) increased
with soil depth in the grassy matrix (Fig. 3). In shrub
patches, these four components decreased downwards
in the upper 50 cm and then increased between 50 and
100 cm, ranging from 0.78 to 2.26 mg/g OC, 0.20 to
0.60 mg/g OC, 0.30 to 0.71 mg/g OC and 0.01 to
0.04 mg/g OC, respectively.

The S/V and C/V ratios decreased in the grassy
matrix, ranging from 0.73 to 0.76 and 0.39 to 0.55; in
contrast, these ratios varied from 0.72 to 0.80 and from
0.34 to 0.43 in the shrub patches, respectively (Table 2).
The (Ad/Al)s and (Ad/Al)v ratios generally increased
throughout the entire grassy matrix profiles (0.62–0.74
and 0.71–0.90, respectively), but did not show a clear
trend with depth in the shrub patches (0.63–0.68 and
0.80–0.85, respectively).

Vertical distribution of biomarker groups in the shrub
patches and the grassy matrix

The vertical distribution differed between the grassy
matrix and the shrub patch. The total concentrations
of n-FAs, n-alkanols and n-alkanes increased
throughout the entire soil profiles in the grassy ma-
trix; in contrast, these concentrations decreased and
then increased in the shrub patches (Table 2). The
concentrations of the free lipid groups were signifi-
cantly higher in the shrub patches than those in the
grassy matrix, but only in the top 0–30 cm (p < 0.05;
Table 2). Specifically, the concentrations of the ma-
jor base hydrolysis products sharply increased be-
tween 70 and 100 cm in both the grass matrix and
shrub patches, and their abundance was much higher
in the grassy matrix (Table 2). Moreover, the lignin-
derived phenols were most abundant, followed by
bound lipids and then free lipids in both the grass
matrix and the shrub patches (Table 3). The concen-
tration of lignin-derived phenols decreased at first
but then increased with depth in both the shrub
patches and the grassy matrix (Table 2). In the upper
50 cm, the lignin concentration was much more
abundant in the shrub patches (10.84–14.93 mg/g
OC) than in the grassy matrix (7.09–9.24 mg/g
OC) (p = 0.08 and 0.06).

PCA for SOM composition at different soil depths

The PCA was conducted based on multiple bio-
markers to assess the vertical distribution of SOM
composition and degradation in the shrub patches
and the grassy matrix. The PCs explained 60% of
the variation (Fig. 4). Free lipid, bound lipid and
lignin contents had strong loadings along PC1,
while the C/V and (Ad/Al)s ratios had strong load-
ings along PC2. Based on these components and
parameters, the samples in the shrub patches and
the grassy matrix could be separated by PC2. In
addition, their vertical patterns were quite different.
For example, the PC scores of the grassy matrix
samples increased throughout the entire soil profile;
however, in the shrub patches, the scores decreased
along PC1 in the upper 50 cm and then increased
below 50 cm. Moreover, the range in variation was
smaller in the shrub patch.
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Discussion

Shrub encroachment in grasslands has been shown to
alter the carbon balance and dynamics (Eldridge et al.
2011; Li et al. 2016). Using a molecular biomarker
approach, we found that both the carbon content and
the chemical compositions of grassland soils were influ-
enced by shrub encroachment (Table 2). To the best of
our knowledge, this study represents the first assessment
of the vertical distribution patterns of molecular-level
SOC composition following shrub encroachment. Zhou
et al. (2017b) found that root density in the shrub patches
was higher than that in the grassy matrix along a 1.2-m
soil profile, strongly suggesting the potential of carbon
sequestration in the subsoil with shrub encroachment.

Vertical variability in SOM reflected by specific
biomarkers and parameters

The dominant C18 n-FAs, long-chain n-alkanols and
C29, C31 n-alkanes, which are specific biomarkers in
local plant leaves, increased with soil depth, especially
in the grassy matrix. These results suggest a great con-
tribution of plants, particularly the aboveground inputs,
and that the translocation of leaf-derived carbon into the
subsoil is an important process (Zhou et al. 2017a).
Consistent with previous studies, higher concentrations
of free lipids in the shrub patches were observed only in
the 0–30 cm layers, indicating that aboveground inputs
greatly contribute to SOC in the topsoil (Filley et al.
2008; Tamura and Tharayil 2014). This inference was

Fig. 3 The vertical distribution of
products from solvent extraction,
including n-alkanoic acids (FAs),
n-alkanols, and n-alkanes, and
base hydrolysis, including bound
n-FAs, α,ω-alkanedioics (DAs),
ω-hydroxyalkanoic acids (OH
FAs) and a-OH FAs in the grassy
matrix and the shrub patch (n = 9
in each layer and at each sampling
position). The concentrations of
all biomarkers were standardized
to mg/g OC
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further confirmed by the low Prml value, and the abun-
dant concentrations of C29 and C31 n-alkanes in the
topsoil of the shrub patches (Table 2; Angst et al.
2016; Zhou et al. 2017a). Consistent with previous
studies, ergosterol, a valuable biomarker for fungi, was
identified in higher abundances only in the upper 30 cm
of the soils, which suggests higher fungal activities in
the topsoil (Feng and Simpson 2007; Feng et al. 2010).
Similarly, C29 n-alkane, which is an indicator of local
shrub leaves, was abundant in the shrub patches, sug-
gesting the great contribution of shrub leaves to the
topsoil OC (Fig. 3; Zhou et al. 2017a).

C27 n-alkanes, which are detected only in the roots of
local plants, increased with soil depth in both the shrub
patches and the grassy matrix, suggesting increased
belowground inputs to SOC (Jobbágy and Jackson

2000; Zhou et al. 2017a). In addition, suberin was
detected at low abundances in the upper 70 cm, but
increased sharply between 70 and 100 cm, reflecting
enhanced root inputs and the eluviation process, which
translocates surface SOM into deeper soil layers and
dilutes the suberin concentrations (Feng and Simpson
2007). This translocation process is more important in
our soils with a sandy texture (sand content of approx-
imately 80–90%; Wu et al. 2016) or high permeability
(Rumpel and Kögel-Knabner 2011; Zhao et al. 2014;
Angst et al. 2016). The sharp accumulation in 70–
100 cm might also be partly linked to the abundant clay
and silt content. Clay and silt sized minerals play an
important role in providing protection for SOC compo-
sition due to their high specific surface area and hydrox-
ylated reactive surfaces (Doetterl et al. 2015; Han et al.

Table 3 The relative proportion of lignin, free lipids and bound lipids at different soil depths

Sampling position Mean ± standard error (%) Range (%)

Depth Lignin Free lipid Bound lipid Lignin Free lipid Bound lipid

Grassy matrix 0–30 61.5 ± 4.5 15.5 ± 1.7 23.0 ± 3.3 34.6–80.8 6.8–24.5 8.8–40.9

30–50 51.9 ± 4.8 16.9 ± 1.7 31.2 ± 6.3 34.1–71.9 8.8–26.6 6.2–54.2

50–70 60.9 ± 3.8 16.6 ± 2.6 22.5 ± 5.7 33.1–73.0 0.7–26.7 10.3–66.2

70–100 40.8 ± 4.1 12.7 ± 2.4 46.5 ± 5.1 28.6–64.0 0.9–21.7 14.4–61.1

Shrub patch 0–30 64.3 ± 3.3 14.8 ± 0.8 20.9 ± 3.1 44.5–73.9 10.4–17.8 8.3–37.8

30–50 63.6 ± 3.4 17.3 ± 0.9 19.1 ± 4.0 49.3–76.9 12.4–20.4 4.3–38.3

50–70 57.9 ± 2.0 20.8 ± 2.7 21.4 ± 2.6 45.3–65.5 5.1–31.7 10.2–36.3

70–100 51.7 ± 4.7 16.3 ± 2.5 32.1 ± 3.6 31.3–76.4 2.3–29.0 21.3–48.2

Total 0–30 62.9 ± 2.7 15.2 ± 0.9 21.9 ± 2.2 34.6–80.8 6.8–24.5 8.3–40.9

30–50 57.8 ± 3.2 17.1 ± 0.9 25.2 ± 3.9 34.1–76.9 8.8–26.6 4.3–54.2

50–70 59.4 ± 2.1 18.8 ± 1.9 22.0 ± 3.0 33.1–73.0 0.7–31.7 10.2–66.2

70–100 46.3 ± 3.3 14.4 ± 1.7 39.3 ± 3.5 28.6–76.4 0.9–29.0 14.4–61.1
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Scores of biomarkers and
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2016). Moreover, the long-chain n-alkanes were recal-
citrant soil fractions and have been used as indicators for
past vegetation in geological studies (Andersson et al.
2011; Angst et al. 2016). The slight increase in the
abundance of n-alkanes with soil depth also suggests
that some of the SOC in the subsoil can be inherited
from parent materials (Fig. 3, Otto and Simpson 2005;
Nguyen Tu et al. 2011; Angst et al. 2016).

The concentration of lignin-derived phenols de-
creased in the upper 50 cm depth, mostly due to the
decrease in litter inputs with soil depth (Feng and
Simpson 2007). Cinnamyls are biomarkers of non-
woody tissues (Lam et al. 2001) and are more labile
than syringyls and vanillyls (Hedges et al. 1988). The
higher C/V ratio in the deep soils of both the grass
matrix and the shrub patch was surprising (Table 2).
Because C/V and S/V ratios are higher in leaves than
in roots (Zhou et al. 2017a), such a depth-distribution
pattern reflects the eluviation of aboveground carbon
from herb or shrub litters (Table 2; Otto and Simpson
2006). Cinnamyls can translocate quickly into the sub-
soil, where lower fungal activities (reflected by lower
concentrations of ergosterol) provide favorable condi-
tions for their preservation; they would otherwise be
preferentially degraded in the topsoil (Table 2; Feng
et al. 2010). Compared to the grassy matrix, the shrub
patches had higher C/V values, reflecting the lower
proportion of non-woody carbon inputs as a result of
shrub encroachment in the grassland (Zhou et al.
2017a).

Changes in the chemical composition of SOM
following shrub encroachment

The PCA based on the SOC biomarkers and parameters
showed that these compounds had strong loadings on
PC1, while the C/V and (Ad/Al)s ratios had strong
loadings on PC2 (Fig. 4), indicating that PC1 represents
the chemical composition of the OM, while PC2 repre-
sents the degradation status of lignin. The SOC compo-
sition of the shrub patches varied along PC1 in the upper
50 cm and along PC2 below 50 cm, suggesting changes
in the origin of inputs along the entire 1-m profile and
the enhanced degradation of lignin in 50–100 cm layer
(Fig. 4). The SOC of the shrub patches was mainly
derived from leaves in the upper layer and from roots
in the deeper layers (Zhou et al. 2017a), as confirmed by
the varying relationship between the C/V ratio and the S/
V ratio (indicators of lignin origin; Fig. 6; Otto and

Simpson 2006; Zhou et al. 2017a). Furthermore, in the
shrub patches, the SOC composition was more relevant
to input chemistry in 0–50 cm, but was more relevant to
degradation in the 50–100 cm layer (Fig. 4). In compar-
ison, the SOC composition of the grassy matrix varied
regularly along the PCs (Fig. 4), indicating regular root
inputs and enhanced lignin degradation (Bao et al.
2017). This result was further confirmed by the stable
relationship between the C/V ratio and the S/V ratio
(Fig. 6) and the varying direction of SOC composition
toward to the suberin biomarker in the PCA results (Fig.
4; Angst et al. 2016; Zhou et al. 2017a).

In addition, the chemical composition of the largest
contributor, lignin-derived phenols, varied along PC1 in
the shrub patches but along PC2 in the grassy matrix,
suggesting different source (Fig. 5) and degradation
characteristics (Fig. 6; Bao et al. 2017). The ratios of
Ad/Al (degradation indicators of lignin) were much
higher in the soil than those in the fresh plants (Zhou
et al. 2017a), indicating that the lignin in the soil had
been significantly oxidized. It has long been noted that
lignin is mainly degraded by white-rot and brown-rot
fungi, and the presence of fungi in the topsoil is con-
firmed by ergosterol, the greater abundance of which
might be the reason for the greater oxidation of lignin.
(Table 2; Feng et al. 2010; Zhao et al. 2014). In addition,
the positive correlation between the (Ad/Al)v and (Ad/
Al)s ratios showed the simultaneous oxidation of
vanillyls and syringyls phenols in the grassy matrix,
which was not observed in the shrub patches (Fig. 6;
Otto and Simpson 2006; Bao et al. 2017).

Implications for SOC composition changes
along the soil profile following shrub encroachment

The C27-C31 n-alkanes, C16-C32 n-FAs and long-chain
n-alkanols isolated using solvent extractions are indica-
tors of plant waxes (Nierop 1998; Zhou et al. 2017a).
The C18 bound n-FAs and C16 DAs in bound lipids are
derived from leaves, and the C20 ω-OH FAs are derived
from the roots (Otto and Simpson 2005, 2006; Zhou
et al. 2017a). Our results emphasize the importance of
plant inputs for SOC stocks in the SEGswhen compared
to microbial-derived carbon. Our results also have im-
portant implications for the vertical distribution of car-
bon after shrub encroachment.

Previous studies have proposed that the chemistry
and quantity of plant inputs directly influence the
SOM composition, and the relationships vary in
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different ecosystems (Pisani et al. 2016; Kögel-Knabner
2017). In our present study, the vertical distribution
patterns of the compounds and parameters (i.e., n-
alkanols, n-alkanes, ergosterol, ω-OH FAs and
syringyls) were similar to those in the Alberta grasslands
(Feng and Simpson 2007). Steffens et al. (2011) found
that particulate OM decomposition did not change with
depth in a grazed Inner Mongolian steppe using solid-
state 13C NMR spectroscopy, which was in contrast to
lignin degradation in our SEG sites (Figs. 4 and 6b).
Surprisingly, the Prml ratio and the n-FAs, n-alkanes and
suberin contents showed similar vertical patterns to
those of European beech forests (Angst et al. 2016).
These comparisons indicated that shrub encroachment
changed the SOC composition and degradation state of
the grasslands.

The vanillyls to syringyls to cinnamyls (V: S: C)
ratio was approximately 3:2:1 along the entire 1-m
profile in the shrub patches (Table 2). Similarly, the
soils in the grassy matrix were characterized by a V:
S: C ratio of 3:2:1 in the upper 30 cm and a ratio of
2:2:1 below 30 cm. This ratio differs from previously
reported values for grassland soils or non-woody

sources (i.e., 1:1:1; Otto et al. 2005; Feng and
Simpson 2007; Zhou et al. 2017a); however, our
previous results showed similar characteristics in
C. microphylla tissues (i.e., 3:2:1; Zhou et al.
2017a). In addition, the vertical similarities between
the biomarkers of the grassy matrix and the shrub
patches (Table 2) demonstrated that shrub encroach-
ment influenced the soil C composition under the
shrub canopy as well as in the grassy matrix
(Maestre et al. 2009). Similarly, Peterson and Neill
(2003) revealed that soil carbon patterns changed
rapidly and closely resembled permanent grassland
after only 2 years of transition from forest to grass-
land. These changes could be explained by the archi-
tectural and physiological differences between the
root systems of sprouting shrubs and herbs (Maestre
et al. 2009). Herbs, such as Stipa, create near-surface
and limited roots under the canopy (Maestre et al.
2009); in contrast, the roots of C. microphylla can
extend several meters horizontally and 1.8 m vertical-
ly (Xiong and Han 2005; Niu et al. 2013; Zhou et al.
2017a). Consequently, shrub encroachment could in-
fluence SOC stocks by changing root distribution

Fig. 5 Principal component
analyses (PCA) based on lignin-
derived phenols. a Scores of
samples in the shrub patch and
grassy matrix (mean ± standard
error, n = 9); b Scores of
biomarkers and parameters

Fig. 6 Lignin source parameter
(a) and degradation parameter (b)
changes with soil depth in the
shrub patch and the grassy matrix.
n = 9 for each parameter and
depth increment. (Ad/Al)v,
vanillic acid/vanillin ratio; (Ad/
Al)s, syringic acid/syringaldehyde
ratio
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patterns. The horizontal distance over which shrub
encroachment can influence SOC needs further study.

Conclusions

Based on a SOM biomarker approach, our study pro-
vides the first assessment of the vertical patterns in
molecular-level C composition after shrub encroach-
ment. The SOC composition in the shrub patches were
negatively related to the free lipid, cutin, suberin and
lignin compounds in the upper 50 cm layer. In compar-
ison, the SOC composition was positively related to the
(Al/Ad)s ratio and suberin contents along the entire 1-m
profile in the grassy matrix and the 50–100 cm layer in
the shrub patches. On the other hand, the vanillyls to
syringyls to cinnamyls ratio was approximately 3:2:1 in
the shrub patches and 3:2:1 or 2:2:1 in the grassy matrix.
This study shows that shrub encroachment and soil
processes (such as percolation) strongly affected the
vertical distribution of SOC composition. Our results
also highlight the different vertical patterns of SOC
composition between the shrub patches and the grassy
matrix in the upper 50 cm layer. Moreover, the similarity
of lignin composition between shrub patches and grassy
matrix suggests that shrub encroachment influenced the
SOC composition not only under the shrub canopy but
also in the grassy matrix via the horizontal extension of
the root systems of the sprouting shrubs. Our results
provided new insights into the vertical patterns of SOC
changes after shrub encroachment at the molecular lev-
el, and have important implications for understanding
the mechanisms of soil carbon dynamics with changes
in vegetation structure and composition.
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