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Abstract
Background and aims Although a number of different
factors influence C and N isotopic fractionation of or-
ganic matter, the δ13C and δ15N values of soil organic
matter both tend to increase with soil depth, following
similar trajectories. This similarity has not been investi-
gated at the global scale. As microbial decomposition
increases organic matter δ13C and δ15N values, soil
isotopic values are hypothesized to generally increase
with depth across local and global scales.
Methods Soil δ13C and δ15N values for 16 soil depth-
profile sites were used for local-scale investigation,
and 5447 global single-depth sites were used for
global-scale investigation of the correspondence
between δ13C and δ15N. Correlative and boosted
regression tree analyses were used to determine the
main drivers of the variance in soil δ15N globally
and also the environmental association of variability in
the correlation with depth between δ13C and δ15N at a
number of sites.

Results Strong positive correlations between δ13C and
δ15N values through soil profiles were found at a
number of sites and were found to be independent of
vegetation type. Globally, soil δ13C and δ15N values
were also found to be significantly positively correlated
across a wide range of climates and biomes.
Conclusion The global correspondences between δ13C
and δ15N values may suggest a mechanistic link be-
tween δ13C and δ15N through the process of SOM
decomposition and microbial processing and highlight
the importance of soil-related processes in determining
isotopic signals in soils. The variability in these soil
processes should be considered when interpreting soil
isotopic values of δ13C and δ15N as indicators of eco-
system sources of soil C and N and inferring vegetation
inputs.
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Introduction

Soil δ15N values tend to decrease with increasing mean
annual precipitation (MAP) and decreasingmean annual
temperature (MAT) across a broad range of climate and
ecosystem types (Amundson et al. 2003). To some
extent, this variation in soil δ15N values is associated
with vegetation inputs, given that foliar δ15N values
range over 35‰ across plants globally (Craine et al.
2009). Soil δ15N values, however, increase with de-
creasing soil organic C as global soil organic C
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concentrations also decline with increasing MAT and
decreasing MAP (Craine et al. 2015b). As a conse-
quence, the dependence of soil δ15N on MAP and
MAT has been ascribed to this association of soil C with
environmental variables and the consequences of these
for microbial transformation of both C and N. Further-
more, soils with greater clay concentrations often have
higher soil δ15N values. The dependence of soil δ15N on
soil C and clay is through fractionation associated with
decomposition of soil organic matter that might at
least partially be due to better water retention by
clay, further linking it with environmental variables
(SOM; Craine et al. 2015b).

Like soil δ15N, global patterns of soil δ13C values are
correlated withMAP andMAT (Lu et al. 2004), but also
with soil texture (Sollins et al. 2009). The largest influ-
ence on soil δ13C values, however, is the δ13C value of
the input of C to the soil organic carbon (SOC) pool,
which is either directly or indirectly derived from pri-
mary productivity (Kuzyakov and Domanski 2000). As
a consequence, soil δ13C has been used as a proxy for
historical vegetation shifts in the distribution of C3 and
C4 vegetation (Swap et al. 2004; Gillson et al. 2004;
Kuzyakov et al. 2006; Gillson 2015). Despite these clear
geographic differences, changes in soil δ13C with depth
do not necessarily reflect historic changes in the relative
inputs of C3 and C4 vegetation. Turnover processes
during soil development also contribute to changes in
soil δ13C (Cerling 1984; Balesdent et al. 1993; Qiao
et al. 2014) with more decomposed SOC having higher
δ13C values (Boström et al. 2007). Thus both soil δ15N
and δ13C values are, at least partially, determined by soil
processes (i.e. decomposition and mineralization via
microbial processing of OM), which may link the pat-
terns of fractionation of these isotopes in the soil. If soil
N and C isotope patterns are at least partially linked
through common soil processes (i.e. decomposition and
mineralization), then we may expect coordinated chang-
es in δ15N and δ13C values with depth through a soil
profile.

The δ13C values of SOM through soil profiles com-
monly increase by 1–3‰ as depth increases below
0.2 m relative to that of the surface litter layer (Chen
et al. 2005; Boström et al. 2007). The enrichment of 13C
with depth has been shown to occur in tropical, temper-
ate and boreal systems (Hobbie and Ouimette 2009).
Although atmospheric δ13CO2 has declined by 1.5‰
over the past 100 years, this has been shown to contrib-
ute only marginally to the enrichment of soil δ13C with

depth (Ehleringer et al. 2000; Esmeijer-Liu et al. 2012).
At least four hypotheses have been proposed for C
isotope fractionation through soil profiles. Firstly, kinet-
ic discrimination against 13C during respiration may
result from microorganisms preferentially respiring
CO2 that is 13C–depleted relative to the substrate,
resulting in 13C enrichment of the remaining SOC
(Ågren et al. 1996). Although some studies show large
13C depletion of the CO2 formed (e.g. Fernandez et al.
2003), others show no or only minor isotopic fraction-
ation (e.g. Ekblad and Högberg 2000). Secondly, micro-
organisms are 13C–enriched by 2 to 4‰ compared to
plant material (Hobbie et al. 1999) and thus influence
SOM, resulting in decreasing C:N ratios with soil depth
(Wallander et al. 2003), and compound-specific shifts in
soil organic matter to higher δ13C values in products of
microbial origin (Huang et al. 1996; Ehleringer et al.
2000). Thirdly, variable mobility (e.g. fulvic acids; Heil
et al. 2000) and sorption of isotopes of dissolved organic
C on soil particulates (especially clay) may contribute to
soil δ13C profiles (Craine et al. 2015b), although some
authors have questioned the significance of these mech-
anism (Boström et al. 2007). Finally, although preferen-
tial utilization of 13C–depeleted compounds has been
suggested (Boström et al. 2007), the more recalcitrant C
fractions of plant biomass (e.g. lignin, lipids and cellu-
lose) that accumulate at depth (Rovira and Vallejo 2002)
are 13C–depleted relative to the whole plant (Wilson and
Grinsted 1977), and thus cannot contribute to increased
13C–enrichment with depth (Wynn et al. 2006). Apart
from this, some, or all, of these processes may thus
contribute to determining soil δ13C values to variable
extents in different ecological contexts.

As with δ13C, δ15N values usually increases with soil
depth, although occasionally maximum δ15N is evident
at an intermediate depth possibly as a result of increased
volatilization in this soil zone (Hobbie and Ouimette
2009) followed by a subsequent decline at greater
depths. The degree of enrichment that δ15N undergoes
through a soil profile can have a much broader range
than δ13C. In arid and semi-arid systems where soil pH
is high, surface δ15N values can be elevated by as much
as 7‰ relative to deeper soils (Pataki et al. 2008). There
are six potentially important mechanisms that influence
δ15N values within soil profiles. Firstly, depletion of 15N
by mycorrhizal fungi and transfer of that 15N–depleted
N to plants (Hobbie and Ouimette 2009) results in the
accumulation of 15N–enriched N derived from mycor-
rhizal fungi (Hogberg 1997; Hobbie and Ouimette
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2009). Secondly, depletion of 15N through enzymatic
hydrolysis (Silfer et al. 1992), ammonification, nitrifi-
cation, or denitrification and the associated fractionation
during gaseous loss of 15N–depleted N-containing gas
or leaching loss of 15N–depleted NO3

− and the prefer-
ential utilization of 14N by plants, drives soil δ15N
values up (Handley and Raven 1992; Austin and
Vitousek 1998). Thirdly, mixing of soil N among dif-
ferent soil layers through bioturbation (Gabet et al.
2003) and trophic fractionation (i.e. faunal processes;
Ponsard and Arditi 2000) could alter soil δ15N profiles.
Fourthly, soil texture (i.e. clay) may moderate 14N gas-
eous loss pathways and/or the differential retention of
15N–enriched SOM (Craine et al. 2015b). Fifthly, pref-
erential microbial utilization of 14N compounds
could contribute to accumulation of 15N–enriched
compounds deeper in the soil (Boström et al.
2007). Finally, N deposition has been shown to
decrease δ15N values of soils because deposited N
is typically depleted in 15N, although this effect is rela-
tively small (Liu et al. 2017; Esmeijer-Liu et al. 2012).

SOM decomposition is thus common to both δ13C
and δ15N fractionation in soil. At the global scale,
climate influences decomposition through both
temperature and moisture (Gholz et al. 2000).
The SOM composition and nutrient concentrations
(especially N) also strongly affect decomposition
(Parton et al. 2007). Although most SOM is derived
from plants, only a small fraction of the yearly litter
and root inputs are incorporated into the stable organic
matter pool, most of it after repeated processing by soil
microbes (Lerch et al. 2011). SOM transport through
soils is generally downward through advection and soil
development, and thus the effects of decomposition on
soil δ13C and δ15N values are more noticeable deeper in
the soil profile. With increasing depth, SOM is more
highly processed by microbes (Trumbore 2009) with
lower C:N ratios (Marin-Spiotta et al. 2014) and increas-
ing δ13C and δ15N values (Heil et al. 2000; Billings and
Richter 2006). This change in δ13C and δ15N is often
modelled as BRayleigh distillation^, which predicts soil
δ13C and/or δ15N values based on the soil [C]/[N] in
order to account for microbial isotopic enrichment of
SOM during decomposition (Mariotti et al. 1981;
Baisden et al. 2002; Wynn et al. 2005; Fischer et al.
2008). This enrichment results from the kinetic fraction-
ation during microbial processing (Dijkstra et al. 2006)
with subsequent stabilization of products by fine miner-
al particles in soils (Wynn et al. 2006). This Rayleigh

distillation model, however, only pertains to closed sys-
tems, potentially ignoring continuous inputs (Fry 2006)
that do occur in soils.

Although a number of different factors influence the
isotopic fractionation of C and N isotopes, δ13C and
δ15N values both increase with soil depth and common-
ly follow similar trajectories. We hypothesized that
changes in soil δ13C and δ15N values are coordinated,
possibly through decomposition-related processes, and
that the scale of decomposition related changes in δ13C
may confound interpretation of soil δ13C as indicative of
prior C3 or C4 vegetation. Although the initial isotope
composition of the organic matter is indisputably im-
portant, subsequent soil fractionation may result in δ13C
and δ15N following similar trajectories in space and
time. We therefore predict that changes in δ13C and
δ15N values correspond with each other both locally
through soil depths at a site and globally due to the
extent of decomposition and other soil processing. In
order to test these predictions, we compiled data from
soil depth profiles from sixteen widely distributed sites
and also conducted an analysis of global δ13C and δ15N
variations in surface soils in order to determine relation-
ships between soil isotopes with climate and soil
properties.

Methods

Data sources

Data for soil δ13C and δ15N values were acquired from
literature and by contacting individual researchers
known to have collected soil isotope data in the past.
Soil depth-profile data included δ13C and δ15N for min-
eral soils at multiple depths at a single site. A second
independent dataset included both mineral soil δ13C and
δ15N values at a single depth at a number of geographic
locations. For each site, climate data were taken from
the original source and also, using the geographic coor-
dinates, from the 50-year climatic means (1950–2000)
obtained from www.worldclim.org (accessed Sep 2014)
at ca. 1 km2 resolution. Variables included were
mean annual temperature (MAT), mean annual
precipitation (MAP) and 17 other derived climatic
variables (Supp. Table 1).

Potential evaporation (PET) was obtained from
Trabucco and Zomer (CGIAR Consortium for Spatial
Information, 2009. Accessed: http://www.csi.cgiar.org)
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in which PET was modelled using the method of
Hargreaves et al. (1985) with data from Hijmans et al.
(2015) and verified by comparison with separate data
sources. From the climatic data, the monthly PET was
subtracted frommonthly precipitation to obtain an index
of water availability (P–PET) and averaged to obtain the
annual average. Normalized difference vegetation index
(NDVI) data was obtained from eMODIS TERRA (US
Geological Survey Earth Resources Observation and
Science Center), which is corrected for molecular scat-
tering, ozone absorption and aerosols. The NDVI data
spanned between 19/12/2009 to 18/12/2012 and was at
a spatial resolution of 250 m. The data was averaged to
obtain monthly and annual average values using the
Braster^ (Hijmans et al. 2015) and BRCurl^ (Lang and
Lang 2016) packages in R.

The fraction of the vegetation with C4 photosynthesis
was obtained from Berry et al. (2009) in which the
percentage of vegetation within each one degree by
one degree grid cell of the land surface which possesses
the C4 photosynthetic pathway was determined using
‘C4 climate map’ fromCollatz et al. (1998), ‘Continuous
fields of vegetation characteristics’ from DeFries et al.
(2000) as well as ‘Cropland fraction distribution’ from
Ramankutty and Foley (1998). Where necessary, the
component fields were re-sampled to bring them to a
common one degree by one-degree spatial resolution.

The BSoilGrids1km^ global soil data product (Hengl
et al. 2014), which has mean soil information at 1 km
resolution for six soil depths to 1.5 m deep (ISRIC –
World Soil Information 2013), was averaged across the
full depth by depth weighted-averaging. The environmen-
tal data included in the models is shown in Supp. Table 1.

Soil depth data

Data for 9 sites, which include 4 sites in Africa
(Paulshoek, Pretoriuskop, Satara, Hluhluwe) and sites
in Alaska, France, Sweden, New South Wales and the
Amazon in Brazil were compiled from a number of
publications (Table 1). These made up a total of 16
different sampling groups within distinct vegetation
types and included data for 79 soil profiles at multiple
depths. As most sites were represented by repeated
sampling of different vegetation types, the average value
of the N and C isotopes at each depth for each vegetation
type, as well as the confidence intervals, were deter-
mined for each site. As the ranges of δ13C and δ15N
values through soil profiles were different in magnitude,

the actual measured values were scaled using the
Bscale^ function in R (z-transformation). This allowed
both the N and C isotope patterns through the soil
profiles to be plotted on the same set of axes for com-
parison using the ‘ggplot2’ package (Wickham 2009) in
R. A Pearson correlation test was then performed on the
scaled data. This correlation was then treated as a de-
rived variable. As one of the locations, Hluhluwe,
consisted of a number of different vegetation types, each
vegetation type at the site was plotted separately rather
than averaging across the site.

Global analysis of surface soil

In order to determine the main global correlates of soil
δ15N values, the dataset from Craine et al. (2015b),
which included soil and climatic data for sites around
the globe, was re-analysed. Records that did not include
a depth or mineral soil components were removed leav-
ing a total of 5447 sites for the analysis. As the δ13C and
δ15N values were from single depths only, the dataset
was used to determine the global correlation of soil δ13C
and other variables with δ15N.

Boosted regression tree analyses

Boosted regression tree models were used to determine
how differences in soil and environmental conditions
influence the correlation between δ13C and δ15N values
for soil depth-profiles, as well as the main drivers of
δ15N at the global scale. Boosted regression tree analysis
is a form of non-linear modelling that uses machine
learning (Elith et al. 2008). The modelling entails deci-
sion trees splitting the data into two homogenous
groups, a process repeated many times (boosting) so as
to improve the prediction of the response variable.
Models are parameterized by adjusting their learning
rates, tree complexity and bag fraction (Elith et al.
2008). We used a cross-validation procedure to identify
the optimal number of trees and tree size for the model,
and to guard against over-fitting (Hastie et al. 2001).
Initially, the data set was randomly divided into 10
mutually exclusive subsets of equal size, 9 of which
were used as a training set to create the boosted tree
while the remainder was used as a test set to determine
the predictive accuracy of the model. The data in the
training sets were fitted using trees of different sizes
(range = 2 to 10) by incrementally adding trees in sets of
50. For each combination of tree size and number of trees,
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the predictive accuracy of the model was determined by
comparing values in the test set with those predicted by the
model. This procedure was repeated 10 times so that all
groups were used as cross-validation groups, and themean
predictive error calculated across all subsets for each level
of complexity. The combination of tree size and tree
number that produced the lowest predictive error was
chosen for all subsequent analyses. Performance was eval-
uated by expressing the predictive deviance of 10-fold
cross validation as a percentage of the null deviance.

Two different models were used, either to explain the
correlation of δ13C and δ15N values at the local scale
across soil depths (BRTlocal), or to explain the value of
δ15N at the global scale for a single soil depth (BRTglobal).
The climatic and soil variables listed in Supp. Table 1 were
used as the predictor variables. The ‘select07’ function
(Dormann et al. 2013) in R, was used to identify collinear
predictors. In cases where the predictor variables were
found to be strongly collinear with each other, the variable

with either the strongest correlation with the response
variable, or the most biologically relevant, was retained.
Following an initial run (learning rate = 0.01, tree com-
plexity = 5, bagging fraction = 0.5), a simplification proce-
dure was implemented (Elith et al. 2008) to eliminate
variables with low influence (such as NDVI and PET).
Both models were run ten times using the libraries ‘gbm’
(Ridgeway et al. 2013) and ‘dismo’ (Hijmans and van
Etten 2014) packages in R. Model outputs were used to
ascertain the relative influence and relationship of each
predictor with the correlation between δ13C and δ15N at
the local scale or δ15N at the global scale.

To account for C3 and C4 vegetation input into the SOM
pool, global soil δ13C values were analyzed for bimodality
using libraries ‘diptest’ (Maechler 2015) in R and cutoffs
were calculated using the ‘mixtools’ (Benaglia et al. 2009).
δ13C for C3 andC4were then treated as separate sets of data
on which BRT modeling for global δ15N values were
independently reanalyzed.

Table 1 List of sites used in determining the correlation between
soil δ13C and δ15N values through soil profiles. Variables included
are mean annual temperature (MAT), mean annual precipitation
(MAP), δ15N, δ13C, the dominant vegetation at the site, the

Pearson correlation coefficients between δ13C and δ15N through
soil profiles with significance values (bold where significant,
p < 0.05). Values for δ13C and δ15N are include the 5 percentiles,
(means) and 95 percentiles of the soil profile data

Site MAT
(°C)

MAP
(mm)

δ15N (‰) δ13C (‰) C3/C4

dominant
Pearson
correlation

p-value Reference

Alaska −4.1 405 −1.9 (0.1) 1.1 −27.0 (−24.4) -25.3 C3 0.98 0.003 Pries et al. 2012

Amazon 24.1 2134 8.2 (9.8) 11.1 −27.6 (−26.7) -25.9 C3 0.95 0.000 Ometto et al. 2006

Kruger - Satara OC 22.3 565 3.2 (6.1) 7.4 −13.7 (−12.3) -11.6 C4 0.94 0.000 February and Higgins
2010

Kruger - Satara UC 22.3 565 4.1 (6.0) 7.0 −15.0 (−13.0) -12.0 C4 0.92 0.000 February and Higgins
2010

Kruger - Pretoriuskop
UC

21.0 734 2.0 (5.3) 6.9 −20.8 (−16.6) -14.5 C4 0.87 0.000 February and
Higgins 2010

France - Natural 9.0 1280 1.7 (3.5) 4.7 −28.4 (−27.8) -27.2 C3 0.85 0.071 Zeller et al. 2007

Hluhluwe - Thicket 21.2 892 5.3 (6.5) 7.6 −18.0 (−16.4) -15.0 C4 0.72 0.000 Grey 2011

Sweden - Plantation 5.8 617 2.5 (5.8) 7.5 −27.8 (−27.4) -26.8 C3 0.68 0.136 Boström et al. 2007

Hluhluwe - Forest 21.2 892 6.8 (7.3) 7.9 −20.0 (−17.4) -15.5 C4 0.61 0.000 Grey 2011

Hluhluwe - Savanna 21.2 892 5.6 (6.5) 7.2 −15.0 (−13.8) -12.3 C4 0.58 0.000 Grey 2011

Kruger - Pretoriuskop
OC

21.0 734 2.2 (5.1) 6.4 −17.6 (−14.8) -13.3 C4 0.50 0.000 February and
Higgins 2010

Hluhluwe - Grassland 21.2 892 7.4 (8.1) 9.0 −15.5 (−13.9) -12.7 C4 0.49 0.001 Grey 2011

New South Wales -
Grove

17.6 259 8.9 (10.0) 10.6 −22.1 (−18.8) -13.4 C4 0.46 0.297 Macdonald et al. 2015

France - Plantation 9.0 1280 1.0 (3.2) 5.2 −27.2 (−26.9) -26.7 C3 0.29 0.641 Zeller et al. 2007

New South Wales -
Inter grove

17.6 259 8.5 (9.1) 9.5 −22.8 (−18.3) -13.2 C4 0.25 0.586 Macdonald et al. 2015

Karoo - Paulshoek 18.9 118 8.6 (9.2) 9.6 −21.2 (−21.0) -20.7 C3 −0.40 0.007 Edmund February
unpublished
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Results

Isotopic variation with soil depth

For 11 out of 16 sampling groups analyzed, the variation
in average soil δ13C and δ15N values with depth were
significantly positively correlated with each other
(Fig. 1, Table 1). For many of these sites, both δ13C
and δ15N values increased with depth, with the majority
of the increase occurring in the upper 10–20 cm of the
profile. The range of variability for both isotopes was ca.
2–8‰ through the soil profiles and this range was
independent of the average δ13C and δ15N signature

for the sites (Table 1). Within the relatively small geo-
graphic area of the Hluhluwe Nature reserve, the signif-
icant positive correlations between δ13C and δ15N
values were independent of vegetation types comprising
forest, grassland, savanna and thicket sites. Across all of
these distinct vegetation types, δ13C and δ15N values
increased similarly with depth (Fig. 2, Table 1). For
these sites the range of variability for both isotopes
was also ca. 2–8‰ with the majority of the increase in
δ13C and δ15N values occurring within the upper ca.
20 cm of the soil. Although most sites had significant
positive correlations between δ13C and δ15N, for 5 of the
16 sampling groups, changes in average soil δ13C and

Pretoriuskop UC, South Africa
0

50

100

150
−6 −4 −2 0 2

Satara UC, South Africa0

20

40

60
−4 −2 0 2

Alaska0

10

20

30

40

−3 −2 −1 0 1 2

Pretoriuskop OC, South Africa
0

50

100

150
−6 −4 −2 0 2

Satara OC, South Africa0

20

40

60
−4 −2 0 2

Amazon, Brazil0

10

20

30

40

−2 −1 0 1 2

France − Natural

10

20

30

40
−4 −2 0 2

13C
15N

Average 15N and 13C (‰, centred)

D
ep

th
 (c

m
)

Fig. 1 Variation with soil depth of δ13C and δ15N values for sites
in which δ13C and δ15N are significantly correlated with each other
(Table 1). The data was averaged for each depth and the confidence
interval is represented by the coloured bands. The δ13C and δ15N

data were independently centred on 0 so as to allow comparison of
the variation of these within a site and thus the range of the data
corresponds to that of the original data. Sites designated OC and
UC are from open-canopy and under-canopy, respectively
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δ15N values through the soil profiles were either not
significantly associated or negatively correlated with
each other (Fig. 3, Table 1). For these sites δ13C and
δ15N values also increased with depth, with the excep-
tion of the Paulshoek site in which δ15N initially in-
creased before subsequently decreasing below ca.
10 cm. These sites also had a wider range of δ13C and
δ15N values than those for which there were significant
correlations between δ13C and δ15N (Figs. 1, and 2).

BRT analysis of the correlation between δ13C and
δ15N values ranked CEC, mean diurnal temperature
range, bulk density, MAT, clay and MAP as the top
predictors (Fig. 4a), explaining 38% of the variance in
the correlation between δ13C and δ15N. Partial depen-
dency plots, which show the effect of a variable on the
response after accounting for the average effects of all
other variables in the model, of the BRT analysis of the
soil profile correlations between δ13C and δ15N values
(Fig. 5), showed that this was strongest at sites with
CEC < 20 cmol kg−1 and a mean diurnal temperature
range < 13°C. Sites with bulk density above 1400 kg m3

had strong correlation between soil δ13C and δ15N
values. The influence of clay concentration on the cor-
relation between δ13C and δ15N values was generally
high. A number of sites with clay concentrations

between 30 and 35%, however, had a relative low
influence of clay on the correlation. These sites were
arid, receiving <500 mm mean annual precipitation and
had a relatively poor correlation compared to mesic sites
(i.e. between 500 and 1000 mm) with a moderate influ-
ence in hydric sites (>1000 mm). The correlation be-
tween δ13C and δ15N values was stronger at sites with
MAT >19°C (Supp. Fig. 4f).

Global geographic variation

Globally, soil δ15N values of surface soils were
significantly positively correlated with δ13C, MAT
and the prevalence of C4 photosynthetic vegetation
and negatively correlated with CEC and diurnal T
range (Table 2). Geospatial variation in global
δ13C and δ15N values that were spatially averaged
over 0.1° corresponded relatively well with each
other at high latitudes (> 50°) where both δ13C
and δ15N values were more negative compared to
sites located nearer the equator (Fig. 5). Sites in
which δ13C values were relatively high (Fig. 5) were
from more arid regions such as Southern Africa,
Australia and North America and in which C4 grass
communities exist (Fig. 6).
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Fig. 2 Variation with soil depth
of δ13C and δ15N values for sites
in which the dominant vegetation
types differ. The data was
averaged for each depth and the
confidence interval represented
by the coloured bands. The δ13C
and δ15N data were independently
centred on 0 so as to allow
comparison of the variation of
these within a site and thus the
range of the data corresponds to
the original data
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BRT analysis of global soil δ15N values (BRTglobal)
rankedMAT, δ13C, CEC, C4, diurnal range and MAP as
the top predictors of soil δ15N (Fig. 4b), which ex-
plained 62% of the variation in δ15N values. The partial
dependency plots for the BRTglobal (Supp. Fig. 5)
showed that as MAT increased, δ15N values also in-
creased. Sites with δ13C values below ca. -30‰ had
low δ15N values, which increased rapidly with increased
δ13C values up until ca. -20‰, above which changes in
δ15N values were relatively small. Therefore, much of
the change in δ15N values associated with δ13C values
occurred in a range of δ13C values considered to be
characteristic of C3 dominated sites (Supp. Fig 2). Sites
with CEC values >10 cmol kg−1 had relatively low soil
δ15N values. δ15N values were also low for sites with

<75% C4 vegetation. Soil δ15N values were reduced
with increases in mean diurnal temperature range and
generally with increased MAP (Supp. Fig. 5f).

Global δ15N values predicted from the full
BRTglobal model, including both C3 and C4 sites, were
strongly correlated with observed global δ15N values
(Supp. Fig. 1). There was, however, a degree of under-
prediction of δ15N values at low observed δ15N values
and over-prediction at high observed δ15N values. Glob-
al soil δ13C values were bimodal with two ranges of
δ13C values having peaks at −26.36‰ and −17.58‰,
indicating that there were a number of sites dominated
by either predominantly C3 or C4 plants (Supp. Fig. 2).
BRT’s predicting global soil δ15N based on a subset of
sites that were predominantly C3 dominated ranked
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Fig. 3 Variation with soil depth
of δ13C and δ15N values for sites
in which δ13C and δ15N are
poorly correlated with each other.
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calculated from the standard error.
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Fig. 4 Relative influence of
variables in determining the
correlation between global soil
δ13C and δ15N as determined by
BRT analysis (a) as well as the
relative influence of variables in
determining the global soil δ15N
as determined by BRT analysis
(b). Values are the mean ± SE of
10 runs of each model. Error bars
represent standard error

Fig. 5 The global variation in soil δ13C and δ15N. The color of the points represents the site averages of δ13C and δ15N values standardized
and centered to range between −1 and 1. Background fill colour represents mean annual temperature

Plant Soil (2018) 423:257–271 265



MAT, δ13C, CEC, bulk density, diurnal T range and
MAP as top predictors (Supp. Table 2). The BRT
developed for C4 dominated sites ranked MAT, CEC,
bulk density, MAP, diurnal range and δ13C as top pre-
dictors. Although soil δ13C was found to be a strong
predictor of δ15N for C3 sites, it was a weak predictor in
C4 dominated sites.

Discussion

This study suggests that either common or coordinated
processes contribute to fractionation of soil C and N
isotopes. The link between soil δ13C and δ15N values
may inform understanding of these processes due to this
coordination of soil processes determining both C and N
isotope fractionation. Our results suggest that although
the initial isotope composition of the organic matter is
indisputably important, subsequent fractionation via
soil processes, such as decomposition and related
processes, may result in correlations between δ13C
and δ15N values in geographic space and common-
ly following similar trajectories with soil depth.
More positive δ13C and δ15N values with soil
depth (Fig. 1) must result from increasing fraction-
ation or more prolonged fractionation in deeper
soils relative to shallower soils.

The importance of the vegetation characteristics in
determining C isotopic composition is apparent from the
bimodal distribution of soil δ13C values associated with
C3 (−22‰ to −32‰; Troughton 1979) and C4 (−9.2‰
to −19.3‰; Hattersley 1982) vegetation (Fig. S2)
whereas the variation in δ13C within the C3 and C4

groupings is caused by climatic and geographical factors

(Damesin et al. 1997). Likewise, global variation in soil
δ15N values (Fig. 5) is associated with variation in foliar
δ15N that varies withMAP,MAT, N availability, foliar N
concentration, species composition and with the degree
of N2 fixation (Craine et al. 2009). Organic matter enters
soils in a diversity of ways and this influences the initial
isotopic signature of soil C and N (Eissfeller et al. 2013).
The majority of SOM, however, enters the soil as plant-
derived detritus, where it is utilized by soil microbes
(Berg and McClaugherty 2008) and decomposer fauna
(Hättenschwiler and Gasser 2005). Consequently, the
isotopic values of the dominant vegetation and the var-
iation in δ13C and δ15N values, both between and within
species (Damesin et al. 1997; Craine et al. 2015a),
strongly influence SOM isotopic composition.

Unlike for C, however, there are also strong ecosys-
tem feedbacks between soil and vegetation N in deter-
mining ecosystem δ15N values, because soil δ15N also
partially determines plant δ15N. Despite this depen-
dence of SOM isotopic composition on that of OM
and vegetation, the variations in δ13C (range: −27.8 to
−12.4‰) and δ15N (range: −0.1 to 10.1‰) with depth in
soil profiles were often strongly correlated with each
other (Table 1). Likewise, geospatial variation in global
δ13C and δ15N values also corresponded relatively well
across a wide range of climates and biomes (Fig. 5). For
example, C3 and C4 dominated sites showed similar
patterns of δ13C and δ15N enrichment through soil pro-
files (Fig. 2), although the range of values was smaller
with C4 vegetation.

The correspondence between the increases of δ13C
and δ15N values with depth is probably through pro-
cessing of SOM, which is further supported by the most
influential predictors in the BRT model for the correla-
tion between δ13C and δ15N values through soil profiles
(Fig. 4a), which themselves are related to microbial
activity. Furthermore, soil δ13C values were also strong
determinants of δ15N globally (regardless of soil and
ecosystem type) while the remaining top predictors of
δ13C could be related to SOM decomposition (Fig. 4b).
Processing of SOM is determined by characteristics of
the SOM, such as the C and N composition (Fernandez
et al. 2003), as well as by environmental factors includ-
ing soil temperature, moisture and aeration (Gholz et al.
2000; Zhang et al. 2008). The reason for the positive
correlation between MAT and both δ15N and δ13C
values could therefore be due to microbial activity in-
creasing with increasing temperature. Mean diurnal
temperature range (e.g. Li et al. 2011), CEC and soil

Table 2 Bivariate ranged major axis (RMA) analysis results
of top six predictors of global soil δ15N with correlation
coefficients (r) shownwith p-values (bold where significant). All
variables used in the prediction of global soil δ15N are shown in
Supp. Table 1

Predictor variables n r p-value Intercept Slope

MAT 7461 0.48 < 0.001 1.13 0.21

δ13C 5501 0.48 < 0.001 14.16 0.43

CEC 7328 −0.2 < 0.001 7.07 −0.15
%C4 7415 0.43 < 0.001 2.99 0.05

Diurnal T range 7456 −0.1 < 0.001 5.82 −0.15
MAP 7474 −0.01 0.579 4.22 < 0.00
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fertility (Sikora 2013) may also be linked to SOM
decomposition through soil microbial processes. Al-
though favorable moisture conditions stimulate decom-
poser communities (Cotrufo et al. 2013), MAP was not
significantly correlated with either δ13C or δ15N values
at the global scale (Fig. 4b, Table 2). This is likely
because many ecosystem properties depend on MAP
obscuring clear relationships. For example, Craine
et al. (2015a) related variation in global soil δ15N to
variation in clay concentrations. Further, there is the

possibility that the limited range in MAP at the regional
scale can obscure relationships between soil δ15N and
MAP as the increase in soil δ15N with increasing MAP
at the regional scale often breaks down at broader scales
(Amundson et al. 2003; Austin and Vitousek 1998).

Despite strong global geographic correspondence
between δ13C and δ15N and correspondence over
soil depth (11 of 16 sites), some sites had non-
significant (New South Wales, France, Sweden) or
negative (Paulshoek) correlations between δ13C

4
Fig. 6 Bivariate analysis of the top six predictors of global soil δ15N against global soil δ15N. Lines indicate linear model function
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and δ15N (Fig. 3, Table 1). These sites indicate the
complexity to the relationship between soil δ13C
and δ15N, and dependence on other factors. For
example, the New South Wales sites had a large
proportion of N2-fixing microbes in the surface soil
(Macdonald et al. 2015) resulting in δ15N being close to
0‰. The non-significant Swedish and French sites were
both associated with plantations (Boström et al. 2007;
Zeller et al. 2007), whereas a corresponding natural site
in France showed a significant relationship (Fig. 1).
Paulshoek exhibited a maximum soil δ15N value at
intermediated depths, which is indicative of N-loss dur-
ing nitrification and denitrification (Hobbie and
Ouimette 2009). This is not surprising as Paulshoek is
arid with high soil temperatures and sporadic rainfall
(Table 1) and these conditions increase nitrification/
denitrification rates (Craine et al. 2015b). Thus despite
the general global relationship between δ13C and δ15N,
this correspondence does vary depending on local biot-
ic, disturbance and environmental influences.

As a consequence of a link between soil δ13C and
δ15N, interpretation of soil δ13C values as indicators of
historical vegetation assemblages is complicated by the
role of soil processes in determining soil δ13C values, as
also shown by Wynn et al. 2005. The ranges of δ13C
values with depth are commonly large (up to 11.0 ‰,
Supp. Fig. 3) which overlaps the range of values com-
monly associated with vegetation change. For example,
δ13C values between −16 and −20‰ have been used to
indicate mixed C3 and C4 vegetation and > −16% to
indicate C4 dominance (Gillson 2015). From our study,
however, whilst the minimum δ13C values of soils with
C3 and C4 vegetation reflect the isotopic signature of the
vegetation inputs, the maximum δ13C values are indis-
tinguishable. Since the maximum δ13C values of soils
supporting C3 vegetation overlap with the minimum
δ13C values of C4 vegetation, interpretation of interme-
diate δ13C values (i.e. < ca. -15‰) as indicating histor-
ical vegetation characteristics should be approached
with caution. Furthermore, in order to demonstrate that
ancient δ13C SOC values are indeed representative of
ancient vegetation assemblages in samples of deep
SOC, one must establish that the fraction of SOC re-
maining in the sample is very close to the original
maximum concentration during soil formation and that
fractionation has not been great (Wynn et al. 2006). This
is because Rayleigh distillation and mixing processes
vary with environmental and soil properties, with par-
ticularly strong effects associated with fine mineral

particles (i.e. clay) in fine grained soils (Krull and
Skjemstad 2003; Wynn et al. 2005) and should not be
assumed to be constant everywhere.
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