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Abstract
Background and aims Alterations in root growth and
rhizosphere processes in maize (Zea mays L.) occur
under phosphorus (P) deficiency, but the dynamics of
root morphological and physiological modifications
with increasing shoot P concentration remain unclear.
This study investigated root responses to a wide gradient
in shoot P status.
Methods A range of maize shoot P concentrations (1.0–
4.0 mg g−1) was established using controlled pot exper-
iment with eleven rates of P supply from 0 to 1200 mg P
kg−1 soil. Root morphology and rhizosphere processes
were characterized 28 days after planting.
Results Maize reached maximum biomass at shoot P
concentration of 2.7 mg g−1. Root morphological re-
sponses (i.e. total root length, specific root length and
proportion of fine roots) showed a strong increasing

trend with decreasing shoot P concentration (1.1–
1.3 mg g−1), but they decreased when shoot P concen-
tration was extremely low (below 1.1 mg g−1). In con-
trast, with increasing shoot P concentration, root mor-
phological responses decreased, but root physiological
responses (rhizosphere acidification, acid phosphatase
activity and carboxylate exudation in the rhizosphere)
were enhanced, and no decrease was noted even at high
shoot P concentration (4.0 mg g−1) corresponding to
excess P supply.
Conclusions Increasing maize shoot P concentration
induced a decrease in root morphological responses
and an enhancement in root exudation, with maize re-
sponse to P deficiency being dependent on root mor-
phological rather than physiological traits.

Keywords Phosphorus deficiency. Root growth . Root
exudation . Rhizosphere processes

Introduction

Phosphorus (P), as one of the most growth-limiting
macronutrients, needs to be taken up from soil by plant
roots (Raghothama 1999; Vance et al. 2003; Vitousek
et al. 2010). However, only 10–25% of applied fertilizer
P is taken up by crops in the first growing season
(Johnston et al. 2014), due to phosphate adsorption
and fixation in soil (Schachtman et al. 1998; Hinsinger
2001; Shen et al. 2011). Root systems display high
plasticity to the low concentration and heterogeneous
distribution of P in soil to enhance the capacity to
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acquire P, including root morphological and physio-
logical strategies (Vance et al. 2003; Lambers et al.
2006; Shen et al. 2011). A greater proportion of
photosynthates allocated to root growth, higher root
branching, and increased production of fine roots are
typical morphological responses that result in enhanced
exploration of the soil volume (Hermans et al. 2006;
Postma et al. 2014; Lynch 2015). Plants may also
increase proton release, carboxylate exudation and
phosphatase secretion into the rhizosphere to change
soil properties and mobilize sparingly soluble inorganic
and organic P (Jones 1998; Neumann and Römheld
1999; Richardson et al. 2011; Lopez-Arredondo
et al. 2014).

It is generally accepted that these adaptive responses
are controlled by (i) plant internal P status and (ii) P
availability in the rooting medium (Shane et al. 2003a;
Shen et al. 2003, 2005; George et al. 2011; Giehl et al.
2014). Shane et al. (2003a) reported that shoot P status
regulated cluster root growth and citrate exudation in
white lupin (Lupinus albus L.) grown with a divided
root system in which one root half was supplied with P
and the other half was not. Our previous studies also
suggested that cluster root formation and citrate exuda-
tion in white lupin were regulated by the shoot P con-
centration, but these processes were also affected pro-
foundly by localized external P supply (Shen et al.
2005). Hence, cluster root growth and citrate exudation
in white lupin were triggered by shoot P starvation, and
suppressed by increasing shoot P concentration associ-
ated with external P supply (Shane et al. 2003a, b; Li
et al. 2008; Wang et al. 2013). Similar responses have
been shown in the species from the Proteaceae and
Pasture legume families (Denton et al. 2007; Lambers
et al. 2011; Pang et al. 2009; Suriyagoda et al. 2012).
However, some studies on root adaptive responses to
different P availability in the rooting medium reported
contradictory results. Faba bean (Vicia faba L.) had a
poor root morphological response to varying P supply
(Lyu et al. 2016). In chickpea (Cicer arietinum L.),
carboxylate concentrations in the rhizosphere steadily
increased during the plant development, suggesting
there was no simple correlation with shoot or soil P
status (Wouterlood et al. 2004a, 2005). In soybean (Gly-
cine max L.), P deficiency did not enhance proton
release into the rhizosphere (Tang et al. 2009; Zhou
et al. 2009). Moreover, root exudation of phosphatase
by canola (Brassica napus L.) increased with increasing
P supply (Marschner et al. 2007; Solaiman et al. 2007;

Zhang et al. 2009). Hence, it appears that different plant
species have developed different strategies to regulate
root morphological and physiological responses to var-
iable P supply.

Maize is one of the most widely cultivated crop
plants in the world and is used as human and animal
food, forage and a source of bioethanol. Under P defi-
ciency, maize roots exhibit extensive morphological
alterations (Zhu et al. 2005, 2010; Zhang et al. 2012;
Postma et al. 2014; Miguel et al. 2015) that underpin
efficiency of P acquisition. P-efficient maize genotypes
have greater root/shoot ratio, higher root hair density,
more lateral roots and longer total root length than P-
inefficient ones (Hajabbasi and Schumacher 1994;
Bates and Lynch 2001; Gaume et al. 2001; Liu et al.
2004; Zhu and Lynch 2004; Zhu et al. 2005; Corrales
et al. 2007; Lynch 2011). However, adaptive physiolog-
ical responses of maize to variable P supply are unclear.
P-deficient maize does not acidify the rhizosphere soil
significantly (George et al. 2002a; Liu et al. 2016), or
may even alkalinize the culture solution in the initial
stages of P deficiency (Liu et al. 2004; Li et al. 2007;
Zhou et al. 2009). Moreover, P-deficient maize often
showed decreased (Liu et al. 2004, 2016; Corrales et al.
2007; Li et al. 2010a; Lyu et al. 2016), but rarely
increased (Gaume et al. 2001) concentration of car-
boxylates in the rhizosphere. Regarding acid phos-
phatase, maize might increase its exudation into the
rhizosphere under P deficiency (Sachay et al. 1991;
Yun and Kaeppler 2001), but this effect was fre-
quently not observed (George et al. 2002b;
Corrales et al. 2007; Carvalhais et al. 2011; Liu
et al. 2016; Lyu et al. 2016). Hence, maize root
physiological responses to variable P supply as well
as their interactions with root morphological re-
sponses have yet to be clarified. In addition, it
should be borne in mind that a majority of studies
mentioned above were done in hydroponic or sand
culture (eg. Sachay et al. 1991; Gaume et al. 2001;
Yun and Kaeppler 2001; Liu et al. 2004; Corrales
et al. 2007; Carvalhais et al. 2011) that might not
reflect natural growth conditions (Oburger and
Schmidt 2016). Therefore, the aims of this study
were to (1) quantify the dynamics of root growth
traits and rhizosphere processes in maize grown in
soil with variable P supply; (2) characterize the
relationship between root morphological or physio-
logical responses and shoot P concentration varying
from deficient to optimal to excess.
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Materials and methods

Experimental set-up

The experiment was conducted in a naturally-lit green-
house at the China Agricultural University. Maize (Zea
mays L. cv. ZD958) was grown in a calcareous silt loam
soil with low P availability, which was collected from a
long-term fertilizer experiment in Beijing (Latitude:
40o01′N, Longitude: 116°16′E). Soil was air-dried, then
sieved to 2-mm and thoroughly mixed. Soil properties
were as follows: pH 8.40 (1: 2.5, soil:water), Olsen-P
1.7 mg kg−1, organic carbon 12 g kg−1, total N 0.7 g
kg−1, and exchangeable K 82 mg kg−1. There were 11 P
application rates (0, 2.5, 5, 10, 25, 50, 75, 150, 300, 600
and 1200 mg P kg−1 soil, supplied as KH2PO4). Each
pot was filled with 1 kg of air-dried soil. To ensure that
the supply of other nutrients was adequate for plant
growth, soil was also supplemented with basal nutrients
at the following rates (mg pot−1): Ca(NO3)2·4H2O 1687,
K2SO4 335, CaCl2 126, MgSO4·7H2O 43, EDTA-FeNa
5.8, MnSO4·4H2O 6.7, ZnSO4·7H2O 10, CuSO4·5H2O
2.0, H3BO3 0.67, and (NH4)6Mo7O24·4H2O 0.26.

Maize seeds were surface sterilized (30min in 10% v/
v H2O2 solution), rinsed, imbibed (8 h in saturated
CaSO4 solution), and germinated in a dark and humid
environment for 2 days at 22 °C. Four uniformly germi-
nated seeds were planted per pot, and the seedlings were
thinned to two plants per pot at the 3-leaf stage. Five
replicates were grown for each P treatment, and pots
were arranged in a completely randomized design. All
pots were watered every day to weight to maintain 75%
field capacity. Greenhouse temperatures were main-
tained at 20–25 °C during the day and 15–18 °C at
night, with 12–14 h daytime throughout the growth
period.

Harvest and measurements

Plants were harvested at the 5-leaf stage (28 days after
planting, DAP), when visual growth differences among
the P rate treatments were obvious (Fig. S1). At harvest,
shoots were cut at the soil surface, oven-dried at 105 °C
for 30 min and then at 70 °C for 3 days, and weighed.
After sampling the rhizosphere exudates (see the next
section), all visible roots in each pot were picked by
hand and placed in individual, marked plastic bags.
These roots were washed free of soil and then frozen
at -20 °C before measurement of root morphology. The

bulk soil was also sampled. After air-drying, soil sam-
ples were ground to pass through a 2-mm sieve for
analysis of soil Olsen-P.

Cleaned root samples were dispersed in water in a
transparent tray (30 × 20 × 3 cm) and then scanned with
an EPSON scanner at 400 dpi (Epson Expression 1600
pro, Model EU-35, Japan). Root images were analyzed
with software Win-RHIZO (Regent Instruments Inc.,
Quebec, Canada) to obtain total root length and the root
length in different root diameter classes. Afterwards,
root dry weight was determined by weighing the oven-
dried samples. Specific root length was calculated from
root length and root dry weight, and the proportion of
fine roots (diameter 0–0.2 mm) to total root length was
calculated (Jing et al. 2010).

Plant materials were digested with a mixture of 5 mL
of concentrated sulfuric acid and 8 mL of 30% v/v
H2O2, and then shoot P was analyzed by the vanado-
molybdate method by spectrophotometry at 440 nm
(Johnson and Ulrich 1959). Soil P availability was de-
termined according to the Olsen method (Olsen et al.
1954), the air-dried soil being extracted with 0.5 M
NaHCO3 at pH 8.5 (180 rpm, 25 °C).

Root exudate collection from the rhizosphere soil

The method for rhizosphere exudate collection was
modified from Veneklaas et al. (2003) and Pearse et al.
(2007). Roots were carefully lifted out of the soil and
shaken to remove the loosely adhering soil around the
roots (considered to be bulk soil), and the tightly adher-
ing soil around the root was defined as rhizosphere soil
(Veneklaas et al. 2003). After that roots were transferred
into a 200-mL vials containing a measured amount of
0.2 mmol L−1 CaCl2 solution depending on root volume
(Veneklaas et al. 2003; Pearse et al. 2007). Roots were
repeatedly dunked (about 60 s in this study) into solu-
tion until as much rhizosphere soil as possible was
removed. Care was taken to minimize root damage.
Two 0.5-mL aliquots of soil suspension were transferred
into 2-mL centrifuge tubes for measurement of acid
phosphatase activity (Alvey et al. 2001; Neumann
2006). Two 8-mL sub-samples were stored in an ice
box. One was for measurement of rhizosphere pH. To
the other, we added microbial inhibitor Micropur
(Sicheres Trinkwasser, Germany) at 0.01 g L−1 and also
three drops of concentrated phosphoric acid before stor-
ing at -20 °C until analysis of carboxylates by HPLC;
the HPLC analysis was done after having passed the soil
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suspension through a 0.22-μm filter (Shen et al. 2003;
Wang et al. 2007).

Determination of rhizosphere soil pH, acid phosphatase
activity and carboxylate content in the rhizosphere soil

The amount of rhizosphere soil collected differed
among the treatments. In order to eliminate effect of
different soil:water ratio on pH determination of rhizo-
sphere extract solution, a modified pH (soil:water ratio
was adjusted to 1:2.5) was calculated from the measured
pH by an equation according to Li et al. (2010a). The
bulk soil pH was measured using the conventional
method at soil:water ratio of 1:2.5. In order to analyse
rhizosphere acidification in different P treatments, we
defineΔ soil pH as a difference between rhizosphere pH
and bulk soil pH (rhizosphere pH - bulk soil pH).
Measurement of rhizosphere soil pH was completed
on the harvest day, and the bulk soil pH was measured
after soil samples were air-dried.

For determining acid phosphatase activity in the rhi-
zosphere soil, 0.5-mL aliquots of soil suspensions were
transferred into a 2-mL centrifuge tube with 0.4 mL
sodium acetate buffer (pH 5.2) and 0.1-mL of
0.15 mol L−1 p-nitrophenyl phosphate (PNP) substrate.
After incubation for 30 min at 25–30 °C, adding 0.5 mL
of 0.5 mol L−1 NaOH terminated the reaction. The
absorption of supernatants was measured at 405 nm
(Alvey et al. 2001; Neumann 2006).

Carboxylates were analyzed using a reversed-phase
high-performance liquid chromatography (HPLC) sys-
tem based on the method described by Lyu et al. (2016).
The chromatographic separation was conducted on a
250 × 4.6 mm reversed-phase column (Alltima C18,
5 μm; Alltech Associates, Inc., Deerfield, IL, USA).
The mobile phase was 25 mmol L−1 KH2PO4 (pH 2.3)
with a flow rate of 1 mL min−1 at 31 °C; detection of
carboxylates was carried out at 214 nm.

Statistical analyses

One-way analysis of variance was performed using the
SAS statistical software (SAS 8.1, USA), and significant
differences among means were assessed using Duncan’s
multiple range analysis test (P ≤ 0.05).

The linear-plateau model was used to evaluate the
critical shoot P concentration for the optimal shoot
growth of maize (Teng et al. 2013), and the exponential
equation was used to establish the relationships between

root/shoot ratio,Δ soil pH and shoot P concentration or
soil Olsen-P (Li et al. 2008). Empirical polynomial
(inverse third order) equations were used in SigmaPlot
(SigmaPlot 10.0, USA) to analyse the relationship be-
tween root morphological traits (i.e. total root length,
specific root length or proportion of fine roots) and
shoot P concentration or soil Olsen-P based on the
published method (Deng et al. 2014).

Results

Plant growth and P uptake

At harvest, with P application rates increasing from 0
(P0) to 1200 mg P kg−1 soil (P1200), soil Olsen P
increased from 1.5 to 594 mg kg−1, and maize increased
shoot biomass by 370% and root biomass by 110%
(Table 1). Shoot P concentration ranged from 1.0 to
4.0 mg g−1, and P uptake increased by 18-fold from
P0 to P1200 (Table 1).

There was a significant relationship between shoot
biomass and soil Olsen-P (Fig. 1a), with shoot biomass
increasing together with soil Olsen-P at first, and when
soil Olsen-P surpassed approx. 200 mg kg−1, shoot
growth levelled off. Compared to the treatment without
P added, the root/shoot ratio decreased by 110% in the
P1200 treatment. The root/shoot ratio declined as soil
Olsen-P increased to about 100 mg kg−1, and then
levelled off with a further increase in soil Olsen-P
(Fig. 1c).

To estimate the critical shoot P concentration for
maximum shoot biomass production, the regression
analysis revealed that the response of shoot biomass to
shoot P concentration fitted a linear-plateau model
(R2 = 0.87, P < 0.01) (Fig. 1b). The regression equations
showed that the critical shoot P concentration was
2.7 mg g−1, corresponding to about 90% of the relative
shoot dry weight (Fig. 1b). Also, the root/shoot ratio
declined substantially with increasing shoot P concen-
tration, reaching a plateau at approx. 2 mg P g−1 shoot
dw (Fig. 1d).

Root morphology

The total root length ranged from 10 to 19 m plant−1,
and it decreased by 47% in the treatment with P1000 in
comparison to the P75 treatment (Table S1). Total root
length initially increased with an increase in shoot P
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concentration, peaking when shoot P concentration was
about 1.1–1.3 mg g−1 (Fig. 2a) at the P fertilization rate
near 75 mg P kg−1 soil (Table S1). Even though shoot P
concentration continued to improve with further in-
creases in P supply, total root length gradually declined

to a plateau (around 12 m plant−1) at shoot P concentra-
tion > 2 mg g−1.

The relationships of shoot P concentration with spe-
cific root length or with the proportion of fine roots to
total root length were similar to the total root length,

Table 1 Shoot biomass, root biomass, shoot P concentration and P uptake under different P fertilization rates. Plants were sampled at the 5-
leaf stage (28 days after planting)

P rate
(mg P kg−1 soil)

Olsen-P
(mg kg−1)

Shoot biomass
(g plant−1)

Root biomass
(g plant−1)

Shoot P concentration
(mg g−1)

P uptake
(mg plant−1)

0 1.5 (0.10) e 0.44 (0.03) e 0.13 (0.01) e 1.01 (0.04) f 0.44 (0.02) f

2.5 1.9 (0.09) e 0.38 (0.02) e 0.13 (0.01) e 0.96 (0.02) f 0.37 (0.02) f

5 2.4 (0.08) e 0.42 (0.02) e 0.12 (0.01) e 1.00 (0.01) f 0.42 (0.02) f

10 3.3 (0.10) e 0.45 (0.03) e 0.13 (0.01) e 1.05 (0.03) f 0.47 (0.03) f

25 7.6 (0.18) e 0.56 (0.03) de 0.15 (0.01) de 1.11 (0.02) ef 0.62 (0.04) ef

50 15 (0.31) e 0.75 (0.05) d 0.18 (0.00) cd 1.16 (0.02) ef 0.87 (0.06) ef

75 23 (0.31) e 1.03 (0.08) c 0.19 (0.01) bc 1.33 (0.07) e 1.37 (0.13) de

150 54 (2.3) d 1.27 (0.11) b 0.22 (0.02) b 1.67 (0.06) d 2.10 (0.13) d

300 102 (2.4) c 1.44 (0.14) b 0.22 (0.02) b 2.10 (0.06) c 3.01 (0.28) c

600 178 (11) b 1.86 (0.13) a 0.27 (0.03) a 2.81 (0.14) b 5.27 (0.56) b

1200 594 (33) a 2.08 (0.10) a 0.28 (0.01) a 3.96 (0.22) a 8.32 (0.78) a

Values are means of five biological replicates (SE). Statistical differences (P ≤ 0.05) between P fertilization rates are indicated by different
letters in each column
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Fig. 1 Shoot biomass and root/shoot ratio as a function of increasing soil Olsen-P (a, c) and shoot P concentration (b, d). Data points
represent individual replicates
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with peaks at the critical shoot P concentration around
1.1–1.3 mg g−1, followed by declining to a plateau with
an increase in shoot P concentration (Fig. 2b, c). With
the shoot P concentration decreasing from around 4 to
between approx. 2 and 1.1–1.3 mg g−1, the specific root
length and the proportion of fine roots increased. The
specific root length peaked at 112 m g−1 root dry weight
in the P50 treatment, whereas the proportion of fine
roots reached the maximum (63%) in the P25 treatment

(Table S1). With shoot P concentration decreasing to
below 1.1–1.3 mg g−1, the specific root length decreased
to 85 m g−1 root dry weight and the proportion of fine
roots decreased to 54% (Table S1).

Rhizosphere soil pH

The bulk soil pH at harvest was about 8.2 in the treat-
ments ranging from P0 to P600, but a decline occurred
in the treatment with P1200 (Fig. S3a) corresponding to
high soil Olsen-P (Fig. 3a). The rhizosphere soil pH
declined from 8.1 to 6.7 with increasing P fertilization
(Fig. S3b) and increasing soil Olsen-P (Fig. 3b). Acid-
ification of the rhizosphere soil decreased as soil Olsen-
P increased, reaching a plateau (approx. -1.2 pH units) at
around 100 mg Olsen-P kg−1 (Fig. 3b).

The relationship between Δ soil pH (due to rhizo-
sphere soil acidification) and shoot P concentration was
separated into two phases, with a plateau at the critical
level of approx. 2 mg P g−1 shoot dw (Fig. 3c). When
shoot P concentration was <2 mg g−1, Δsoil pH had a
negative linear relationship with shoot P concentration.

Acid phosphatase activity in the rhizosphere soil

At P application rates ≤50 mg P kg−1 soil, acid phos-
phatase activity in the rhizosphere soil (RS-APase) was
similarly low, and then increased significantly with in-
creasing soil P supply (Fig. S4a). Compared with the P0
treatment, the RS-APase activity in the P1200 treatment
increased by 150% (Fig. S4a). The positive linear rela-
tionship between RS-APase activity and shoot P con-
centration explained 44% of variation (r = 0.66,
P < 0.001) (Fig. 4). Based on the regression equation,
RS-APase activity increased from 380 to 958 μg PNP
h−1 g−1 soil when shoot P concentration increased from
1.0 to 4.0 mg g−1.

Rhizosphere soil carboxylates

The predominant carboxylates in the rhizosphere were
citrate, trans-aconitate, malate and succinate at variable
P fertilization treatments. Trace amounts of tartarate and
fumarate were also detected (data not shown). Concen-
tration of carboxylates in the rhizosphere regardless of
shoot P concentration decreased in the order: succinate
> trans-aconitate > malate > citrate (Figs. 5, S5). The
concentration of these four carboxylates tended to in-
crease in the rhizosphere soil when P rate increased
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Fig. 2 Maize root morphological traits in response to increasing
shoot P concentration: (a) total root length, (b) specific root length
and (c) the proportion of fine roots (diameter 0–0.2 mm) in total
root length. Each symbol represents the mean (±SE) of five repli-
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above 50 mg P kg−1 soil, with the maximum concentra-
tion reached in the P1200 treatment (Fig. S5). The
citrate and trans-aconitate concentrations were, respec-
tively, 8.70-fold and 13-fold greater in the P1200 than
P0 treatments. Similarly, positive linear relationships
were observed between carboxylate concentration in
the rhizosphere and shoot P concentration (Fig. 5a–d).
The slopes (μmol carboxylate g−1 soil for each mg P g−1

shoot dw) were 0.26 for citrate, 0.70 for trans-aconitate,
0.45 for malate and 1.42 for succinate.

Discussion

Shoot P concentration in response to a wide range of soil
P supply

Shoot or leaf P concentration is not only a useful indi-
cator of P limitation, but is also used as a reliable tool in
the diagnosis of crop yield depressions (Barry and
Miller 1989; Bollons and Barraclough 1999). Shoot P
concentration in maize significantly increased with in-
creasing P additions (Table 1), and the critical level of
shoot P concentration for shoot biomass production was
2.7 mg g−1 at the 5-leaf stage (Fig. 1b), which was
consistent with previous literature (Jones 1983), but
higher than 1.4 mg g−1 reported by Zia et al. (1988)
for maize shoot P at the same stage. The various results
may be due to different maize genotypes, soil properties
or culture conditions (i.e. temperature, rooting volume).
Shoot P concentration for maize in present study ranged
from 1.0 to 4.0 mg g−1 (Table 1), suggesting that the
experiment was suitable for estimating the root morpho-
logical and physiological responses to shoot P concen-
tration covering deficiency, optimum and excess.

The relationship between root morphological responses
and shoot P concentration

Root morphology plays an important role in P uptake.
The main morphological responses of maize to low-P
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stress include a higher root/shoot ratio, finer roots, a
more highly branched root system, and increased spe-
cific root length (Zhu and Lynch 2004; Zhang et al.
2012; Deng et al. 2014; Fernandez and Rubio 2015).
Awide range of root morphologies were observed with
increasing shoot P concentration from severe P deficien-
cy to excess P (Figs. 2a–c; Table S1).

Within a range from sufficient to excess P supply
(corresponding to the shoot P concentration between
2.7 and up to 4.0 mg g−1), maize root morphological
parameters (total root length, specific root length,
proportion of fine roots and root/shoot ratio) were
relatively low and stable (Figs. 1d, 2a–c), which
would result from soil P availability at high P supply
no longer being the limiting factor for plant growth.
Fine roots are critical for nutrient uptake and are
strongly influenced by soil nutrient availability (Yuan
and Chen 2012; Zhang et al. 2012; Li et al. 2016);
our results demonstrated that the proportion of fine
roots can be regulated by the shoot P status, the
proportion decreasing significantly and then plateaued
(Fig. 2c) in response to high shoot P concentration due
to high soil P availability.

At shoot P concentration below 2–3 mg g−1, all the
root morphological parameters in maize (total root
length, specific root length, and root/shoot ratio) in-
creased significantly (Figs. 1d, 2a, b and Table S1). An
increase in the root/shoot ratio and total root length
(Figs. 1d, 2a) are universal responses to P deficiency
in maize (Mollier and Pellerin 1999; Zhang et al. 2012;
Deng et al. 2014), suggesting P-deficient plants invested
more carbon to form new roots and increase the P
foraging capacity (Fernandez and Rubio 2015). Similar-
ly, the higher specific root length (Fig. 2b) associated
with a decrease in root diameter at low-P supply (cf.
Fig. S2c) and low shoot P concentration (Fig. 2c) indi-
cated a root system with a decreased metabolic demand
per unit of root length (Eissenstat 1992; Zobel et al.
2007; Pang et al. 2009). Overall, these responses would
increase the root surface area available for soil explora-
tion and acquisition of soil P at a minimal energy cost
(Vance et al. 2003; Lambers et al. 2006; Lynch 2015).

At shoot P concentration ≤ 1.1 mg g−1, shoot and root
biomass were maintained (Table 1), but total root length
and proportion of fine roots exhibited a decrease
(Figs. 2a, c), suggesting that the extremely low soil P
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availability resulted in low shoot P concentration and
significantly altered maize root morphology, in accor-
dance with the published reports on maize (Deng et al.
2014) and other plant species (Hill et al. 2006; Pang
et al. 2009; Teng et al. 2013). Due to ongoing and severe
P deficiency, the leaf growth and photosynthesis in P-
deficient maize could decrease significantly (Mollier
and Pellerin 1999; Plénet et al. 2000), and subsequently
the root growth and function would be severely
inhibited.

Compared with shoot growth, root growth is less
inhibited under P deficiency (Marschner 2012). We
found that the critical shoot P concentration for
governing root morphological responses (1.1–1.3 mg
g−1, Table S1) was lower than the optimal shoot P
concentration for shoot biomass production (2.7 mg
g−1, Fig. 1b), indicating that maize root growth was
more sensitive than shoot growth to reducing soil P
supply. Maize was adapted to decreasing P supply firstly
by enhancing fine roots production, even though the
total root biomass did not exhibit a significant change.
Hence, maize showed a large root morphological plas-
ticity to cope with variable P supply, and these morpho-
logical responses were governed by shoot P
concentration.

The relationship between root physiological responses
and shoot P concentration

To effectively increase P uptake, root morphological
changes in response to P deficiency are often accompa-
nied by the activation of physiological responses, such
as increased root exudation involved in P mobilization
(Vance et al. 2003; Lambers et al. 2006; Shen et al.
2011). However, in the present study, maize root phys-
iological responses were not consistent with the previ-
ous studies. We found that P deficiency did not enhance
rhizosphere acidification, rhizosphere APase activity
and the carboxylate exudation in maize; instead, these
parameters increased continuously with an increase in
shoot P concentration up to a maximum recorded at
4.0 mg g−1 (Figs. 3, 4, and 5).

Modification of soil pH by roots is considered one of
the strongest responses to P deficiency by many plant
species (Hinsinger et al. 2003, 2005; Rengel and
Marschner 2005). However, our results showed that
rhizosphere acidification was not induced by P deficien-
cy, but increased with shoot P concentration increasing
from the deficient level, then reached a steady state

without decreasing even when P was supplied at the
above-optimal levels and shoot P concentration was in
excess (Figs. 3, S3). This finding was in contrast with
the previous reports onmaize with no significant change
in the rhizosphere pH under low P (George et al. 2002a;
Liu et al. 2016). One possible explanation may be
different duration and severity of P deficiency in differ-
ent studies, with the rhizosphere acidification by maize
in response to P deficiency potentially being maintained
for a short time only (cf. Faget et al. 2013, who observed
that the roots of maize acidified the rhizosphere for
7 days after transplanting); hence, our results might
represent a later response of maize to P deficiency (our
sampling time: 28 days after planting). The other reason
was increased shoot K+ accumulation at high P supply
(cf. Figs. 3b and S6b). The increased release of protons
may compensate for excess uptake of cations over an-
ions (Hinsinger et al. 2003; Braschkat and Randall
2004).

Increased carboxylate exudation by P-deficient
plants has been reported in some studies (e.g. white
lupin: Li et al. 2008; Wheat: Pearse et al. 2006; maize:
Gaume et al. 2001). In the present study, P-deficient
maize had decreased carboxylate concentration in the
rhizosphere (Figs. 5, S5), which was in accordance with
some previous studies (Corrales et al. 2007; Li et al.
2010a; Liu et al. 2004, 2016, Lyu et al. 2016). Several
factors may be responsible for this result: (i) different
duration and severity of P starvation, and (ii) in partic-
ular variable plant age (cf. Wouterlood et al. 2004b). In
addition, most of the reported hydroponic experiments
were sampled after a short P-starvation period (e.g.
18 days after seedling transfer, Gaume et al. 2001; 13–
15 days after germination, Carvalhais et al. 2011),
whereas we characterized the later responses to P defi-
ciency in soil-grown maize. It should also be kept in
mind that the patterns of carboxylate exudation in re-
sponse to P supply in maize may be genotype-specific
(Gaume et al. 2001; Corrales et al. 2007).

Our study was carried out in non-sterile soil condi-
tions, thus the carboxylates could have originated from
either roots or microbial populations (Ryan et al. 2001;
Bais et al. 2006; Jones et al. 2009). Root excretion of
carboxylates could be due to enhanced N assimilation
from nitrate (Neumann and Römheld 2001; Maistry
et al. 2014), which was the only form of N supplied in
this study. On the other hand, increased microbial bio-
mass and enhanced abundance of microbial communi-
ties in the rhizosphere were observed in the P-fertilized
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treatments (Tang et al. 2016), with these microbial pop-
ulations potentially making a contribution to increasing
carboxylate exudation.

Increased acid phosphatase secretion by plants is
generally thought to be associated with a low plant P
status (e.g. white lupin: Gilbert et al. 1999; wheat:
Yadav and Tarafdar 2001, Ciereszko et al. 2011; maize:
Yun and Kaeppler 2001). In the present study, P defi-
ciency did not enhance the RS-APase activity in maize
(Figs. 4, S4). This result is in accordance with the recent
studies (Liu et al. 2016; Lyu et al. 2016). Moreover, with
the P supply increasing, RS-APase activity had a posi-
tive correlation with shoot P concentration (Fig. 4). A
plausible hypothesis is that as shoot P concentration
increased, there was an increase in the concentration of
P cycling between shoots and roots, which might have
resulted in some organic P being lost from roots into the
rhizosphere, and increased APase secretion could have
recaptured some of that exuded P in the rhizosphere
(Barrett-Lennard et al. 1993; Jones et al. 2009). How-
ever, RS-APase may originate from either roots or mi-
crobes (Tarafdar and Claassen 1988; Richardson et al.
2009; Lambers et al. 2006). It is known that
rhizodeposited carbon can significantly enhance soil
microbial communities (Richardson and Simpson
2011; Spohn and Kuzyakov 2013), and our results show
that the RS-APase activity (Fig. 4) increased concomi-
tantly with an increase in carboxylate exudation (Fig. 5).
Therefore, it is speculated that microbial phosphatases
may make an important contribution to increasing RS-
APase activity with increasing shoot P concentration.
Such an explanation, however, requires experimental
confirmation by simultaneous determination of the mi-
crobial community distribution and the RS-activity
around the root, e.g. by soil zymography and
fluorescence-in situ-hybridization (FISH) (Spohn et al.
2013, 2015).

The relationship between root responses and soil P
supply

All the root morphological and physiological traits were
correlated with soil P supply (Figs. 1c, 3a, b, S2, S4b,
and S5e-h) as well as shoot P concentration (Figs. 1d, 2,
3c, 4, and 5). Hence, it was difficult to distinguish the
effects of shoot P status and soil P supply on root
responses. Although some previous studies showed lo-
cal nutrient supply stimulated root proliferation in
nutrient-deficient plants (Drew 1975; Hodge 2004; Li

et al. 2010b), this effect of nutrient supply to root traits
could be suppressed by high shoot nutrient concentra-
tion (Zhang and Forde 1998). Thus, shoot P status is
likely to be a more important factor regulating root traits
than soil P supply, except potentially at very low P
availability.

Conclusions

Shoot P status significantly affected maize growth and
the root response. At shoot P concentrations below
2.7 mg g−1 (the critical shoot P concentration for the
optimum growth of maize seedlings in the present
study), most root morphological adaptations (total root
length, specific root length, the proportion of fine roots
(diameter 0–0.2 mm) in the total root length, and
root/shoot ratio) involved with P acquisition were trig-
gered, whereas they were suppressed under either high
(3–4 mg g−1) or very low shoot P status (below 1.1–
1.3 mg g−1). In addition, P deficiency did not enhance
root physiological adaptations (rhizosphere acidifica-
tion, acid phosphatase activity and the carboxylate exu-
dation), and no decrease was noted even at high shoot P
(4.0 mg g−1) corresponding to excess P supply. The
modifications of root morphological and physiological
traits in maize were differentially influenced by increas-
ing shoot P concentration, with root morphological rath-
er than physiological adaptations occurring in response
to P deficiency.
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