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Abstract
Background and scope Mangroves provide several eco-
system goods and services to society. However, man-
groves are frequently subjected to land conversion,
overharvesting, and pollution including increased nitro-
gen (N) availability. Aiming to provide useful informa-
tion to predict effects of N enrichment on mangroves,
we evaluated literature data on N transformation rates in
sediment, dissolved N (DN) fluxes across the sediment-
water interface, and natural abundance of N stable iso-
topes (δ15N) in the sediment-plant system in conserved
mangroves and those subjected to anthropogenic N
enrichment.
Conclusions Mangroves and terrestrial tropical forests
exhibit a great overlap in rates of biological N fixation
(BNF) and denitrification and nitrous oxide flux rates.
Mangroves can be highly efficient users of DN forms
from tidal waters, related to rapid plant uptake and an
efficient conservation of DN in sediment by microbial
activity. The main factors limiting N transformation
rates inmangrove sediment are inorganic DN availability
and microbial immobilization. The δ15N data indicated

that fringe forests exhibit higher N transformation rates
in sediment and higher N losses to atmosphere, com-
pared to other mangrove types. Except for BNF, all other
N transformation and flux rates seem to be intensified by
increasing N availability.

Keywords Biological nitrogen fixation . Nitrogen
mineralization . Sediment-water interface fluxes .
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Abbreviations
ARA Acetylene reduction activity
BNF Biological nitrogen fixation
C Carbon
DIN Dissolved inorganic nitrogen
DN Dissolved nitrogen
DOC Dissolved organic carbon
DON Dissolved organic nitrogen
HC Heterocystous cyanobacteria
H2S Sulfide
N Nitrogen
NH3

+ Ammonia
NH4

+ Ammonium
NO2

− Nitrite
NO3

− Nitrate
NOx

− Nitrite plus nitrate
N2 Atmospheric nitrogen
N2O Nitrous oxide
δ15N Nitrogen stable isotope ratio
O2 Oxygen
P Phosphorus
PN Particulate nitrogen
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Introduction

Mangroves are intertidal coastal wetlands colonized
by a group of 62 plant species in the Indo-West
Pacific and only 12 species in the Atlantic and
Eastern Pacific, including trees, shrubs, a palm, and a
ground fern (also termedmangroves) sharing adaptations
to periodic flooding, highly variable salinities, and oxy-
gen depleted sediments (Spalding et al. 2010; Schaeffer-
Novelli et al. 2000). There are about 152,000 km2 of
mangroves distributed in 123 countries and territories of
tropical, subtropical and warm temperate regions.
Despite their broad distribution, only 12 countries have
about 68% of the world’s mangroves, with the top three
being Indonesia (31,894 km2), Brazil (13,000 km2), and
Australia (9,910 km2) (Spalding et al. 2010). Mangroves
originally occupied more than 200,000 km2 of coastlines
(Spalding et al. 2010). However, about 25 to 35% of
mangrove forest area has already been lost due to land
conversion to aquaculture, agriculture, urbanization,
tourism, overharvesting, and pollution (Valiela et al.
2001; Alongi 2002; van Lavieren et al. 2012). Beyond
these regional pressures affecting mangrove forests
around the world, these ecosystems are also threatened
by human-induced global environmental changes such
as climate change and the associated sea-level rise (e.g.,
Alongi 2008; Gilman et al. 2008; Lovelock et al. 2015),
and the increased reactive nitrogen creation related to
the large-scale use of nitrogen (N) fertilizers, legume
cultivation, and N emissions to the atmosphere during
fossil-fuel combustion (Bleeker et al. 2011; see also
Erisman et al. 2008),

Nitrogen availability strongly regulates the structure
and functioning of both terrestrial and aquatic ecosys-
tems (Elser et al. 2007; Lebauer and Treseder 2008;
Chapin et al. 2011). Nitrogen enrichment is therefore
recognized as one of the major threats to conservation of
natural ecosystems and maintenance of human activities
(Rockström et al. 2009; Erisman et al. 2013). In terres-
trial ecosystems, the excess of N favors biological inva-
sions and modifies the competitive ability among spe-
cies, resulting in changes of dominance patterns, and
loss of plant and soil biota biodiversity (e.g., Bobbink
et al. 2010; Bradley et al. 2010; Eisenhauer et al. 2012).
Nitrogen enrichment in terrestrial ecosystems also has
the potential to increase soil N mineralization rates,
nitrous oxide (N2O) emissions to atmosphere, and ni-
trate (NO3

−) losses to aquatic systems, modifying pro-
ductivity patterns and increasing mortality (e.g., Fenn

et al. 1998; Matson et al. 1999). Biodiversity loss asso-
ciated with alterations in ecosystems functioning may
adversely affect the provision of important ecosystem
services to society (Díaz et al. 2006; Chapin et al. 2000;
Comptom et al. 2011).

Mangroves potentially play an important role in the
global context of N enrichment. They provide many
ecosystem goods and services to society, which can be
impaired by increasing N availability, including the
following: (1) support of coastal fisheries by providing
food, shelter, and/or nursery grounds for commercially
important species that spend at least part of their life
cycle in mangroves (e.g., Mumby et al. 2004; Crona and
Rönnbäck 2005; Aburto-Oropeza et al. 2008); (2) ac-
cess to food sources (e.g., fish, molluscs, crustaceans,
fruits, sugar, and honey), wood products (firewood,
charcoal, and timber for construction), and non-wood
products (e.g., thatch, fodder, tannins, wax, dyes, and
herbal remedies) associated with the livelihood of hu-
man communities living in or near mangroves (e.g.,
Bandaranayake 1998; Glaser 2003; Walters et al.
2008; Hussain and Badola 2010; Warren-Rhodes et al.
2011; Baba et al. 2013); (3) trapping and storage of
sediment, organic matter, nutrients, and heavy metals
from surrounding waters originating from anthropogen-
ic sources (e.g., Tam and Wong 1995, 1996; Alongi and
Mckinnon 2005; Jordan et al. 2011); and (4) efficient
carbon (C) sequestration because of high primary pro-
ductivity and C allocation in belowground biomass, low
sediment respiration rates, substantial long-term organic
C burial in sediments, and considerable exportation of
refractory dissolved organic C to the ocean, contributing
to the C burial in marine sediments (e.g., Komiyama
et al. 2008; Kristensen et al. 2008; Donato et al. 2011;
Duarte et al. 2013). In addition, mangrove forests are the
only forest formations occurring in the confluence of
terrestrial, marine, and freshwater systems (Alongi
2002). Therefore, alterations in mangroves functioning
as a consequence of N enrichment may affect not only
the important ecosystem goods and services they pro-
vide to society but also affect surrounding ecosystems.

There are still many knowledge gaps in the function-
ing of mangroves that need to be addressed to allow us
to infer the consequences of global environmental
changes to mangroves and the ecosystem goods and
services they provide. Among these gaps are included
N dynamics and alterations following N enrichment in
the different types of mangroves. In the Americas, at the
local scale, two main types of mangrove forests (fringe
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and basin) are currently recognized by physiographic
aspects determined by water flow and the type of land-
form occupied, but some authors have also recognized
other subtypes ofmangroves (riverine, overwash, dwarf,
and scrub) (Schaeffer-Novelli et al. 2000). Fringe forests
develop on inclined slopes bordering estuaries, deltaic
channels, coastal lagoons, and rivers (termed as riverine),
under great influence of tidal flushing or river discharge.
Overwash designates small self-enveloping fringe islands
entirely covered by water during high tide. Basin forests
develop in shallow depressions of more inland areas
flooded by spring tides, seasonal sea level elevations, or
freshwater pulses. At basin stands, water moves slowly
as sheet flows maintaining waterlogged conditions for
long periods of time. Dwarf is a subtype of basin forest
that develops in carbonate or deep peat sediments and
exhibit low stature (usually up to 1.5 m) stunted by
nutrient limitations. The term Bscrub^ is employed as a
descriptor of both fringe and basin forests of reduced
structural development imposed by other stressors than
nutrient limitations (Schaeffer-Novelli et al. 2000, 2005;
Spalding et al. 2010). Currently, there are no data on the
extension area occupied by each mangrove physiograph-
ic type in the Americas, but fringe forests are usually
more conspicuous formations, while basin forests occupy
smaller inland areas in coastal systems. However, there
are places where dwarf mangroves are found occupying
extensive areas such as in southern Florida (Davis et al.
2003), Panama (Lovelock et al. 2005), and Belize (Feller
1995). These mangrove types differ in water movement,
hydroperiod, edaphic conditions, and inputs of fresh-
water and nutrients, which result in differences of
structural development (Schaeffer-Novelli et al. 1990,
2000; see Cunha-Lignon et al. 2011) and of nutrient
dynamics and ecosystem functioning (e.g., Twilley
et al. 1986a; Twilley 1988; Rivera-Monroy et al. 1995a;
Rivera-Monroy and Twilley 1996). These mangrove
types may, therefore, exhibit different responses to N
enrichment, which can also modulate different responses
to climatic changes.

In order to provide useful information for the discus-
sion about the major consequences of N enrichment on
mangroves, here we provide an updated overview on the
general patterns of N dynamics in mangrove forests
from previous synthesis and advance: 1. At regional
scale on the understanding of N dynamics in mangroves
by evaluating differences in N dynamics between
mangrove physiographic types in the Americas and
2. At global scale on major alterations of N dynamics

following N enrichment, identified with an extensive
review of the literature and evaluation from a global
database.

Material and methods

The search for publications was performed in the
databases of Springer (http://www.springer.com),
JSTOR (http://www.jstor.org), and Web of Science
(http://thomsonreuters.com/web-of-science) using the
word Bmangrove^ in keyword, title, and abstract
searches. From the resulting lists, publications containing
information on N dynamics in conserved and subjected to
anthropogenic N enrichmentmangroveswere selected and
data of N transformation rates in sediment (biological
nitrogen fixation, mineralization, ammonification,
nitrification, denitrification, and volatilization), N fluxes
across the sediment-water interface, and natural abundance
of N stable isotopes (δ15N) in the sediment-plant system
were collected and tabulated. Data published as figures
were extracted using the software Plot Digitizer 2.6.3
(Huwaldt and Steinhorst 2013). To expand the search,
each publication had its reference list assessed as well as
the new publications obtained until no additional itemwas
found. Data of sediment within mudflats, tidal creeks or
coastal lagoons were not included. The biological N fixa-
tion data published as acetylene reduction activity (ARA)
rates were converted to N fixation rates using the conver-
sion factor of 4 (C2H4:N2 ratio of 4:1) (Postgate 1982),
which is a reasonable assumption for mangroves, since
studies using 15N2 calibration have shown ratios ranging
from 1.9 to 6.3 (Potts 1984; Hicks and Silvester 1985). In
all, data were obtained from 62 studies, but also data from
previous reviews by Howarth et al. (1988), Alongi et al.
(1992), and Purvaja et al. (2008), totaling 123 mangrove
sites comprising areas in the Atlantic Ocean, Caribbean
Sea, Gulf of Mexico, and Indo-Pacific coasts (Fig. 1). The
countries with a greater number of study sites include
Australia (22), India (21), the United States of America
(18), Belize (12), Puerto Rico (10), China (7), and Papua
New Guinea (7). Other countries had four or fewer study
sites each. Data from N-enriched mangrove stands includ-
ed sites affected by sewage pollution (Corredor andMorell
1994; Corredor et al. 1999; Kreuzwieser et al. 2003; Allen
et al. 2007; Purvaja et al. 2008; Chen et al. 2010, 2012),
fertilizers from agriculture (Kreuzwieser et al. 2003;
Chauhan et al. 2008; Chen et al. 2012), aquaculture pond
effluent (Alongi et al. 2005; Chauhan et al. 2008; Chen
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et al. 2012), and ferromanganese mine discharge effluent
(Fernandes et al. 2010; Fernandes and LokaBharathi 2011;
Fernandes et al. 2012a, 2012b), and also mangrove stands
that were sites of a failed shrimp farm (Alongi et al. 2002).
Data of tropical terrestrial forests are presented for com-
parative purposes since they are well recognized as being
the most productive forested ecosystems on Earth (see
Chapin et al. 2011) with the highest rates of N cycling
(Vitousek and Sandors 1986; Martinelli et al. 1999;
Vitousek et al. 2002). For data analysis, normality was
evaluated using the Shapiro-Wilk W-test. Comparisons
between two data groups were performed using the non-
parametric Mann-Whitney U-test. Comparisons between
more than two groups were assessed by the nonparametric
test of Kruskal-Wallis H-test followed by post hoc
pairwise comparisons as described by Siegel and
Castellan (1988). Statistical analysis was performed using
the software R (R Core Team 2014). Differences at the
0.05-level were considered significant.

Results and discussion

Biological N fixation

One of the main pathways by which N enters mangrove
ecosystems is biological N fixation (Alongi 2002,
2009), the process whereby atmospheric N (N2) is

reduced to ammonia (NH3
+) carried out by microorgan-

isms that possess the nitrogenase enzyme complex
(termed as diazotrophs). Biological N fixation (BNF)
has been detected in mangrove stands associated with
plant roots (associative BNF) and free in sediments,
microbial mats (i.e., centimeter-thick multilayered struc-
tures of microorganisms as defined by Reitner 2011),
leaf litter (and senescent leaves incubated on sediment),
pneumatophores, and cyanobacterial crusts growing on
trunks (free-living BNF) (Fig. 2), at rates that overlap
those reported for tropical terrestrial forests. Mean esti-
mates of free-living BNF in tropical terrestrial forests
(including rainforests, deciduous forests, and forested
floodplains) fall within 0.9 and 2.1 mgN.m−2.d−1 with
rates ranging from 0.03 to 16 mgN.m−2.d−1 (Reed et al.
2011). There is a wide range of rates of BNF in symbi-
otic associations with plant roots reported for tropical
terrestrial forests, from 0.07 to 66.5 mgN.m−2.d−1, but
global estimates fall within 1.5 to 16.6 mgN.m−2.d−1

(Sylvester-Bradley et al. 1980; Cleveland et al. 1999;
Reed et al. 2011; Sullivan et al. 2014). Comparisons to
associative BNF rates in mangroves, from which plants
can also directly benefit, are difficult due to the reduced
number of estimates reported on an areal basis for
mangroves. Nevertheless, these estimates range from 2
to 10 mgN.m−2.d−1, falling within the global estimates
range of symbiotic BNF in tropical terrestrial forests.
There was no evidence of regional differences in BNF

Fig. 1 Location of the 123 study sites considered in this review from studies that quantified nitrogen cycling and flux rates and the natural
abundance of nitrogen stable isotopes in mangroves. Because of the map scale, nearby study sites were overlaid
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rates from our database. However, negligible and highly
variable rates were often reported (e.g., Nedwell et al.
1994; Alongi et al. 2004a; Romero et al. 2012), so that
not all mangroves may sustain high BNF rates, such as
the Australian mangroves studied by Alongi (2013).

Several factors that can regulate aboveground BNF
rates in mangroves have been reported. Potts (1979)
pointed out reduced light intensity, water content,
and phosphorus (P) availability, as well as photores-
piration and to a lesser extent endogenous oxygen
(O2) production and reduced dissolved organic C (DOC)
availability constrained N fixation rates in heterocystous
cyanobacterial (HC) communities on pneumatophores of
Avicennia marina (Forssk.) Vierh. in mangrove stands in
Sinai, Egypt. Sheridan (1991, 1992) demonstrated that
high salinity and low percent moisture restricted N fixa-
tion rates in HC communities growing on trunks of
Avicennia germinans (L.) L. in mangrove stands in
Guadeloupe, Lesser Antilles. Joye and Lee (2004) and
Lee and Joye (2006) found that light intensity, endoge-
nous O2 production, water content, sulfide (H2S) con-
centration, DOC availability, and the dominance by HC
or non HC species regulated N fixation rates in
mangrove microbial mats in Twin Cays, Belize.
BNF rates were enhanced after DOC amendments,
which was attributed to stimulation of O2 respiration
and, consequently, of H2S oxidation and alleviation
of H2S-inhibition, as well as stimulation of heterotro-
phic N fixation. Gotto and Taylor (1976) and Pelegrí
and Twilley (1998) reported an O2 suppression and a
C stimulation, respectively, of BNF rates in leaf litter
from mangrove sites in Florida, US, while Zuberer
and Silver (1978) and Hicks and Silvester (1985)
found no effect of these factors on BNF rates in
mangrove leaf litter from Florida and Auckland,
New Zealand, respectively. These conflicting results
on factors regulating N fixation in mangrove leaf
litter may rely on the community type of N fixers,
which seems to be more variable for leaf litter than
other mangrove compartments (see Gotto and Taylor
1976; Hicks and Silvester 1985; Pelegrí et al. 1997;
Pelegrí and Twilley 1998).

On the other hand, only few studies investigated
factors regulating N fixation rates in mangrove below-
ground compartments. Zuberer and Silver (1978) and
Pelegrí and Twilley (1998) reported marked increases
in BNF rates in sediment after C sources amendments in
mangrove stands in Florida. Because of the relatively
long lag periods before BNF rate enhancement following

C additions (12 to 24 h), Zuberer and Silver (1978)
suggested that the increase in BNF rates would primarily
result from diazotrophic population growth and/or nitro-
genase synthesis, instead of an immediate increase in
energy sources. Zuberer and Silver (1978) also added
C sources to washed excised roots of A. germinans,
Rhizophora mangle L., and Laguncularia racemosa
(L.) C.F. Gaertn. seedlings but found no response,
suggesting that the diazotrophic bacteria attached
to mangrove roots may have had ample access to
C and energy sources. Sengputa and Chaudhuri
(1991) isolated and identified diazotrophic bacteria
associated with root samples of several mangrove
species including Acanthus ilicifolius L., Avicennia
spp., Bruguiera spp., Ceriops decandra (Griff.) W.
Theob., Rhizophora mucronata Lam., Sonneratia
apetala Buch-Ham, Aegialitis rotundifolia Roxb., and
Excoecaria agallocha L. from mangrove stands in
Sundarban, India. There was no specificity of any of
the bacterial isolates to any of the plant species.
Regardless of plant identity, root samples from tidally
inundated mangrove sites sustained higher BNF rates
compared to root samples from occasionally inundated
or drier highland sites. This was attributed to the pres-
ence of a larger number of more efficient N2-fixing
bacterial strains belonging to a greater number of O2

response groups in the tidally inundated mangrove sites.
Comparing BNF rates on a dry-weight basis between

mangrove compartments (Fig. 2), leaf litter sustained
the highest Bintrinsic capacity^ of fixing N followed by
roots and cyanobacterial crusts on trunks, while incu-
bated senescent leaves, sediment, and pneumatophores
exhibited the lowest dry-weight based rates (H = 23.64,
df = 5,54, p = 0.0002). Pelegrí et al. (1997) and Pelegrí
and Twilley (1998) also found higher BNF rates on a
dry-weight basis for leaf litter (up to 0.09 mgN.g−1.d−1)
compared to incubated senescent leaves (up to 0.01
mgN.g−1.d−1), sediments (up to 0.005 mgN.g−1.d−1),
and pneumatophores (up to 0.0008 mgN.g−1.d−1) in
mangrove stands at the Everglades National Park, with
the latter two not significantly differing from each other.
These differences in Bintrinsic capacity^ of fixing N can
be related to differences in the community type of N
fixers and in C availability between compartments. N
fixation in mangrove sediment and roots are dominated
by heterotrophic bacteria, and pneumatophores is dom-
inated by cyanobacteria, while mangrove leaf litter
seems to have a variable contribution of both groups.
Mangrove leaf litter and roots were reported to provide

Plant Soil (2017) 410:1–19 5



ample C sources for N fixation (in intermediate stages of
leaf litter decay) while N fixation in sediment and pneu-
matophores were demonstrated to be C-limited (Zuberer
and Silver 1978; Potts 1979; Pelegrí and Twilley 1998).
Despite the differences in N fixing Bintrinsic capacity ,̂
mangrove roots, pneumatophores, sediment, and micro-
bial mats exhibited similar BNF rates on an areal basis,
suggesting that these compartments make similar con-
tributions to the total N input in mangroves (H = 2.84,
df = 3,51, p = 0.4167). No BNF rates on an areal basis
for mangrove leaf litter were found in the literature.
Despite their high Bintrinsic capacity^ of fixing N, many
mangroves exhibit low-standing leaf litter, ranging from
about 0.02 to 5 Mg.ha−1 (Twilley et al. 1986b; Twilley

et al. 1997), suggesting that the total contribution of leaf
litter to N input in many mangroves can be low com-
pared to other compartments.

N fluxes across the sediment-water interface

Another important pathway by which N enters (and
leaves) mangrove ecosystems is tidal exchange (Alongi
2002, 2009). Several studies have attempted to determine
whether mangroves act as an N sink or source for coastal
waters, but results are often highly variable and contro-
versial, especially regarding dissolved N forms (Adame
and Lovelock 2011). Studies investigating dissolved N
(DN) fluxes between mangrove sediment and overlying

Fig. 2 Nitrogen cycling rates in mangroves. Median rates (and
ranges) in mgN.g−1.d−1 (unbold values) and mgN.m−2.d−1 (bold
values) are presented, including biological nitrogen fixation
(BNF), nitrous oxide (N2O) flux, and fluxes of ammonium
(NH4

+), nitrite plus nitrate (NOx
−), dissolved inorganic nitrogen

(DIN), dissolved organic nitrogen (DON), and total dissolved
nitrogen (DN) between mangrove sediment and overlying water.
Negative values indicate net flux into the sediment. For BNF,
mean rates are presented. * incubated on the forest floor. Source:
Hesse (1961); Kimball and Teas (1975) apudAlongi et al. (1992);
Gotto and Taylor (1976); Viner (1979) apudHowarth et al. (1988);
van der Valk and Attiwill (1984); Hicks and Silvester (1985);
Iizumi et al. (1986) apud Alongi et al. (1992); Myint et al.
(1986) apudAlongi et al. (1992); Shaiful et al. (1986) apud Alongi
et al. (1992); Kristensen et al. (1988); Mann and Steinke (1989)

apud Alongi et al. (1992); Boto and Robertson (1990); Sengputa
and Chaudhuri (1991); Sheridan (1991, 1992); Kristensen et al.
(1992); Alongi et al. (1993); Nedwell et al. (1994); Rivera-Monroy
et al. (1995a); Alongi (1996); Pelegrí et al. (1997); Woitchik et al.
(1997); Kristensen et al. (1998); Pelegrí and Twilley (1998); Chen
and Twilley (1999); Corredor et al. (1999); Alongi et al. (1999,
2000); Kristensen et al. (2000); Davis et al. (2001a, b); Bauza et al.
(2002); Lugomela and Bergman (2002); Mohammed and
Johnstone (2002); Muñoz-Hincapié et al. (2002); Kyaruzi et al.
(2003); Kreuzwieser et al. (2003); Alongi et al. (2004a); Joye and
Lee (2004); Lee and Joye (2006); Chauhan et al. (2008); Purvaja
et al. (2008); Krishnan and LokaBharathi (2009); Chen et al.
(2010); Fernandes et al. (2010, 2012a, 2012b); Romero et al.
(2012); and Reis et al. (2016)
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water based on direct measurements have shown that
mangroves can be highly efficient users of DN forms
from tidal waters (Fig. 2). Even when concentration
gradients between porewater and overlying water sug-
gested dissolved N release into overlying water, DN net
fluxes were often negligible or into the sediment (e.g.,
Kristensen et al. 1988; Alongi et al. 1993; Kristensen
et al. 1998). This ability has been attributed to a rapid
uptake of DN by plants and benthic microalgae and an
efficient conservation of DN in sediment by microbial
activity (e.g., Kristensen et al. 1988; Alongi et al. 1993;
Kristensen et al. 1998; Alongi 2013). Findings conclud-
ing that DN fluxes at the sediment-overlaying water
interface are largely driven by sediment microbial activ-
ity include Stanley et al. (1987), who found measurable
amino acid efflux from sediment only after poisoning
microbial populations, and Alongi et al. (1993) and
Mohammed and Johnstone (2002), who reported high
DN fluxes into sediment associated with high microbial
productivity and biomass, respectively. However, the
range of DN flux rates were high, indicating that while
some mangroves tend to act as net Bsinks^ for DN from
tides, others may primarily export DN for adjacent water
bodies. Studies that quantified DN fluxes between tidal
creek or estuarine waters in mangrove areas and coastal
or ocean waters indicated that mangroves can also act as
a DN source for adjacent water bodies (Adame and
Lovelock 2011).

N mineralization

Together with BNF and tidal exchange, N also becomes
available to plants through N mineralization. It is the
microbial mediated process by which organic N is con-
verted to inorganic forms, including the steps of ammo-
nium (NH4

+) production termed ammonification, and
NH4

+ oxidation to nitrite (NO2
−) and NO3

− termed
nitrification. Mangroves and tropical terrestrial forests
differ in themost commonDIN form in sediment and soil,
respectively, NH4

+ formangroves (Alongi et al. 1992) and
NO3

− for tropical terrestrial forests (e.g., Reiners et al.
1994; Silver et al. 2000). However, net ammonification
and nitrification rates on a weight basis reported for
mangrove sediments (Fig. 2) overlap net Nmineralization
(−0.02 to 0.008 mgN.g−1.d−1) and nitrification rates
(−0.002 to 0.005 mgN.g−1.d−1) reported for terrestrial
tropical forests (Vitousek and Matson 1987; Luizão
et al. 2004; Silver et al. 2005). The differences in
magnitude between gross and net ammonification rates

(i.e., gross production minus microbial immobilization)
in mangrove sediments (Fig. 2) indicate that an effi-
cient microbial immobilization of NH4

+ may constrain
net ammonification rates in mangrove sediment. Only
Chen and Twilley (1999) investigated factors regulat-
ing net ammonification rates under natural conditions
in mangroves. They found a very strong positive
correlation of net ammonification rates with P availability
in mangrove stands in Florida, suggesting a P-limitation
of microbial activities. Factors limiting nitrification in
mangroves have received little attention. Rivera-
Monroy and Twilley (1996) conducted sediment incuba-
tion experiments with 15NH4

+ and found that nitrification
(coupled with denitrification) was constrained by NH4

+

availability and microbial immobilization in sediment.
Kristensen et al. (1998) reported higher potential nitrifi-
cation rates with depth in vegetated-mangrove compared
to non-vegetated tidal flat sediments from Phuket Island,
Thailand. This was attributed to more oxic conditions
provided by root activity in vegetated compared to non-
vegetated sediments. Krishnan and LokaBharathi (2009),
however, found that nitrification rates were regulated by
Mn availability, suggesting the occurrence of anoxic
nitrification at the expense of this element in mangrove
sediments from Goa, India. Other factors reported to
regulate nitrification rates by Krishnan and LokaBharathi
(2009) were NH4

+ and organic C availability, the latter as
a C source for heterotrophic nitrifiers.

N losses to atmosphere

Besides N losses through tidal exchange, some micro-
bial mediated N transformations in sediment also result
in gaseous N losses from mangroves. Denitrification is
the reduction process of NO3

− and NO2
− to N2O and N2

mainly. There are two types of denitrification: direct
denitrification, which is supported by NO3

− that diffuses
from overlying water into sediment, and coupled deni-
trification, which is supplied with NO3

− from nitrifica-
tion. The differences in magnitude between denitrifica-
tion and net ammonification and nitrification rates re-
ported for mangrove sediments (Fig. 2) suggest that
direct denitrification is an important pathway contribut-
ing to gaseous N losses in mangroves. Few studies
investigated direct and coupled denitrification rates in
mangrove sediment. Using 15N enrichment techniques,
Rivera-Monroy and Twilley (1996) found higher poten-
tial direct denitrification rates, up to 74 mgN.m−2.d−1,
compared to potential coupled denitrification rates, up to
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about 10 mgN.m−2.d−1, in mangrove sediments from
Isla del Carmen, Mexico. These authors also reported
that in sediments subjected to 15NH4

+ enrichment, none
of the added 15N was denitrified but was recovered in
the non-extractable sediment N pool, suggesting that
coupled denitrification rates were constrained by micro-
bial immobilization of NH4

+ and NO3
− in sediment.

Earlier, Rivera-Monroy et al. (1995b) reported that less
than 10% of the 15NO3

− added to mangrove sediments
was denitrified, while the remaining was recovered as
particulate N (PN) in sediment, suggesting that direct
denitrification rates were also constrained by NO3

−

availability and microbial immobilization in sediment.
The denitrification and N2O fluxes rates on areal basis
reported for mangroves also greatly overlap denitrifica-
tion (0.5 to 8.2 mgN.m−2.d−1) and N2O fluxes rates
(0.02 to 13.7 mgN.m−2.d−1) reported for tropical terres-
trial forests (Silver et al. 2000; Kiese et al. 2003; Fang
et al. 2015). The higher maximum denitrification rates
reported for mangroves may in part reflect the impor-
tance of direct denitrification in mangroves, supplied
with NO3

− from flood tides (e.g., Rivera-Monroy and
Twilley 1996). However, the range of denitrification and
N2O fluxes rates in mangrove sediments were large,
indicating that not all mangroves may exhibit high rates
of N losses to atmosphere, such as some Australian
mangroves (Alongi 2013).

N stocks

Few studies provided direct measurements on N stocks
in mangroves. Alongi et al. (2003) and Bulmer et al.
(2016) reported total N stocks of up to 12.2 and
15.4 ± 1.0 MgN.ha−1 for mangrove forests in
Australia and New Zealand, respectively. Khan et al.
(2007) estimated a total N stock of 3.5 MgN.ha−1 for a
pioneer mangrove forest in Japan, while Fujimoto
et al. (1999) estimated N stocks in sediment of up to
56 MgN.ha−1 for mangrove forests in Micronesia
(Fujimoto et al. 1999). We estimated a total N stock
for mangroves of about 20 MgN.ha−1, from indirect
calculation considering the global averages of C stocks
in sediment (about 718 MgC.ha−1) and in above and
below ground compartments in mangroves (99 and
138 MgC.ha−1, respectively) (Alongi 2014), and the
C:N ratios reported for sediment (40) (Rivera-Monroy
et al. 1995b; Rivera-Monroy and Twilley 1996), for
litter (100) (Kristensen et al. 1995), and for roots (79)
in these ecosystems (Alongi et al. 2003, 2004b). This

estimate is similar to the N stocks for non-flooded
lowland evergreen tropical forest in Brazilian Amazon,
which is up to 22 MgN.ha−1, including soil and above
and below ground biomass compartments (PBMC2014).

Differences in N dynamics between mangrove
physiographic types

Few studies investigated possible differences in BNF
between mangrove physiographic types. Sheridan
(1991) reported mean ARA rates of 1943 and 3046
nmolC2H4.mgChlorophylla−1.h−1 for cyanobacterial
crusts on trunks in dwarf mangrove stands, while no
activity was found in a seaward fringe forest in
Guadeloupe, Lesser Antilles. Laboratory and field ex-
periments revealed that ARA rates were constrained by
increasing salinity and desiccation. As ARA rates in the
fringe remained below the detection limit after 2 days of
heavy rainfall, it can be supposed that a higher wind-
borne salt delivery in fringe compared to inland dwarf
stands may have constrained BNF. Lee and Joye (2006)
reported a greater importance of BNF in cyanobacterial
dominated microbial mats in dwarf stands compared to
fringe forests in Twin Cays, Belize (Table 1). According
to their findings, this could be attributed to the presence
of O2 and desiccation-tolerant HC species in dwarf
microbial mats, while fringe microbial mats were dom-
inated by non-HC species, and also to a higher benthic
surface light availability in dwarf stands compared to
fringe forests. Studies that evaluated BNF rates in man-
grove sediment also suggested that dwarf mangroves
can sustain higher BNF rates compared to other man-
grove types (Table 1). Despite some evidence that man-
grove physiographic types may differ in BNF rates,
none of the other studies surveyed for this review eval-
uated possible differences in BNF between mangrove
physiographic types. More studies are needed to evalu-
ate the importance of BNF in different compartments
and of total N input via BNF in the different physio-
graphic types of mangroves.

Concerning N fluxes between mangrove sediment
and overlying water, Rivera-Monroy et al. (1995a) in-
vestigated net PN and DN fluxes between a fringe forest
and an adjacent tidal creek, and an inland basin forest in
Isla del Carmen, Mexico. The fringe forest imported
NH4

+ and NOx
− from both tidal creek and basin forest,

while exported DON and PN to both basin forest and
tidal creek. These results suggest that fringe forests
might primarily act as sink for DIN and a source of
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Table 1. Nitrogen cycling rates in sediment and microbial mats
from mangrove physiographic types. Median rates (and ranges) are
presented, including biological nitrogen fixation (BNF), net nitrous
oxide (N2O) flux, ammonia (NH3

+) volatilization, and fluxes of
ammonium (NH4

+), nitrite plus nitrate (NOx
−), dissolved inorganic

nitrogen (DIN), dissolved organic nitrogen (DON), total dissolved
nitrogen (DN), and particulate nitrogen (PN) between mangrove
sediment and overlying water. Negative values indicate net flux into

the sediment or microbial mat. When reported by authors, P-values
of statistical comparison tests are presented. Source: (1) Kimball and
Teas (1975) apud Alongi et al. (1992); (2) Rivera-Monroy et al.
(1995a); (3) Rivera-Monroy et al. (1995b); (4) Rivera-Monroy and
Twilley (1996); (5) Davis et al. (2001a); (6) Davis et al. (2001b); (7)

Bauza et al. (2002); (8) Muñoz-Hincapié et al. (2002); (9) Joye and
Lee (2004); (10) Lee and Joye (2006); (11) Fogel et al. (2008); (l2)

Romero et al. (2012); and (13) Reis et al. (2016)

Fringe Basin Dwarf Unit P-value Location

Sediment

BNF 0.255 0.118 and 0.189 (0.027 to 0.310) mgN.m−2.d−1 - Florida, EUA (1)

BNF - - 18.2 (0 to 68.5) mgN.m−2.d−1 - Twin Cays, Belize (12)

NH4
+ flux -1.1 0.2 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

NOx
− flux -0.05 0.003 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

DIN flux -1 0.2 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

DON flux 0.08 -0.2 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

DN flux -1 -0.05 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

PN flux 1.4 -0.2 - mgN.m−2.d−1 - Terminos Lagoon, Mexico (2)

NH4
+ flux -0.71 to 0.26 - -7.0 (2.2 to 10.6) mgN.m−2.d−1 - Florida, EUA (5; 6)

NOx
− flux -1.11 to 0.12 - 12.0 (2.4 to 47.7) mgN.m−2.d−1 - Florida, EUA (5; 6)

DIN flux -1.34 to 0.38 - 5.04 mgN.m−2.d−1 - Florida, EUA (5; 6)

Net N mineralization 0.440 0.171 - mgN.g−1.d−1 0.0385 Cardoso Island, Brazil (13)

Net nitrification 0.017 0.031 - mgN.g−1.d−1 0.1620 Cardoso Island, Brazil (13)

Direct denitrification (0 to 3.2) (0 to 1.5) - mgN.m−2.d−1 - Isla del Carmen, Mexico (3)

Coupled denitrification 0 0 - mgN.m−2.d−1 - Isla del Carmen, Mexico (4)

Potential direct denitrification (1.2 to74.3) a - - mgN.m−2.d−1 - Isla del Carmen, Mexico (4)

Potential coupled denitrification (0.8 to 9.7) a - - mgN.m−2.d−1 - Isla del Carmen, Mexico (4)

Potential denitrification (2.0 to 84.0) a - - mgN.m−2.d−1 - Isla del Carmen, Mexico (4)

Net N2O flux 0.03 to 0.4 (0.01 to 0.9) - - mgN.m−2.d−1 - Magueyes Island, Puerto Rico (7; 8)

NH3
+ volatilization 0.2 - 0.38 (0 to 1.05) mgN.m−2.d−1 - Twin Cays, Belize (11)

Microbial mats

BNF 0.03 to 3.2 - 1.6 to 7.6 mgN.m−2.d−1 - Twin Cays, Belize (10)

BNF - - 3.4 (0 to 6.7) mgN.m−2.d−1 - Twin Cays, Belize (9)

Denitrification 0.002 to 0.7 - 0 to 0.1 mgN.m−2.d−1 - Twin Cays, Belize (10)

Denitrification - - 0.7 mgN.m−2.d−1 - Twin Cays, Belize (9)

Potential denitrification 53.6 and 91.9 - 7.5 to 31.0 (6.7 to 67) mgN.m−2.d−1 - Twin Cays, Belize (9; 10)

(1) based on the acetylene reduction technique at 10.4 cm depth
(2) fluxes between tidal creek and fringe forest and between fringe and basin forests, based on flume technique
(3) based on 15N enrichment technique at 25 cm depth
(4) based on 15N enrichment technique at 25 cm depth, a indicate data for riverine subtype
(5) data for dwarf mangrove based on island enclosure technique
(5) data for fringe forest based on flume technique
(7; 8) based on enclosed chamber technique at 25 cm depth
(9) BNF data based on the acetylene reduction technique at 6 cm depth, and denitrification data based on the acetylene inhibition method at
5 cm depth
(10) BNF data based on the acetylene reduction technique, and denitrification data based on the acetylene inhibition method at 1 cm depth
(11) based on ammonia-sensing badges
(12) based on the acetylene reduction technique at 30 cm depth
(13) based on sediment incubation essays at 10 cm depth
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organic N forms, while basin forests may exhibit the
opposite pattern (Table 1). Davis et al. (2001a, b) evaluated
net DIN fluxes between sediment and overlying water
from fringe and dwarf stands in southern Everglades,
Florida. Higher fluxes were reported for the dwarf man-
grove. While the fringe forest tended to import DIN, the
dwarf mangrove imported NH4

+, but exported greater
amounts of NOx

−, resulting in a net DIN export (Table 1).
Regarding N transformation rates in sediment, Reis

et al. (2016) evaluated net N mineralization and nitrifica-
tion rates in fringe and basin forests in Cardoso Island,
Brazil. The fringe forest exhibited higher mean net N
mineralization rate but similar mean net nitrification rate
compared to the basin forest (Table 1). However, there
were evidences that gross nitrification might have been
higher in fringe compared to basin forest. Rivera-Monroy
et al. (1995b) investigated direct denitrification rates in
sediment of fringe and basin forests in Isla del Carmen.
The fringe forest exhibited double the highest direct de-
nitrification rate reported for the basin forest (Table 1).
Rivera-Monroy and Twilley (1996) reported negligible
coupled denitrification rates in sediment from fringe and
basin forests in Isla del Carmen. These authors also
evaluated potential direct, coupled and total denitrifica-
tion rates for a riverine forest. Potential direct denitrifica-
tion fluxes attained greater values than potential coupled
denitrification (Table 1). Nitrous oxide fluxes were only
reported for fringe mangroves (Table 1). Lee and Joye
(2006) also evaluated denitrification rates in microbial
mats from fringe and dwarf mangrove stands in Twin
Cays. Fringe microbial mats attained higher denitrifica-
tion rates at 1 cm depth compared to dwarf microbial
mats, and higher potential denitrification rates following
NO3

− addition during short- and long-term experiments.
However, dwarf microbial mats at 5 cm depth attained a
similar maximum denitrification rate compared to fringe
microbial mats at 1 cm depth (Table 1). Fogel et al. (2008)
quantified NH3

+ volatilization rates in fringe and dwarf
mangroves in Twin Cays. Higher NH3

+ emissions were
found in the dwarfmangrove stand compared to the fringe
forest (Table 1). These differences were attributed to a
greater development of microbial mats on the ground in
the dwarf mangrove compared to the fringe forest.

N dynamics of mangrove physiographic types
from δ15N studies

Differences in N dynamics between terrestrial ecosys-
tems can also be evaluated through the analysis of natural

abundance of N stable isotopes (δ15N) in the soil-plant
system (Högberg 1997; Robinson 2001; Craine et al.
2015). The δ15N expresses the 15N/14N ratio in a sample
(e.g., leaves, leaf litter, and soil) in relation to the 15N/14N
ratio of the international standard, the atmospheric N,
equals to 0.0036765. The δ15N integrates the N stable
isotope signature of N sources and isotope fractionations
against the heavier isotope 15N during N transformation
reactions, mainly those mediated by microorganisms in
soil such as nitrification, denitrification, and NH3

+

volatilization. The lighter isotope 14N reacts faster than
15N, so that products are maintained enriched in 14N,
while substrates are maintained enriched in 15N
(Högberg 1997; Robinson 2001). Terrestrial ecosys-
tems under lower N limitations usually exhibit higher
soil N transformation rates and N losses to atmosphere,
which keeps the soil-plant system enriched in 15N (i.e.,
higher δ15N) (e.g., Martinelli et al. 1999; Ometto et al.
2006; Nardoto et al. 2008; Craine et al. 2009), compared
to terrestrial ecosystems under higher N limitations,
which usually exhibit lower N transformation rates in
soil and lower N losses to atmosphere, maintaining the
soil-plant system enriched in 14N (i.e., lower δ15N) (e.g.,
Martinelli et al. 1999; Bustamante et al. 2004; Nardoto
et al. 2008; Craine et al. 2009; Mardegan et al. 2009).

Studies that evaluated δ15N patterns in mangrove
physiographic types are presented in Table 2. The higher
δ15N in the sediment-plant-leaf litter system of fringe
compared to basin and dwarf mangroves suggests that
fringe mangroves may exhibit higher N transformation
rates in sediment and higher N losses to atmosphere,
compared to dwarf and basin mangroves. These results
are consistent with the higher net N mineralization and
denitrification rates in sediment and microbial mats
reported for fringe compared to basin and dwarf man-
groves. The lower δ15N in dwarf mangroves can also
reflect a greater importance of BNF, as suggested by the
higher BNF rates associated with cyanobacterial crusts
and microbial mats in dwarf mangroves compared to
fringe forests, discussed above.

Some of the studies that evaluated leaf δ15N patterns
inmangroves proposed other explanations for the higher
leaf δ15N in fringe compared to dwarf mangroves. Fry
et al. (2000) proposed that the lower leaf δ15N in dwarf
stands would result of the isotopic fractionation during
NH4

+ uptake by plants associated with a slower plant
growth and lower N demand by plants in dwarf
compared to fringe mangroves. A lower N demand
would increase fractionation during N uptake because
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not all available N would be used, resulting in lower leaf
δ15N in dwarf compared to fringe mangroves. Mckee
et al. (2002) reached the same conclusions as Fry et al.
(2000), and observing an increase in leaf δ15N in dwarf
stands following P amendments, these authors pointed
that the enhanced P availability increased N demand by
dwarf plants, reducing fractionation during N uptake
and increasing leaf δ15N. Fogel et al. (2008) also ob-
served an increase in leaf δ15N after P amendments.
They suggested that higher P availability could enhance
root biomass and activate NH4

+ transport in roots, re-
ducing fractionation duringN uptake. Fogel et al. (2008)
also reported extremely low leaf δ15N values in dwarf
mangrove stands, up to −21.6‰, which was attributed
to a foliar uptake of 15N depleted atmospheric NH3

+,
given the higher volatilization rates observed in the
dwarf compared to the fringe stand, especially in sites
with greater microbial mat development. As isotope
fractionations during N transformations in sediment
such as nitrification, denitrification, and volatilization
are much higher than fractionations in plants (Robinson
2001), it is most probable that leaf δ15N reflects both
δ15N of N sources and isotope fractionations during N
transformations in sediment, than fractionation during N
uptake by plants. The influence of P availability on leaf
δ15N probably reflects the influence of a limiting nutri-
ent on overall sediment microbial activity, and conse-
quently, on N transformation rates in sediment, instead
of an increased N uptake by plants.

Effects of N enrichment on N dynamics in mangroves

The patterns of N dynamics in mangroves discussed so
far might be modified by anthropogenic N enrichment.
Fernandes et al. (2012a) reported that BNF in sediment
was only detected at a conserved mangrove stand, with
rates reaching about 0.008 mgN.g−1.d−1, while no BNF
activity was found in a mangrove stand receiving am-
monium nitrate from ferromanganese mines in Goa,
India. Studies that investigated long-term effects of N
amendment on BNF rates in mangrove sediment also
found marked reductions up to about 75% (Whigham
et al. 2009; Romero et al. 2012). Alongi et al. (2002,
2005) quantified BNF rates in a mangrove plantation
that was originally the site of a failed shrimp farm in
Thailand and in mangrove stands subjected to intermit-
tent discharge of aquaculture pond effluents in China.
There were no difference, however, between BNF rates
in sediment reported for these mangrove sites, ranging
from about 0 to 8 mgN.m−2.d−1, and rates reported for
non-N-enriched mangrove stands in the literature
(U = 173.00, df = 31,11, p = 0.9542) (Fig. 3). Alongi
et al. (2002) also quantified DN net fluxes across the
sediment-overlying water interface. There were no dif-
ferences between the mean NH4

+ flux rates reported by
these authors, from −10 to 10 mgN.m−2.d−1, and rates
reported for non-N-enriched mangrove stands included
in the literature (U = 287.00, df = 10,64, p = 0.6066); but
all other mean flux rates reported by these authors,

Table 2. Mean or range of natural abundance of nitrogen stable
isotopes (δ15N) (‰) of leaves, leaf litter and sediment from fringe,
basin and dwarf mangrove forests dominated by Rhizophora man-
gle. When reported by authors, P-values of statistical comparison

tests are presented. Source: (1) Fry et al. (2000); (2) Mckee et al.
(2002); (3) Wooller et al. (2003); (4) Fogel et al. (2008); (5) Medina
et al. (2010); (6) Reis et al. (2016)

Sample Fringe Basin/Dwarf P-value Location

Leaves 2 to 7 -5 to 2 - Florida, USA (1)

Leaves 0.1 -5.4 - Twin Cays, Belize (2)

Leaves 0 -10 < 0.001 Twin Cays, Belize (3)

Leaves -0.6 -6.8 < 0.001 Twin Cays, Belize (4)

Leaves 0.2 -11.1 to −5.5 - Ceiba, Puerto Rico (5)

Leaves 3.6 0.9a < 0.0001 Cardoso Island, Brazil (6)

Leaf litter 0.1 -3.3 < 0.005 Twin Cays, Belize (3)

Leaf litter 3.3 0.2a < 0.0001 Cardoso Island, Brazil (6)

Sediment 0.1 -0.5 0.0159 Twin Cays, Belize (2)

Sediment 3.6 0.7a < 0.0001 Cardoso Island, Brazil (6)

a Indicate data for basin forests. All other data are for dwarf mangroves
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including of NO2
− plus NO3

− (NOx
−) (−407 to −3

mgN.m−2.d−1), DIN (−413 to −3 mgN.m−2.d−1), dis-
solved organic N (DON) (−37 to 37 mgN.m−2.d−1),
and DN (−440 to 27 mgN.m−2.d−1) were significantly
lower (i.e., higher fluxes into the sediment) (NOx

−:
U = 45.00, df = 10,40, p = 0.0001; DIN: U = 74.00,
df = 10,38, p = 0.0017; DON: U = 48.00, df = 10,21,
p = 0.0078; DN: U = 48.00, df = 10,21, p = 0.0085).

Concerning N mineralization, Alongi et al. (2002,
2005) also reported mean net ammonification rates from
4 to 86 mgN.m−2.d−1, significantly higher than net
ammonification rates reported for non-N-enriched man-
grove stands (U = 51.00, df = 8,7, p = 0.0030) (Fig. 3).
More attention, however, has been given to possible alter-
ations of denitrification and N2O flux rates in response to
N enrichment in mangroves. Denitrification rates reported
for mangrove sediments affected by N enrichment ranged
from 0 to 106 mgN.m−2.d−1 (Corredor and Morell 1994;
Corredor et al. 1999; Alongi et al. 2002, 2005; Purvaja
et al. 2008; Fernandes et al. 2010; Fernandes and
LokaBharathi 2011), while N2O flux mean rates ranged
from −61 to 34 mgN.m−2.d−1 (Corredor et al. 1999;
Alongi et al. 2005; Kreuzwieser et al. 2003; Allen et al.

2007; Chauhan et al. 2008; Purvaja et al. 2008; Chen et al.
2010, 2012; Fernandes et al. 2010). There were no differ-
ences between the denitrification rates reported for these
N-enriched mangroves and non-N-enriched mangrove
stands reported in the literature (U = 245.50, df = 11,35,
p = 0.1763) (Fig.3), but N2O flux rates were significantly
higher in mangroves under N enrichment than non-N-
enriched mangrove stands (U = 947.00, df = 87,30,
p = 0.0128). Studies comparing denitrification (Corredor
and Morell 1994; Fernandes et al. 2012a), N2O flux rates
(Kreuzwieser et al. 2003; Chen et al. 2010; Fernandes
et al. 2012b), and both rates (Corredor et al. 1999;
Purvaja et al. 2008; Fernandes et al. 2010) between N-
enriched and non-N-enriched mangroves, however, re-
peatedly found that both denitrification and N2O fluxes
were higher in N-enriched mangrove stands. Studies in-
vestigating short- and long-term effects of N amendment
on denitrification and N2O flux rates in mangrove sedi-
ment also found higher rates at N-enriched sites (Muñoz-
Hincapié et al. 2002; Whigham et al. 2009; Chen et al.
2011; Fernandes and LokaBharathi 2011). N availability
and microbial activity are some of the main factors regu-
lating N transformation rates in mangrove sediment.

Fig. 3 Nitrogen cycling in conserved (a) and N-enriched man-
groves (b). Median rates (and ranges) in mgN.m−2.d−1 are present-
ed, including biological nitrogen fixation (BNF), nitrous oxide
(N2O) flux, and fluxes of dissolved inorganic nitrogen (DIN),
dissolved organic nitrogen (DON), and total dissolved nitrogen
(DN) between mangrove sediment and overlying water are pre-
sented. Negative values indicate net flux into the sediment. For

BNF, mean rates are presented. Data of conserved mangroves are
based on studies cited in Fig. 2. Data of N-enriched mangroves are
based on Corredor and Morell 1994; Corredor et al. 1999; Alongi
et al. 2002; Kreuzwieser et al. 2003, Alongi et al. 2005; Purvaja
et al. 2008; Chen et al. 2010; and Fernandes et al. 2010, 2012a,
2012b
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Except for BNF, which seems to be constrained by an
increased availability of a lower cost N source, all other N
transformation rates in mangrove sediment seem to be
intensified by increasing N availability. However, the
range of these N transformation rates in both N-enriched
and non-N-enriched mangroves were large, suggesting
that not all N-enriched mangrove may exhibit all the
reported alterations in the N cycling.

Increasing N availability and N cycling rates in man-
grove sediment do not imply strictly an increase in net
primary productivity (NPP) and assimilation of extra N
by mangrove vegetation. Mangroves have been shown
to be N- (Feller et al. 2003; Lovelock and Feller 2003;
Feller et al. 2007; Lovelock et al. 2007a, 2007b; Naidoo
2009) or P-limited (Kock 1997; Kock and Snedaker
1997; Feller 1995; Feller et al. 1999, 2007), or even
co-limited by N and P (Cheeseman and Lovelock 2004;
Lovelock et al. 2004, 2007a), which can either switch
along tidal height gradients (Feller et al. 2002;
Cheeseman and Lovelock 2004; Lovelock et al. 2004,
2007a). At N-limited mangrove forests, the extra N may
increase NPP, but at P-limited mangrove forests, the
increased N availability might increase P-limitation,
thus constraining NPP.

Conclusion

Despite large variability in N transformation and flux
rates between mangrove forests, the results of the pres-
ent study indicated that mangroves play a substantial
role in N cycling in tropical and subtropical regions
because of the high N cycling rates that mangrove
forests often exhibit. Furthermore, anthropogenic N en-
richment may result in extensive impact not only on the
N cycling with direct effects on ecosystem functioning
but also the potential indirect effects on ecosystem
structure in mangrove forests. As a consequence of
anthropogenic N enrichment, mangroves may increase
N2O fluxes to the atmosphere, also contributing to glob-
al warming. The results also indicated that different
types of mangroves differ in N dynamics. Fringe forests
have higher N transformation rates in sediment and
higher N losses to atmosphere compared to other man-
grove types. These differences may reveal different
responses to N enrichment. While fringe forests may
experience higher increases in N transformation rates in
sediment on shorter timescales, basin forests may

experience larger ecosystem functioning alterations giv-
en their higher nutrient limitation.

Finally, we also highlight in this review the paucity of
studies that have evaluated N dynamics and alterations
following anthropogenic N enrichment in mangroves,
making it difficult to perform a comprehensive meta-
analysis and evaluation of regional trends. More empir-
ical and experimental data on consequences of N en-
richment to N pools, fluxes, cycling rates, and stocks, as
well as its relation with other nutrients availability to the
resulting NPP in the different types of mangroves are
needed, especially in underrepresented areas such as
South America. The establishment of accessible moni-
toring tools to evaluate alterations following N enrich-
ment in mangroves are also needed. There is also a
critical need for the development of a single classifica-
tion system of mangroves to be used worldwide, despite
the richness differences between American and Indo-
West Pacific mangroves. There is also a great need for
developing coordinated research programs worldwide
to conduct studies with standardized methodologies on
higher spatial and temporal scales.
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