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Abstract

Background and aims Carbon inputs to soil are mostly
site- and management-nonspecific estimates based on
measured yield. However, in grasslands most carbon
input is root-derived and plant carbon allocation patterns
are known to vary strongly across sites and management
regimes. The aim here was to estimate carbon inputs by
fitting the RothC model to time series of soil organic
carbon (SOC) data from field sites and to explain the
observed variability in root: shoot ratio (R:S).

Methods Time series of SOC stocks in 15 different
temperate grasslands were simulated using eight differ-
ent literature-derived R:S values, which were compared
to the optimised, site-specific R:S. The model-derived
root inputs were validated with literature-derived root
biomass data.

Results A single, static R:S for yield-based carbon input
estimation for all grasslands was not appropriate.
Nitrogen fertilisation (R* = 0.57) significantly reduced
the optimised R:S, which can be explained by the higher
investment of plants in roots for nitrogen acquisition
under nitrogen deficiency. The average R:S derived
was 5.9 £ 1.9 for unfertilised soils and 2.4 + 1.5 for
fertilised soils.

Conclusions The results enable distinction of
unfertilised and fertilised temperate grasslands
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regarding carbon input parameterisation for the RothC
model and highlight the importance of nutrient regime
for the carbon cycle.
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Introduction

Grassland ecosystems can be considered particularly
important for the global carbon (C) cycle for three
reasons: 1) Grassland soils have high soil organic car-
bon (SOC) stocks, due to high belowground productiv-
ity, e.g. Bolinder et al. (2012) found four-fold more roots
under leys than under cereal crops; 2) grasslands occupy
68 % of global agricultural area (Leifeld et al. 2015).;
and 3) compared with forests, which are ecosystems
with similarly high SOC stocks (Poeplau and Don
2013), human interventions in grasslands are far more
frequent, leading to a higher impact of management on
carbon fluxes (Soussana et al. 2004). In total, grassland
soils are estimated to store 295 GT of carbon (Bolin et al.
2000).

For reliable predictions of carbon fluxes and SOC
stocks in grasslands under climate change or other al-
terations in environmental conditions or management,
precise understanding of the processes and process rates
involved is needed. Carbon turnover models such as
RothC (Coleman and Jenkinson 1996), ICBM (Andrén
and Katterer 1997), C-TOOL (Taghizadeh-Toosi et al.
2014) and CANDY (Franko et al. 1997), are widely
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used for regional- to continental-scale SOC stock pro-
jection (Andrén et al. 2008; Borgen et al. 2012;
Gottschalk et al. 2012). The advantage of such simple
models over more complex process models such as
CENTURY (Parton et al. 1988), DNDC (Li et al.
1997) or DAISY (Svendsen et al. 1995) is the relatively
small number of required input parameters, which most
closely reflects the availability of parameters on larger
scales. As a simplification, constant model parameters,
often obtained only from a single calibration site
(RothC, ICBM), are modified by site-specific proper-
ties. For instance, the decomposition rate constants of
different model pools are modified by soil temperature,
based on the temperature-dependency of microbial ac-
tivity (Zak et al. 1999). Soil moisture and texture are
also important drivers of SOC decomposition and are
integrated into the majority of SOC models in different
ways; although it is well established that SOC stocks are
strongly input-driven (Christopher and Lal 2007;
Katterer et al. 2012), it is mostly only the carbon output
(decomposition) that is well parameterised in those
models.

Plant litter-derived carbon input, in contrast to de-
composition rate, is treated as a static parameter estimat-
ed with yield-based allocation functions (Bolinder et al.
2007), although it has been shown that plant carbon
allocation patterns, especially the partitioning of carbon
assimilates into above- and belowground organs, are
highly sensitive to environmental constraints and man-
agement. Soil moisture, nutrient availability, bulk den-
sity, soil shear strength, soil texture, salinity and, in
grasslands, also cutting/grazing regime and species
composition, have been found to influence rooting pat-
tern and thus carbon inputs to the soil (Ericsson 1995;
Jones 1983; Mueller et al. 2013; Munns 2002). It is
therefore an oversimplification to use a static, constant
root: shoot ratio (R:S) for the wide range of grassland
management regimes and environmental conditions that
exist world-wide. Scanning the literature reveals possi-
ble R:S values in grassland ranging from >10 (Fiala
2010) to 0.8 (Kuzyakov and Domanski 2000). In a large
survey on the Tibetan plateau (112 sites), Yang et al.
(2009) found a median R:S value of 5.8, but a range of
0.8—13. This illustrates the magnitude of the uncertainty
in a single, static R:S, as usually used to estimate carbon
input in carbon models.

Root-derived carbon (root biomass and
rhizodeposits) is the major source of SOC and may be
the main reason why grasslands store more SOC than
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arable land (Bolinder et al. 2012; Franzluebbers 2012).
Rasse et al. (2005) suggested that SOC in general is
mainly root-derived. In managed grasslands, the major-
ity of the above-ground biomass is removed by cutting
or grazing, so the majority of the total carbon input is
root-derived. However, the actual amount of root-
derived carbon is difficult to assess experimentally,
since it comprises root exudates and rhizodeposits with
high turnover (Hertel and Leuschner 2002). Thus, root-
derived carbon input data are rarely available as model
input and hence values have to be estimated using
allocation functions. Each model uses specific alloca-
tion functions derived from sources ranging from re-
gional datasets (Bolinder et al. 2007) to pot experiments
(Kuzyakov and Domanski 2000). However, to our
knowledge, none of the models listed, with the excep-
tion of C-TOOL, has calibrated or tested the given
allocation function for grasslands. This might be attrib-
utable to the lack of well-documented, globally repre-
sentative long-term grassland experiments needed for
model calibration (Debreczeni and Korschens 2003).
A further difficulty in perennial systems compared with
annual cropland is that measured root biomass stocks do
not correspond to root litter input as annual carbon input
to the soil. Instead, only a certain part of the total root
biomass is turned over annually. In a global meta-anal-
ysis, Gill and Jackson (2000) found root turnover in
grasslands to be temperature-dependent, with an aver-
age root turnover of 0.5 yr.”' for grasslands in the
temperate climate zone, which is in line with the range
of 2-3 years for complete turnover of grassland roots
derived from a global compilation of 45 sites (Fiala
2010).

In the RothC model, plant-derived carbon input esti-
mation is solved analytically, by calculating the annual
input needed to obtain the given SOC stock under
steady-state conditions. However, this approach cannot
be used when: 1) SOC stock is not in steady state or ii)
the model application is to determine whether the SOC
stock of a specific site or region is in steady state or not.
Thus, in all projections for which the actual SOC level is
known but historical land use and management is un-
known, carbon inputs have to be estimated (Wiesmeier
et al. 2015). However, it is not documented which input
estimation should be used to best fit the RothC
parameterisation. The aims of this study were thus to
identify: 1) the most appropriate carbon input estimation
function for temperate grasslands in the RothC model
and i) site-specific optimum allocation coefficients and
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explain them with pedo-climatic or management vari-
ables. To examine the importance of carbon input for
model output, the hypothesis that the model is more
sensitive to variation in R: S than to similar relative
variation in any decomposition rate modifier was also
tested.

Material and methods
Concept and carbon input estimation

We fitted the RothC model with the standard
parameterisation to time series of SOC data (at least
three points in time) for permanent grasslands for which
climate, basic soil characteristics, yield and manage-
ment data were available. The only unknown was thus
the total annual carbon input, which we optimised to fit
the model to the observed data. RothC was thus used
inversely with the goals of: i) estimating the actual R:S
for each specific site and ii) identifying the most appro-
priate allocation function (for each site and on average)
based on measured data that could be used as a default
coefficient in the RothC model in future SOC projec-
tions. To do so, we derived the total carbon input by
applying a range of different allocation functions or R: S
values found in the literature to the reported amount of
harvested biomass. We selected studies that are already
used in carbon models (Bolinder et al. 2007; Kuzyakov
and Domanski 2000) or reviews that comprehensively
synthesise R:S values for a large number of grasslands
(Fiala 2010; Jackson et al. 1996) and might thus have
the potential to be included in carbon models. Based on
the selected R: S values, which ranged from 0.81 to 8
(Table 1), eight different total annual carbon input
values were calculated for each site (seven different
R:S plus the average of all). Since the amount of
above-ground biomass was crucial in this approach,
pastures (grasslands grazed by animals) were excluded
and only meadows (mown grasslands) in which the
harvested biomass was actually measured were used.
Total carbon input was calculated using the following
eqs. And assumptions:

HB
ANPP = — 4 1
N 0.7><0 5 (1)

where ANPP is aboveground net primary production
[Mg C ha ' yr.”'] and HB is harvested biomass [Mg

DM ha ! yr. ']. It was assumed that HB accounted for
70 % of total ANPP (Christensen et al. 2009), since: i) a
certain fraction of biomass accrual occurs after the last
cut and is turned over in winter, ii) some of the cut
material is not harvested and weighed and iii) a certain
fraction remains as standing live biomass. The grass
biomass was assumed to contain a carbon concentration
of 45 % (Katterer et al. 2011). When organic fertiliser
was applied (manure or slurry), German default values
for dry matter content and carbon concentration were
used to calculate the total fertiliser-derived carbon input
(FC;,) Mg ha ' yr.”']. The total aboveground carbon
input (AC;,) [Mgha ' yr.”'] was successively calculated
as:

_ ANPP x 0.3

ACi, 3

+ FCj, (2)
where ANPP x 0.3 is the part of ANPP that is not
harvested. It was further assumed that only 50 % of that
fraction is turned over annually and becomes available
for soil organic matter formation (Schneider et al. 2006).
The total belowground net primary production (BNPP)
[Mg C ha ' yr.”'] was calculated as:

BNPP = ANPP x R : S; (3)

where R : S; is the individual R:S as listed in Table 1. In
this study, R: S thus refers to ANPP:BNPP. According to
the well-constrained annual root turnover of 50 % in the
temperate zone (Gill and Jackson 2000), the total annual
belowground carbon input (BCj,) [Mg ha ' yr.”'] was
calculated as:

BNPP
BCjp = ——

2 (4)

In long-term experiments or soil monitoring sites,
SOC concentrations are mostly only determined in the
topsoil to a maximum depth of 30 cm. Although the
majority of the root biomass is located in the topsoil,
most plant roots extend to much greater depth. To de-
termine the fraction of total BNPP that is distributed to a
certain sampling depth d [cm], the Michaelis-Menten-
type function as described by Kitterer et al. (2011) was
used:

d x (dso +d,)

BNPP; = ———MMM~ 5
T4, % (dso + d) )

where d,. is maximum rooting depth and ds, is the depth
to which 50 % of the total BNPP is distributed. The ds,
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Table 1 Reported average root:shoot ratio (R:S) values included
in the analysis with their source (Reference), a description of the
study (species, grassland type, origin of the included data),

whether rhizodeposition is included in the estimate and the model
in which the respective ratio is officially implemented

Reference R:S Species/ grassland type/ origin Rhizodep. Model
Fiala 2010 8 Calamagrostis villosa, unmanaged yes

Jackson et al. 1996 3.7 Global temperate grasslands no

Bolinder et al. 2007 (1) 3.34 Grassland/pasture (mainly Northern America) yes ICBM new
Luo 2.03 Chinese steppe grass species no

Bolinder et al. 2007 (2) 1.27 Different grass species (mainly Northern America) yes ICBM new
Kuzyakov and Domanski 2000 0.96 Different grass species (pot/field experiments) yes ICBM old
Christensen et al. 2009 0.81 Ryegrass, meadow fescue, timothy ley mix yes C-TOOL
Average of All 2.87

was set to 15 cm and d,. to 150 cm, to fit the observed
average grassland root distribution in a global meta-
analysis (Jackson et al. 1996), where 44 % of the total
root biomass was found in the upper 10 cm.

Finally, the total carbon input (7C;,) [Mg ha ' yr.™']
to a certain depth d was calculated as:

TCind - Bcind +ACin (6)

Study sites and model initialisation

A total number of 15 temperate grasslands at 13 differ-
ent sites (Europe and USA) were modelled (Table 2) to
estimate R:S. Monthly average values for temperature,
precipitation and potential evaporation were obtained
from publications, data holders or the weather data grid
of the German Meteorological survey (DWD). The
grasslands used varied strongly in soil texture (1-70 %
clay), climate parameters (4.1-11.5 °C mean annual
temperature (MAT), 392-969 mm mean annual precip-
itation (MAP), 551-785 mm potential evaporation),
fertilisation regime (0460 kg N ha yr.”') and cutting
frequency (0-3.5 cuts per year) (Table 3).

Modelling was performed in the R environment,
using the package SoilR, in which the RothC model is
implemented (Sierra et al. 2012). The RothC model
consists of five different pools with the following de-
composition rate constants, k, in a first-order decay:
depleted plant material (DPM, k = 10), resistant plant
material (RPM, k = 0.3), microbial biomass (BIO,
k = 0.66), humified organic matter (HUM, k = 0.02)
and inert organic matter (IOM, k = 0). Initial pool
distribution was estimated based on total SOC stock
and clay content, using the pedotransfer-functions
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described by Weihermueller et al. (2013) (active pools)
and Falloon et al. (1998) for IOM. The DPM/RPM ratio
for plant material was set to 1.44 in fertilised grasslands
and 0.69 in unfertilised. Carbon inputs from manure
were split in the DPM/RPM/HUM ratio of 49/49/2, as
described in the RothC documentation, which can be
downloaded at www.rothamsted.ac.uk/sustainable-
soils-and-grassland-systems/rothamsted-carbon-model-
rothc.

Statistics and validation

Root mean square error (RMSE) was used to evaluate
the model performance with each of the individual R:S
values. In addition, RMSE was minimised by manually
optimising the R:S. This was done by approximating the
local minimum to the second decimal place. The site-
specific region of the local minimum in RMSE was
thereby derived from the model runs with the eight
individual R:S values (Table 1). To avoid overrepresen-
tation of sites with high variation in SOC content over
time, each individual RMSE (RMSE;) was normalised
by the optimised RMSE (RMSE,) of each grassland
modelled:

RMSE o = RMSE~RMSE (7)

The performance of each R:S considered com-
pared with the best fit possible, not compared with
the data points directly, was thus evaluated. Linear
mixed effect models (Ime in the R package nlme)
(Pinheiro et al. 2009) were used to explain the
variability in modelled optimised R:S with site-
specific pedo-climatic (clay content, MAT, MAP,
potential evaporation) and management variables
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Table 2 List of grassland sites included in the analysis with identification number (ID), country, reference, duration [years], number of soil
organic carbon measurements available (SOC) and sampling depth (Depth) [cm]

ID Site Country Reference Duration SOC Depth
1 Rothamsted Park Grass unfertilised UK original data 160 9 23
2 Rothamsted Park Grass 96 kg N UK original data 158 5 23
3 Rothamsted Park Grass Manure UK original data 160 5 23
4 Schleswig Holstein soil monitoring site 8 Germany original data 18 6 10
5 Schleswig Holstein soil monitoring site 26 Germany original data 18 6 10
6 Schleswig Holstein soil monitoring site 28 Germany original data 18 6 10
7 Schleswig Holstein soil monitoring site 35 Germany original data 3 10
8 Schleswig Holstein soil monitoring site 38 Germany original data 3 10
9 Baden-Wiirttemberg soil monitoring site 31 Germany original data 19 3 40
10 Fischweier Germany Werth et al. 2005 27 8 8
11 Hepsisau Germany Werth et al. 2005 27 8 8
12 Melchingen Germany Werth et al. 2005 27 8 8
13 St. Johan Germany Werth et al. 2005 27 8 8
14 Askov Denmark Christensen et al. 2009 5 6 20
15 Swift Current USA Campbell et al. 2000 10 4 15

(cutting frequency, total N input). Therefore, site
was used as a random effect, to account for the fact

Table3 General site description for the grassland sites included in
the analysis with site identification number (ID), clay content [%],
mean annual temperature (MAT) [°C], mean annual precipitation
(MAP) [mm], potential evaporation [mm], amount of annual ni-
trogen (N) input (organic and inorganic combined) [kg N ha ' yr. ']
and annual cutting frequency (Cuts)

ID Clay Cuts N MAT  MAP  Evaporation
1 23 2 0 9.2 704 599
2 23 2 96 9.2 704 599
3 23 2 76% 9.2 704 599
4 13 3 409 83 840 564
5 45 35 195 85 802 575
6 9.5 5 460 8.7 765 580
7 12 2.5 NA 83 788 564
8 1 1 122 8.6 742 573
9 60 2 130 73 954 551
100 9 0 0 11.5 794 615
11 51 0 0 7.6 969 551
12 70 0 0 7.6 969 551
13 52 0 0 7.6 969 551
14 11 35 225 7.7 862 543
15 25 2 41 4.1 393 785

#96 kg N ha' yr.”' 1856-1904; 76 kg N ha™' yr.”' 1905
onwards

that grasslands located at the same site were not
independent observations. The goal was to derive a
response function with one or several of those var-
iables that could be used to estimate R:S in future
modelling efforts. Interactions between variables
were not considered to avoid overfitting and to keep
a potential model interpretable. Residual qg-plots
were used to test normal distribution of the residues,
whereby N input and number of cuts were log-
transformed to ensure approximate normal distribu-
tion of the residues. The Akaike Information
Criterion (AIC) was used to select the best model.
Finally, four different datasets were considered to
validate the model-derived optimised R:S (and a
potential response function) by estimating total root
biomass of independent grassland sites. The selec-
tion criteria for validation datasets were: i) reported
belowground biomass to a certain depth and ii)
reported yield or above-ground biomass. The select-
ed studies investigate gradients in fertilisation
(Sochorova et al. 2016), species richness in
unfertilised natural grasslands (Fornara and Tilman
2008), species for intensive forage production
(Bolinder et al. 2002) and a pasture experiment with
contrasting stocking rates and N-fertilisation
(unfertilised vs. 210 kg N ha™' yr.”'). Gradients
were thus present across studies and within studies.
Measured root biomass was chosen for validation, in
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order to test, whether the R:S estimation as embed-
ded in the other assumptions made (equations 1 and
5) would be able to predict realistic root biomass
values. The reported yields were used to calculate
root biomass using Eq. 1, 3, 4 and 5 and the R:S
values that were subject to validation. This calculat-
ed root biomass was then compared to the measured
root biomass, using the modelling efficiency (EF) to
evaluate the performance of the model approach.
Thereby an EF of 0 indicates that the model predic-
tion is better than the simple average of all observed
values and an EF of 1 indicates a perfect match
between modelled and measured values (Loague
and Green 1991). All statistics and calculations were
performed in R. Errors given in the text are standard
deviations.

Sensitivity analysis

The derivation of total annual carbon input described
above involved several assumptions (Eq. 1-6). To test
how sensitive the RothC model was to each of the as-
sumptions and to test the hypothesis that the model is
more sensitive to variation in R:S than to variation in
decomposition rate modifiers, a model sensitivity analy-
sis was conducted. For this analysis, we used all 15 sites
available. The average of all R:S values (2.87; Table 1)
and the following assumed or measured parameters were
increased by 50 %: Annual yield, amount of non-
harvested biomass (NPP yield), proportions of living
and dead aboveground biomass turned over each year
(Aboveground input), proportion of total BNPP in the top
15 cm soil layer, maximum rooting depth, annual root
turnover, DPM/RPM ratio, temperature, precipitation,
evaporation, clay content, PM/HUM ratio. The first seven
parameters were grouped as input-related, the latter five
as output-related parameters or decomposition rate mod-
ifiers. DPM/RPM ratio, which determines the flow of
plant-derived carbon into the DPM and RPM pools,
was classified as a mixture of both input- and output-
related. The PM/HUM ratio (PM = DPM + RPM) was
modified to assess the model sensitivity to initial pool
distribution, whereby the PM/HUM ratio at steady state is
around 0.17. The model was run for 100 years and the
deviation in SOC stock change between the unchanged
reference scenario (ref) and the modified scenario (mod)
was calculated for each site and modified parameter. It
should be noted that a 50 % variation in temperature
might not be very meaningful, since temperature is not
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a mass and its variation depends on the unit chosen (°C).
However, it was used as a proxy here to ensure variation
of a similar degree in all parameters.

Results
Root: shoot ratio estimation

The average optimised R: S for all experiments was
3.6 + 2.4, while minimum and maximum optimised R:S
were 0.72 and 8.8 respectively (Table 4). The maximum
R:S was thus 12-fold the minimum R:S. Among the
literature-derived ratios tested, the average of all had the
lowest RMSE, ., 3.3 £ 4.8 Mg C ha ). However, the
high range of predicted R:S ratios indicates that a single
value is not appropriate for carbon input calculation.

A significant negative effect of nitrogen
fertilisation and number of cuts on the optimised
R:S was found (Fig. 1A, B). Due to the high inter-
correlation between both variables (nitrogen
fertilisation and number of cuts) (R®> = 0.71, data
not shown), inclusion of both variables in one regres-
sion model did not add explanatory power.
Furthermore, it was not possible to test the effect of
cutting frequency without the covariance in nitrogen
fertilisation, since no experiment with varying cut-
ting frequency but constant nitrogen fertilisation was
available (conversely the Rothamsted Park Grass
Experiment had a fertilisation gradient but a constant
number of cuts). In that experiment, for which
gapless yields for 137 years and relatively frequent
SOC measurements were available, a very pro-
nounced difference in predicted R:S ratio was found
for the unfertilised (6.96) and 96 kg N ha ' yr.”'
fertilised (2.87) meadows. This is well in line with
the observed overall trend. Figure 2 illustrates the
potential misfit of the RothC model that might occur
if the same R:S value (here the average R:S, 2.87)
were applied to both treatments. In that case, the
model would have underestimated the SOC stock in
the unfertilised meadow by 35 Mg ha ' or 40 %.
Assuming that all other parameters in the model were
generally unaffected by the fertilisation treatment, an
equal R:S ratio in the unfertilised and fertilised
meadows is unrealistic. Nitrogen fertilisation was
thus determined to be the main driver for R:S in
grasslands. Due to the fact that: i) the correlation
was mainly driven by the unfertilised grasslands
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Table 4 Normalised root mean square error (RMSE, )
[Mg SOC ha™'] for each R:S ratio in each experiment, with
average value and standard deviation (SD) and the

optimised R:S ratio with average value and standard devi-
ation for each experiment. The root:shoot ratios in columns
are in decreasing order (Table 1)

ID Fiala Jackson Bolinder1 Average Luo  Bolinder2 Kuzyakov Christensen | Optimised
1 66.1 9.1 4.3 0.2 9.3 19.4 235 255 2.8
2 6.6 12.8 15.0 17.9 231 279 29.8 30.7 6.3
3 19.3 4.3 5.9 8.3 14.8 20.6 23.0 241 4.8
4 16.1 4.8 3.9 2.6 0.5 0.0 0.0 0.0 0.8
5 15.0 5.6 4.9 3.9 2.0 0.4 0.2 0.1 0.7
6 217 8.1 7.0 55 2.9 0.6 0.1 0.0 0.9
7 7.4 2.0 1.5 0.9 0.0 0.4 0.8 1.0 2.0
8 4.5 0.1 0.0 0.1 0.4 0.6 0.7 0.8 33
9 19.9 0.1 0.5 1.0 1.9 2.7 4.3 5.0 4.0
10 0.1 0.7 0.8 1.0 1.3 1.6 1.7 1.8 8.8
11 7.6 0.0 0.3 1.0 22 3.5 4.1 4.3 3.7
12 0.5 0.6 0.3 0.7 1.8 2.9 3.4 3.6 5.2
13 27 2.8 3.6 4.5 6.2 7.8 8.4 8.7 5.6
14 14.3 0.2 0.1 0.8 3.6 6.1 71 7.6 35
15 8.2 27 2.2 1.6 0.5 0.0 0.1 0.3 1.3
Average 14.0 3.6 3.4 3.3 4.7 6.3 71 7.6 3.6
SD 16.1 3.9 3.9 4.7 6.5 8.9 9.9 10.4 23

(non-significant when unfertilised grasslands were
excluded) and ii) the total amount of nitrogen
fertilisation is, or should be, a function of potential
NPP of a specific pedo-climate region, it was decided
to use two different R:S values, one for fertilised and
one for unfertilised grasslands, instead of a function
describing the relationship between nitrogen input
and R:S. Thus, the unfertilised grasslands had an
average R:S of 5.9 £ 1.9 and the more intensively
managed, fertilised and cut meadows had an average
R:S of 2.4 + 1.5. Assuming all other assumptions
made in Eqgs. 1, 2, 4 and 5 apply to temperate grass-
lands soils, the coefficient for directly converting
harvested carbon to annual carbon inputs
(Cinput:Charvest ratio) to a certain soil depth for
unfertilised and fertilised grasslands can be extracted
from Fig. 3. The associated uncertainty concerning
R:S (coefficient of variation for the experiments in-
cluded) was 32 % for the unfertilised and 59 % for
the fertilised grasslands. None of the other variables
considered significantly improved the regression
model, and thus a large part of the observed variation
remained unexplained.

Validation

The R: S values for unfertilised and fertilised grass-
lands were validated with four datasets of measured
root biomass to a certain depth, all of which includ-
ed several treatments. Two of these datasets included
different fertilisation treatments, one was obtained
from an unfertilised experiment testing the effect of

species richness and one dataset was obtained from
a fertilised experiment testing different perennial ley
species. The total number of 20 observations was
predicted with high precision (EF = 0.84, Fig. 4),
which indicates that both the distinction between
unfertilised and fertilised grasslands and the
assumptions used to estimate total belowground
production in a certain soil layer performed well.
Sochorova et al. (2016) found a similar difference
in R:S between fertilised and unfertilised meadows
in the Rengen experiment. Therefore the measured
root biomass was predicted with high precision
using the two R:S values derived. Species richness
in the Cedar Creek experiment (Fornara and Tilman
2008), as one of the additional drivers of R:S con-
sidered, did not have an influence on R:S, despite a
strong influence on total NPP. Only the scatter ob-
served between different ley species in the study by
Bolinder et al. (2002) was not captured accurately
by the modelling approach.

Model sensitivity to input- and output-related
parameters

The RothC model was found to be equally sensitive to
climate variables and the input-related parameters yield,
R:S and root turnover (Fig. 5), with 50 % variation causing
deviations from the reference model prediction of up to
35-45 Mg ha' after 100 years. Furthermore, the propor-
tion of aboveground non-harvested biomass (NPP yield)
and the proportion of roots in the upper 15 cm were
revealed to be important parameters, with a variation in
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Fig. 1 Model-optimised root:shoot ratio in the experiments in-
cluded in this analysis as a function of A) nitrogen (N) fertilisation
[kg ha™' yr."'] and B) annual cutting frequency

final SOC stock of up to 15 Mg ha " after 100 years. The
influence of the latter decreased with increasing sampling
depth, but the average sampling depth of the 15 grasslands
was relatively shallow (15.1 cm), which explains the rela-
tively high sensitivity of the model to the root distribution
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Fig.2 RothC-modelled trend in soil organic carbon (SOC) stocks
for the unfertilised and fertilised treatments in the Rothamsted Park
Grass Experiment, calculated using the average of all R:S (2.87)
for both treatments and measured SOC stocks over time
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for both grassland types. Those functions can be used to convert
harvested carbon directly to annual C input in a modelling context

parameter. All other parameters, including clay content and
the initial pool distribution (PM/HUM), were of minor
importance (<5 Mg ha ! in 100 years).

Discussion

Inverse estimation of root: shoot ratio and annual carbon
inputs

Root carbon input is the most important (Rasse et al.
2005), yet most uncertain, component of SOC
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Fig. 4 Estimated root biomass (using the two model-derived
root:shoot ratios for unfertilised and fertilised grasslands) plotted
against measured root biomass from four independent experiments
(Bolinder et al. 2002; Fornara and Tilman 2008; Sochorova et al.
2016). Dotted line indicates 1:1 relationship
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Fig. 5 Boxplot indicating the sensitivity of the RothC model to
50 % variation in different parameters, expressed as the absolute
soil organic carbon (SOC) stock difference between the unmodi-
fied reference scenario (ref) and the modified scenario (mod) after
100 years. Parameters were divided into carbon input parameters
(external parameters as introduced in Egs. 1-6) and decomposition
parameters (internal). DPM/RPM ratio was considered as being on
the exact border between input- and output-related parameters.
The dashed line indicates the modelled final SOC stock under
“business as usual”, using the optimised R: S (2.87) and the
available soil and climate data

reproduction. In this study, the RothC model was used to
inversely estimate R:S ratio for various long-term grass-
land experiments. The average optimised R: S of 3.68
was equal to the global average R:S ratio of 3.7 for
grasslands found by Jackson et al. (1996).
Furthermore, the range of R:S ratios obtained was well
in line with that reported in the literature (Yang et al.
2009). Finally, the validation of the estimated R:S ratios
revealed that they were realistic in absolute terms and in
specific soil depth increments. It can thus be concluded
that the concept of inverse estimation of R:S and total
annual carbon inputs using well documented long-term
grassland experiments was successful. However, the
results of this study also indicate that it is not appropriate
to use a fixed, static R:S to estimate total carbon inputs,
as performed by most carbon balance models.

A significant part of the observed variability in R: S
was explained by nitrogen fertilisation regime. It has
been observed previously that nutrient availability

drives carbon allocation in plants. When experiencing
deficiency of major nutrients (N, P, K), plants generally
invest more in belowground organs to maximise nutri-
ent acquisition from the soil (Ericsson 1995; Wilson
1988). For cereals, R:S is reported to increase by 15—
50 % under nitrogen deficiency (Hansson et al. 1987;
Welbank et al. 1973). For grassland, this shift may be
higher, since cereals are bred for yield optimisation and
thus for high carbon allocation to grains. Indeed, in a
German long-term grassland fertilisation experiment,
Sochorova et al. (2016) reported an almost threefold
R:S ratio in the unfertilised control compared with the
CaN-fertilised treatment, which is well in line with the
difference in R:S determined in the present study.
Furthermore, at the French site Laqueueille, which was
used as validation dataset (original data), 1.9 higher R:S
was found in unfertilised pasture compared with N-
fertilised pasture.

It might be somewhat one-dimensional to optimise
only R:S to obtain the best model fit to observed SOC
stocks. However, the effect of nitrogen availability on
SOC decomposition is highly uncertain (Neff et al.
2002) and numerous studies in recent years have indi-
cated that nitrogen deficiency leads to nitrogen mining
and thus higher decomposition of SOC and lower
stabilisation of fresh carbon input (Ammann et al.
2007; Craine et al. 2007; Kirkby et al. 2014).
Implementing such a mechanism in carbon balance
models has been suggested (Reed et al. 2011), but in
the present case would have led to an even more pro-
nounced difference in R:S between unfertilised and
fertilised grasslands. The opposite, i.e. decelerated turn-
over of SOC under nitrogen deficiency, has also been
reported (Allen and Schlesinger 2004) and implemented
in RothC by the different DPM/RPM ratio for
“unimproved pastures and shrublands” (0.69 compared
with 1.44 for improved pastures and croplands). This
shift in carbon input partitioning into the most active
SOC pools was applied in this study.

Cutting frequency was also found to significantly
affect R:S, with lower R:S in more often cut grasslands.
However, it is less clear whether direct causality exists,
since cutting frequency was highly correlated to nitro-
gen fertilisation. It can be speculated that higher cutting
frequency leads to higher competition for light, so that
more carbon is allocated to aboveground organs.
However, there is no clear evidence of such an effect
in the literature. Vinther (2006) investigated the effect of
cutting frequency (3—4 times compared with 7-12
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times) on R:S in a Danish ryegrass-clover sward. A
slight, but non-significant decrease in R:S with increas-
ing cutting frequency was found (for both plants), while
the interannual variability in R:S was much higher,
leading the author to conclude that the sensitivity of
R:S to weather conditions might be more important than
its sensitivity to management interventions. After
19 years of contrasting number of cuts but constant
nitrogen fertilisation, Kramberger et al. (2015) did not
find an effect of cutting frequency on SOC stocks, but
observed a decrease in yield with increasing cutting
frequency (from 12-weekly to 2-weekly intervals).
This might indicate that the opposite, i.e. increasing
R:S with increasing cutting frequency, had actually oc-
curred. Finally, (Seiger and Merchant 1997) found a
significant decrease in R:S with increasing cutting fre-
quency of Japanese knotweed in pot experiments. In
addition to nitrogen fertilisation, cutting frequency
might thus play a certain role for plant carbon allocation.

Importance of input estimation and major uncertainties

The sensitivity analysis revealed that SOC simulation in
grasslands is highly sensitive to carbon input estimation.
Although the hypothesis that the RothC model is more
sensitive to variation in R:S than to variation in any
decomposition rate modifier had to be rejected, it was
shown that R:S variation has a similarly high impact as
the degree of variation in climate variables. However,
there was a notable difference in uncertainty for the two
types of data. Even if climate data are not available for a
specific site, they can be estimated with much higher
precision than the 50 % variation assumed here. In
contrast, 50 % variation in R:S is highly precise, com-
pared with the possible range of R:S for grasslands
found in the literature. This illustrates the high impor-
tance of accurate carbon input estimation, as highlighted
previously by Ludwig et al. (2007). Self-evidently, the
model sensitivity to yield (or ANPP estimation in gen-
eral) and root turnover was clearly as high as the sensi-
tivity to R:S estimation. However, the global pattern of
root turnover (Gill and Jackson 2000) shows well
constrained temperature dependency of root turnover,
with less than 50 % variation for studies conducted in
the temperate zone. Measuring root turnover is compli-
cated and costly and the total number of available
datasets is limited. The same is true for rhizodeposits.
The good fit of the estimated belowground input with
the measured root biomass data suggests that either: 1)
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the RothC model was calibrated without considering
rhizodeposits at all or that ii) the role of rhizodeposits
in SOC reproduction may be overestimated (in models).
As an example, Bolinder et al. (2007) calculated total
root-derived carbon input by multiplying root biomass
by 1.65. In fact, rhizodeposits are thus entirely treated as
root biomass. However, root exudates are also known
to: i) be very labile substances with presumably short
residence time and ii) to cause priming, i.e. enhanced
decomposition of native SOC (Kuzyakov 2002).
Keiluweit et al. (2015) pointed out that increasing root
exudates might even cause net loss of SOC. It is thus
very likely that rhizodeposits are not comparable to root
biomass regarding SOC formation. Moreover, it re-
mains an open question how important reliable esti-
mates of rhizodeposits, their turnover and potential
priming effects are to improve the performance of car-
bon balance models.

Finally, the model sensitivity to ANPP, on which the
total carbon input calculation is based, is very problem-
atic. This is especially true for grassland ecosystems, in
which the exported biomass is rarely quantified. In this
study, only sites for which yield data were available to
parameterise belowground carbon inputs were selected.
However, when those are not present and ANPP has to
be estimated, the final uncertainty of the derived carbon
input will strongly increase. There are a large number of
models available for NPP prediction, often based on
temperature, precipitation and radiation. However,
when applied in specific regions, the prediction of these
models is scarcely comparable (Lin and Zhang 2013).
Furthermore, the effects of soil fertility, species compo-
sition, grazing intensity, cutting frequency and
fertilisation on ANPP are only captured (to a certain
extent) in complex growth models such as PASIM
(Calanca et al. 2007). To overcome the lack of reliable
biomass data in grasslands, it should be comprehensive-
ly tested how well ecosystem models such as
CENTURY are able to predict SOC dynamics without
calculating input data from measured yields. For live
biomass and SOC dynamics separately, Parton et al.
(1993) were able to show reasonably well fits to ob-
served data of a global set of differently managed
grasslands.

Compared with carbon input and climate variables,
the model sensitivity to other parameters such as initial
pool distribution or even clay content was negligible.
Similarly, Senapati et al. (2013) found no significant
influence of different initialisation methods on RothC-
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projected SOC stock changes in Australian grasslands.
In addition, the uncertainty in clay content is small,
since soil texture is a basic soil parameter and is mostly
measured or data are available from soil maps. Due to
the much higher proportion of belowground carbon
inputs in grasslands compared with cropland (Bolinder
etal. 2012) and the wider range of possible management
regimes, it can be concluded that, particularly in grass-
lands the current degree of simplification in carbon
balance models concerning carbon inputs is not
acceptable.

This study provides RothC-derived coefficients for
yield-based estimation of carbon inputs in temperate
grasslands that can be used for carbon modelling. The
results showed that plant carbon allocation to above-
and belowground organs is highly variable. This vari-
ability has to be accounted for, since the sensitivity of
the model to carbon inputs is just as high as its sensitiv-
ity to climate data, although these are most often avail-
able. Nitrogen fertilisation was identified as an impor-
tant driver for R:S in grasslands, but further investiga-
tions should follow to explain more of the observed
variability and to disentangle the complexity below
ground (Rumpel et al. 2015). Interactions with the phos-
phorus cycle and the role of mycorrhiza and root exu-
dates for long-term carbon storage are other carbon
input-related topics on which further understanding is
necessary (Poeplau et al. 2016; Rumpel et al. 2015;
Sochorova et al. 2016). Using the derived R:S values
for unfertilised and fertilised grasslands in future appli-
cations of the RothC model will improve model perfor-
mance in temperate grasslands. It has been decided to
use two fixed values for unfertilised and fertilised grass-
lands, since across sites, the balance of plant N demand
and N availability is not directly reflected in the amount
of N applied. Soil mineral nitrogen concentration might
be a better indicator for a potential response function.
Furthermore, it remains to be tested, i) how other carbon
models perform with the derived ratios, ii) if the results
are applicable to grasslands in other climate zones and
iii) if similar mechanisms can be found in croplands or
forests.
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